- The AO modes for HARMONI - From Classical to Laser-assisted tomographic AO systems

Size: px
Start display at page:

Download "- The AO modes for HARMONI - From Classical to Laser-assisted tomographic AO systems"

Transcription

1 - The AO modes for HARMONI - From Classical to Laser-assisted tomographic AO systems Benoît Neichel, Thierry Fusco, Carlos M. Correia, Kjetil Dohlen, Leonardo Blanco, Kacem El Hadi, Jean-François Sauvage, Noah Schwartz, Yoshito Ono, Fraser Clarke, Emmanuel Hugot, Miska Le Louarn, Niranjan A. Thatte, Matthias Tecza, Hermine Schnetler, Ian Bryson, Angus M. Gallie, David M. Henry, Tim J. Morris, Richard M. Myers, Joël Vernet, Jérôme Paufique, Peter Hammersley, Jean-Luc Gach, Alexis Carlotti, Ariadna Calcines, Pascal Vola, Sandrine Pascal, Marc Llored, Dave Melotte, Olivier Martin, Arlette Pecontal, Andrew Reeves, James Osbron, Matthew Townson

2 HARMONI Overview HARMONI Consortium Partner Associate Partner Responsibilities University of Oxford STFC RAL Space Spectrographs & Obs. Prep STFC UK ATC Edinburgh Univ. of Durham Cryostat, AIV, Rotator, LTAO IAC, Tenerife CSIC CAB (INTA), Madrid CRAL, Lyon LAM, Marseille IPAG, Grenoble IRAP, Toulouse ONERA, Paris IPAG, Grenoble Pre-optics & Electronics Calibration & Sec. guiding IFU & Software SCAO, LTAO, High Contrast

3 HARMONI Overview HARMONI Consortium Partner Associate Partner Responsibilities University of Oxford STFC RAL Space Spectrographs & Obs. Prep STFC UK ATC Edinburgh Univ. of Durham Cryostat, AIV, Rotator, LTAO IAC, Tenerife CSIC CAB (INTA), Madrid CRAL, Lyon LAM, Marseille IPAG, Grenoble IRAP, Toulouse ONERA, Paris IPAG, Grenoble Pre-optics & Electronics Calibration & Sec. guiding IFU & Software SCAO, LTAO, High Contrast Thanks for hosting us this week!!

4 HARMONI Overview HARMONI = High Angular Resolution - Monolithic - Optical and Nearinfrared - Integral field spectrograph First light ELT instrument

5 HARMONI Overview HARMONI = High Angular Resolution - Monolithic - Optical and Nearinfrared - Integral field spectrograph First light ELT instrument Workhorse instrument - visible and near-infrared spectroscopy ( µm) Integral Field Spectrograph providing ~ spectra per exposure 3D data cube

6 HARMONI Overview Bands V+R or I+z+J or H+K I+z or J or H or K HARMONI = 3 resolving powers Wavelengths (μm) , , , , , Z or J_high or H_high or K_high 0.9, 1.2, 1.65, 2.2 (TBD) R ~3000 ~7500 ~ D data cube

7 1.52 x 2.14 HARMONI Overview HARMONI = 4 spatial scales 60 x 30 mas 0.61 x x152 spaxels 20 mas 10 mas 4 mas 3.04 x D data cube 6.42 x 9.12

8 1.52 x 2.14 HARMONI Overview HARMONI = 4 spatial scales 60 x 30 mas 0.61 x x152 spaxels 20 mas 10 mas 4 mas Assisted 3.04 x 4.28 with 6.42 x 9.12 Adaptive Optics

9 HARMONI: Two AO modes Single Conjugated AO Laser Tomography AO x6 High-Performance Low sky coverage High-Performance & sky coverage

10 HARMONI HARMONI, SCAO & LTAO implementation

11 HARMONI HARMONI, SCAO & LTAO implementation Telescope Pre-Focal Station Focal plane Relay Seeing limited Light from telescope Re-imaged focal plane HARMONI Cryostat Nasmyth Platform

12 HARMONI HARMONI, SCAO & LTAO implementation Telescope Pre-Focal Station Focal plane Relay Seeing limited Light from telescope SCAO WFS SCAO dichroic SCAO HARMONI Cryostat Nasmyth Platform

13 HARMONI HARMONI, SCAO & LTAO implementation Telescope Pre-Focal Station Dichroic Relay Seeing limited Light from telescope LGS (<0.6um) NGS Pick-off Truth Pick-off SCAO LTAO LGSWFS Module HARMONI Cryostat Nasmyth Platform

14 HARMONI HARMONI, SCAO & LTAO implementation LGSWFS From Telescope SCAO & NGS WFS IFS

15 HARMONI HARMONI, SCAO & LTAO implementation LGSWFS From Telescope SCAO & NGS WFS IFS

16 HARMONI SCAO SCAO system baseline is to use a pyramid WFS:

17 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity +2 mag.

18 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity

19 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity Managing the Island effect

20 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity Managing the Island effect See Noah Schwartz talk on Friday 50cm Spiders

21 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity Managing the Island effect See Noah Schwartz talk on Friday

22 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity Managing the Island effect Small modulation provides information on what s behind the spider + Secret ingredient See Noah Schwartz talk on Friday

23 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity Managing the Island effect Small modulation provides information on what s behind the spider + Secret ingredient See Noah Schwartz talk on Friday Before After SCAO will provide a SR of >70% in K-band Residuals less than 50nm

24 HARMONI SCAO High Contrast : Spectral characterization of young Jupiters around nearby stars in H & K bands at R= , with a 10-6 contrast at 200mas. From A. Carlotti, A. Vigan, D. Mouillet, M. Bonnefois

25 HARMONI SCAO High Contrast : Simulated data of 4 planets w/ 10-6 planets contrast & 51 Eri b-like synthetic spectrum (2h exp. with H=6 star). From A. Carlotti, A. Vigan, D. Mouillet, M. Bonnefois

26 HARMONI HARMONI, SCAO & LTAO implementation LGSWFS High-Order Loop SCAO & NGS WFS Low-Order Loop

27 HARMONI LTAO LTAO Top-Level Specifications: 4 mas 10 mas 20 mas 60 x 30 mas Strehl K > 60% Jitter < 2mas Sky Coverage >10% at the Pole EE (20mas) > 40% Jitter < 5mas Sky Coverage of >50% at the Pole EE (40mas) > 50% Jitter < 10mas Sky Coverage of >90% at the Pole

28 HARMONI LTAO LTAO Top-Level Specifications: 4 mas 10 mas 20 mas 60 x 30 mas Strehl K > 60% Jitter < 2mas Sky Coverage >10% at the Pole EE (20mas) > 40% Jitter < 5mas Sky Coverage of >50% at the Pole EE (40mas) > 50% Jitter < 10mas Sky Coverage of >90% at the Pole Set requirements on the LGS High-Order Loop

29 HARMONI LTAO LTAO Top-Level Specifications: 4 mas 10 mas 20 mas 60 x 30 mas Strehl K > 60% Jitter < 2mas Sky Coverage >10% at the Pole EE (20mas) > 40% Jitter < 5mas Sky Coverage of >50% at the Pole EE (40mas) > 50% Jitter < 10mas Sky Coverage of >90% at the Pole Set requirements on the LGS High-Order Loop Set requirements on the NGS Low-Order Loop

30 HARMONI LTAO Laser constellation R0 scaled km ZA=0 Optimal LGS constellation between R=[15-40] SR (K Band) km ZA=60 130km ZA=45 Small constellation greatly helps for tomographic error See Thierry Fusco talk on Thursday LGS Radius (arcsec)

31 HARMONI LTAO Sensing on LGS Sodium layer T ~ 20km H ~ 80km Predicted spot elongation pattern LLT Pupil plane LLT Detector plane Distance from launch site

32 HARMONI LTAO Dealing with spot elongation 1 25 LLT Pupil plane Ideally, we need subapertures with 25x25 pixels of ~1 Detector plane Distance from launch site For 80x80 subapertures, we need 2000 x 2000 pixels

33 HARMONI LTAO Dealing with spot truncation LLT Pupil plane Most likely, we will have no more than 10x10 pixels Detector plane Distance from launch site Strong truncation

34 HARMONI LTAO Dealing with spot truncation Truncation induces biases that are projected on-axis by the Tomography Up to 300nm x6 See Leo Blanco talk on Thursday

35 HARMONI LTAO Dealing with spot truncation One way to reduce this impact is to reject the truncated measurements Down to 80nm x6 See Leo Blanco talk on Thursday

36 HARMONI LTAO Sensing on NGS Main offender is the telescope Windshake Single-Sided Amplitude Spectrum of y(t) PSD ATM PSD WS 10-5 Y(f) 2 /Hz Atmosphere = 15 mas Windshake = 263 mas Temporal frequency [Hz] But windshake is isoplanatic: we can use the telescope WFS to reduce it

37 HARMONI LTAO Sensing on NGS Jitter control strategy: Use bright but far stars to compensate windshake with telescope WFS Use faint but close star to compensate atmospheric jitter 1.2 to 2.2 microns 2x2 Shack-Hartmann 8 mas / pixel 125 pixel / subap. 500 Hz

38 HARMONI LTAO Sensing on NGS Jitter control strategy: Use bright but far stars to compensate windshake with telescope WFS Use faint but close star to compensate atmospheric jitter 1.2 to 2.2 microns 0.8 South galactic Pole 90% Sky Cov. for 10mas 2x2 Shack-Hartmann 8 mas / pixel 125 pixel / subap. 500 Hz Sky Cov % Sky Cov. for 5mas 10% Sky Cov. for 2mas jitter (mas)

39 HARMONI LTAO Sensing on NGS See Carlos Correia poster on Thursday

40 See Carlos Correia poster on Thursday HARMONI LTAO Sensing on NGS Cosmos Field LTAO 1NGS jitter [mas] 10 DEC [deg] DEC [deg] GoodS Field LTAO 1NGS Old ESO profile RA [deg] RA [deg] 0.2 The NGS strategy fulfills the science requirements for all observations jitter [mas] 0.2

41 Conclusion: HARMONI schedule 12/2017 PDR FDR MAIT

42 Conclusion: HARMONI schedule Dr. Frans Snik 12/2017 PDR 2019 FDR MAIT : integration at the telescope 2024: 1 st light!

43 - The AO modes for HARMONI - 1 more slide before Coffee Break!

44 Register now, for the 2 to 4 October 2017 in Padova, Italy

45 Marseille 2016 Register now, for the 2 to 4 October 2017 in Padova, Italy

46

47 HARMONI SCAO SCAO system baseline is to use a pyramid WFS Better performance & better sensitivity

The Adaptive Optics modes for HARMONI From Classical to Laser Assisted Tomographic AO

The Adaptive Optics modes for HARMONI From Classical to Laser Assisted Tomographic AO The Adaptive Optics modes for HARMONI From Classical to Laser Assisted Tomographic AO B. Neichel* a, T. Fusco a,b, J.-F. Sauvage a,b, C. Correia a, K. Dohlen a, K. El-Hadi a, L. Blanco a,b, N. Schwartz

More information

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica On behalf of the MAORY module Consortium Shaping E-ELT Science and Instrumentation workshop, ESO, 25

More information

Instruments for ESO s Extremely Large Telescope

Instruments for ESO s Extremely Large Telescope Instruments for ESO s Extremely Large Telescope at Dispersing Elements for Astronomy, October 2017 Suzanne Ramsay, ELT Instrumentation Project Manager on behalf of many ESO colleagues and the consortia

More information

SCIENCE WITH. HARMONI A near-infrared & visible integral field spectrograph for the E-ELT. Niranjan Thatte University of Oxford

SCIENCE WITH. HARMONI A near-infrared & visible integral field spectrograph for the E-ELT. Niranjan Thatte University of Oxford SCIENCE WITH HARMONI A near-infrared & visible integral field spectrograph for the E-ELT Niranjan Thatte University of Oxford HARMONI Consortium Niranjan Thatte, Matthias Tecza,! Fraser Clarke, Tim Goodsall,!

More information

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders Noah Schwartz* a, Jean-François Sauvage b,c, Carlos Correia c, Cyril Petit b, Fernando Quiros- Pacheco

More information

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13437 Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Gérard Rousset 1a, Damien Gratadour 1, TIm J. Morris 2,

More information

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 Adaptive Optics Status & Roadmap Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 1 Analysis CASIS: VLT MCAO Imager NACO upgrade Commissioning PAC The ESO Adaptive Optics

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Simulations of E-ELT telescope effects on AO system performance Miska Le Louarn* a, Pierre-Yves Madec a, Enrico Marchetti a, Henri Bonnet a, Michael Esselborn a a ESO, Karl Schwarzschild strasse 2, 85748,

More information

EAGLE multi-object AO concept study for the E-ELT

EAGLE multi-object AO concept study for the E-ELT 1st AO4ELT conference, 02008 (2010) DOI:10.1051/ao4elt/201002008 Owned by the authors, published by EDP Sciences, 2010 EAGLE multi-object AO concept study for the E-ELT G. Rousset 1,a,T.Fusco 2, F. Assemat

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

HARMONI: A FIRST LIGHT SPECTROGRAPH FOR THE E-ELT

HARMONI: A FIRST LIGHT SPECTROGRAPH FOR THE E-ELT HARMONI: A FIRST LIGHT SPECTROGRAPH FOR THE E-ELT F. Clarke 1,a, N Thatte 1, M. Tecza 1, S. Arribas 2, R. Bacon 3, R. Davies 1, E. Mediavilla 4 1 University of Oxford, Department of Physics, Keble Road,

More information

A novel laser guide star: Projected Pupil Plane Pattern

A novel laser guide star: Projected Pupil Plane Pattern A novel laser guide star: Projected Pupil Plane Pattern Huizhe Yang a, Nazim Barmal a, Richard Myers a, David F. Buscher b, Aglae Kellerer c, Tim Morris a, and Alastair Basden a a Department of Physics,

More information

EPICS: A planet hunter for the European ELT

EPICS: A planet hunter for the European ELT EPICS: A planet hunter for the European ELT M. Kasper, C. Verinaud, J.L. Beuzit, N. Yaitskova, A. Boccaletti, S. Desidera, K. Dohlen, T. Fusco, N. Hubin, A. Glindemann, R. Gratton, N. Thatte 42-m E-ELT

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

MAORY design trade-off study: tomography dimensioning

MAORY design trade-off study: tomography dimensioning MAORY design trade-off study: tomography dimensioning Sylvain Oberti, Miska Le Louarn ESO Garching Emiliano Diolaiti, Carmelo Arcidiacono, Laura Schreiber, Matteo Lombini INAF Bologna and the rest of the

More information

Achieving high resolution

Achieving high resolution Achieving high resolution Diffraction-limited performance with single telescopes with Adaptive Optics Or sparse aperture masking Use masks to sub-divide telescope primary into a numnber of subapertures

More information

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT Paolo Ciliegi INAF Osservatorio Astronomico di Bologna On behalf of the MAORY Consortium Science ELT Workshop Team Meeting ESO Garching, MPE Garching,

More information

T-REX Operating Unit 3

T-REX Operating Unit 3 T-REX Operating Unit 3 Emiliano Diolaiti INAF Osservatorio Astronomico di Bologna OU3 Overview Main objective: support INAF activities related to MAORY+MICADO system and to E-ELT adaptive optics instrumentation

More information

HIGH RESOLUTION IN THREE DIMENSIONS WITH SWIFT AND PALM3K

HIGH RESOLUTION IN THREE DIMENSIONS WITH SWIFT AND PALM3K Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13428 HIGH RESOLUTION IN THREE DIMENSIONS WITH SWIFT AND PALM3K Fraser Clarke

More information

Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015

Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015 Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015 Suzanne Ramsay (sramsay@eso.org) Outline of the talk The environment for instruments on

More information

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Florence, Italy. May 013 ISBN: 978-88-908876-0-4 DOI: 10.1839/AO4ELT3.15991 CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Olivier Lardière 1a, Dave Andersen, Colin Bradley 1,Célia Blain

More information

FP7-OPTICON PSF reconstruction meeting, Marseille January 14

FP7-OPTICON PSF reconstruction meeting, Marseille January 14 FP7-OPTICON PSF reconstruction meeting, Marseille 29-30 January 14 Welcome and introduction Thierry Fusco ONERA/LAM PSF estimation in astronomy Paulo Garcia SIM Universidade do Porto This talk focus PSF

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

The Austrian contribution to the European Extremely Large Telescope

The Austrian contribution to the European Extremely Large Telescope The Austrian contribution to the European Extremely Large Telescope Werner W. Zeilinger consortium Evolution of Telescope Size Scientific American 2015 14/15.Dec.2015 From Ground to Space 2 Discoveries

More information

On-sky MOAO performance evaluation of RAVEN

On-sky MOAO performance evaluation of RAVEN On-sky performance evaluation of RAVEN Y. H. Ono a, Carlos M. Correia a, O. Lardière b, D. R. Andersen b, S. Oya c, M. Akiyama d, D. Gamroth e, K. Jackson f, O. Martin a, and C. Bradley e a Aix Marseille

More information

Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench

Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench 1st AO4ELT conference, 08004 (2010) DOI:10.1051/ao4elt/201008004 Owned by the authors, published by EDP Sciences, 2010 Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench

More information

The E-ELT Telescope, instruments, technology. Mark Casali

The E-ELT Telescope, instruments, technology. Mark Casali The E-ELT Telescope, instruments, technology Mark Casali Project Goal To deliver and commission, in 2024 and within budget, the fully functional and complete European Extremely Large Telescope 39.3 m segmented

More information

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT Ground-based Instrumentation for VLT, VLTI and E-ELT Raffaele Gratton (with strong help by Sandro D Odorico) VLT 2 nd generation instruments Launched in 2001, completed 2012 HAWK-I (2007): wide field (7.5

More information

Keck Adaptive Optics Note 1069

Keck Adaptive Optics Note 1069 Keck Adaptive Optics Note 1069 Tip-Tilt Sensing with Keck I Laser Guide Star Adaptive Optics: Sensor Selection and Performance Predictions DRAFT to be updated as more performance data becomes available

More information

Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO

Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016 Page 1 Outline of lecture What is AO tomography? Applications of AO tomography Laser tomography AO Multi-conjugate

More information

ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations

ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations Christophe Vérinaud,Visa Korkiakoski Laboratoire d Astrophysique - Observatoire de Grenoble, France and EPICS consortium EPICS for

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

arxiv: v1 [astro-ph.im] 18 Jul 2016

arxiv: v1 [astro-ph.im] 18 Jul 2016 Natural guide-star processing for wide-field laser-assisted AO systems arxiv:67.57v [astro-ph.im] 8 Jul 6 Carlos M. Correia a, Benoit Neichel a, Jean-Marc Conan b, Cyril Petit b, Jean-Francois Sauvage

More information

Comparing the performance of open loop centroiding techniques in the Raven MOAO system

Comparing the performance of open loop centroiding techniques in the Raven MOAO system Comparing the performance of open loop centroiding techniques in the Raven MOAO system David R. Andersen *a, Colin Bradley b, Darryl Gamroth b, Dan Kerley a, Olivier Lardière b, Jean-Pierre Véran a a NRC

More information

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Guido Agapito a,c, Carmelo Arcidiacono b,c, and Simone Esposito a,c a INAF Osservatorio Astrofisico di Arcetri,

More information

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Olivier Beltramo-Martin Aix-Marseille Univ., LAM, A*MIDEX, Extra November 9th, 217 - LAM Olivier Beltramo-Martin (LAM)

More information

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope Mem. S.A.It. Vol. 86, 436 c SAIt 2015 Memorie della Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope L. Schreiber 1, C. Arcidiacono 1, G. Bregoli 1, E. Diolaiti

More information

Studies for the first generation of instruments for the European ELT

Studies for the first generation of instruments for the European ELT Studies for the first generation of instruments for the European ELT Sandro D Odorico a, Mark Casali a, Juan-Carlos Gonzalez a, Markus Kasper a, Hans Ulrich Käufl a, Markus Kissler Patig a, Luca Pasquini

More information

Direction - Conférence. The European Extremely Large Telescope

Direction - Conférence. The European Extremely Large Telescope Direction - Conférence The European Extremely Large Telescope The E-ELT 40-m class telescope: largest opticalinfrared telescope in the world. Segmented primary mirror. Active optics to maintain collimation

More information

arxiv: v2 [astro-ph.im] 15 Mar 2016

arxiv: v2 [astro-ph.im] 15 Mar 2016 Preprint 14 May 2018 Compiled using MNRAS LATEX style file v3.0 A tomographic algorithm to determine tip-tilt information from laser guide stars A. P. Reeves, 1 T. J. Morris, 1 R. M. Myers, 1 N. A. Bharmal

More information

Atmospheric dispersion correction for the Subaru AO system

Atmospheric dispersion correction for the Subaru AO system Atmospheric dispersion correction for the Subaru AO system Sebastian Egner a, Yuji Ikeda b, Makoto Watanabe c,y.hayano a,t.golota a, M. Hattori a,m.ito a,y.minowa a,s.oya a,y.saito a,h.takami a,m.iye d

More information

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope 1st AO4ELT conference, 08005 (2010) DOI:10.1051/ao4elt/201008005 Owned by the authors, published by EDP Sciences, 2010 Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-PS-G0065 The Gemini Instrumentation Program F. C. Gillett, D. A. Simons March 25, 1996 GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona 85719 Phone: (520) 318-8545

More information

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke VLTI update F. Delplancke Summary Infrastructure Current instruments: MIDI, AMBER, PIONIER Under test & commissioning: PRIMA 2 nd generation instruments Long Range Plan Infrastructure Infrastructure 4

More information

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal @ CFHT Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal Consortium PIs Jean-François Donati (IRAP, France) - René Doyon (Canada) Project scientists

More information

ELP-OA : status report of the setup of the demonstrator of the Polychromatic Laser Guide Star at Observatoire de Haute-Provence

ELP-OA : status report of the setup of the demonstrator of the Polychromatic Laser Guide Star at Observatoire de Haute-Provence 1 ELP-OA : status report of the setup of the demonstrator of the Polychromatic Laser Guide Star at Observatoire de Haute-Provence Renaud Foy 1,2, Nicolas Meilard 1, Michel Tallon 1, Éric Thiébaut 1, Pierre-Éric

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

First images from exoplanet hunter SPHERE

First images from exoplanet hunter SPHERE PRESS RELEASE I PARIS I 4 JUNE 2014 First images from exoplanet hunter SPHERE The European SPHERE instrument has been successfully installed on ESO's Very Large Telescope (VLT) and has achieved first light.

More information

Sky Projected Shack-Hartmann Laser Guide Star

Sky Projected Shack-Hartmann Laser Guide Star Sky Projected Shack-Hartmann Laser Guide Star T. Butterley a, D.F. Buscher b, G. D. Love a, T.J. Morris a, R. M. Myers a and R. W. Wilson a a University of Durham, Dept. of Physics, Rochester Building,

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA)

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) 1st AO4ELT conference, 04006 (2010) DOI:10.1051/ao4elt/201004006 Owned by the authors, published by EDP Sciences, 2010 End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) N. Meilard

More information

SPIRou status. and the SPIRou team.

SPIRou status. and the SPIRou team. SPIRou status René Doyon, Université de Montréal Jean-François Donati, IRAP (Toulouse) Xavier Delfosse, IPAG (Grenoble) Etienne Artigau, Université de Montréal Francesso Pepe, Observatoire de Genève and

More information

Suresh Sivanandam (PI) University of Toronto

Suresh Sivanandam (PI) University of Toronto GIRMOS: Gemini Infrared Multi-Object Spectrograph A TMT Pathfinder Instrument Suresh Sivanandam (PI) University of Toronto A B A. SINFONI Velocity Map of z~2 Galaxy B. Hubble XDF with GIRMOS Fields Overlaid

More information

Presented by B. Neichel. Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges

Presented by B. Neichel. Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges Edinburgh 25 th March 2013 Presented by B. Neichel Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges Outline A brief Introduction to Adaptive Optics (AO)

More information

Optimized calibration of the adaptive optics system on the LAM Pyramid bench

Optimized calibration of the adaptive optics system on the LAM Pyramid bench Optimized calibration of the adaptive optics system on the LAM Pyramid bench Charlotte Z. Bond a, Carlos M. Correia a, Jean-François Sauvage a,b, Kacem El Hadi a, Yannick Abautret a, Benoit Neichel a,

More information

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova Telescopes & Adaptive Optics Roberto Ragazzoni INAF Astronomical Observatory of Padova PAST PAST FUTURE This is a simmetry line This object is drawn in a plane but it acctually reppresent a three dimensional

More information

Giant Magellan Telescope

Giant Magellan Telescope Giant Magellan Telescope Faint Object Adap6ve Op6cs Michael Hart Steward Observatory, The University of Arizona Challenges for the GMT Melbourne, June 16, 2010 Importance of AO The ELTs in general, including

More information

Specsim An IFU Spectrometer Simulator

Specsim An IFU Spectrometer Simulator Specsim An IFU Spectrometer Simulator Nuria P. F. Lorente UK Astronomy Technology Centre Royal Observatory, Edinburgh, UK Alistair C. H. Glasse, Gillian S. Wright (UK ATC, JWST MIRI), Suzanne Ramsay Howat

More information

Sky demonstration of potential for ground layer adaptive optics correction

Sky demonstration of potential for ground layer adaptive optics correction Sky demonstration of potential for ground layer adaptive optics correction Christoph J. Baranec, Michael Lloyd-Hart, Johanan L. Codona, N. Mark Milton Center for Astronomical Adaptive Optics, Steward Observatory,

More information

SPIE The Differential Tip-Tilt Sensor of SPHERE

SPIE The Differential Tip-Tilt Sensor of SPHERE SPIE The Differential Tip-Tilt Sensor of SPHERE Pierre Baudoz a,b, Reinhold Dorn c, Jean-Louis Lizon c, Thierry Fusco d, Kjetil Dohlen e, Julien Charton f,, Jean-Luc Beuzit f, Pascal Puget f, David Mouillet

More information

TMT Overview Telescope / Instruments / Sites

TMT Overview Telescope / Instruments / Sites 1 SUBARU N a t io na l A s t r o n o m ic a l J a p an TMT Overview Telescope / Instruments / Sites of O b s e r v a t o r y Tomonori USUDA (SUBARU Telescope) TMT Reference Design (as of Dec 06)! Costs:

More information

Raven, a Multi-Object Adaptive Optics technology and science demonstrator

Raven, a Multi-Object Adaptive Optics technology and science demonstrator Raven, a Multi-Object Adaptive Optics technology and science demonstrator D.R. Andersen 1,a, C. Bradley 2, O. Lardière 2, C. Blain 2, D. Gamroth 2, M. Ito 2, K. Jackson 2, P. Lach 2, R. Nash 2, L. Pham

More information

Exoplanet High Contrast Imaging Technologies Ground

Exoplanet High Contrast Imaging Technologies Ground Exoplanet High Contrast Imaging Technologies Ground KISS Short Course: The Hows and Whys of Exoplanet Imaging Jared Males University of Arizona Telescope Diameter (Bigger is Better) Diameter: Collecting

More information

Technology Developments for ESO at the IAC

Technology Developments for ESO at the IAC Jornada ESO 2011, Granada, 10-11/02/2011 Technology Developments for ESO at the IAC Head of Technology Division 1 Technology involvement in ESO Instruments: Espresso for the VLT CODEX and HARMONI for the

More information

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Luzma Montoya, Iciar Montilla Instituto de Astrofísica de Canarias Edinburgh, 25-26/03/2014 AO Tomography Workshop The EST

More information

LGS AO at the W. M. Keck Observatory

LGS AO at the W. M. Keck Observatory LGS AO at the W. M. Keck Observatory R. Campbell, D. Le Mignant, P. Wizinowich Photo Credit: Subaru Telescope 28 May 2005 UT 1 Acknowledge Co-Authors AO Scientists / Astronomers M. van Dam A. Bouchez J.

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano Science with Micado the high resolution camera for the E-ELT Renato Falomo INAF Observatory of Padova, Italy 25 February 2010 -- IASF, Milano Overview of MICADO (Tehnology & Science) Resolved stellar population

More information

Direct imaging and characterization of habitable planets with Colossus

Direct imaging and characterization of habitable planets with Colossus Direct imaging and characterization of habitable planets with Colossus Olivier Guyon Subaru Telescope, National Astronomical Observatory of Japan University of Arizona Contact: guyon@naoj.org 1 Large telescopes

More information

Introduction to Adaptive Optics. Tim Morris

Introduction to Adaptive Optics. Tim Morris Introduction to Adaptive Optics Tim Morris Contents Definitions and introduction Atmospheric turbulence Components of an AO system Wavefront Sensing Wavefront Correction Turbulence Conjugation Laser Beacons

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

On-sky testing of algorithms for extended LGS spots

On-sky testing of algorithms for extended LGS spots On-sky testing of algorithms for extended LGS spots Alastair Basden, a Andrew Reeves, Lisa Bardou, Domenico Bonaccini Calia, Tristan Buey, Mauro Centrone, Fanny Chemla, Philippe Feautrier, Jean-Luc Gach,

More information

Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes. Craig Mackay, Institute of Astronomy, University of Cambridge.

Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes. Craig Mackay, Institute of Astronomy, University of Cambridge. Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes Craig Mackay, Institute of Astronomy, University of Cambridge. La Palma & The WHT The Hubble Space Telescope (HST) will not

More information

Weston, ACT 2611, Australia; ABSTRACT

Weston, ACT 2611, Australia; ABSTRACT GMT AO System Requirements and Error Budgets in the Preliminary Design Phase G. Trancho a, B. Espeland b, A. Bouchez a, R. Conan b, P. Hinz c, M. van Dam d a Giant Magellan Telescope Observatory Corporation,

More information

Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope

Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope Marcos A. van Dam, a Peter G. Tuthill b, Anthony C. Cheetham, b,c and Fernando Quiros-Pacheco d a Flat Wavefronts,

More information

Preparing staff for ELT science operations activities

Preparing staff for ELT science operations activities Preparing staff for ELT science operations activities Andres Pino Pavez European Southern Observatory ESA/ESO Sciops Workshop 2017 Working together in support of science 17-20 OCTOBER 2017 - EUROPEAN SPACE

More information

Overall science goals and top level AO requirements for the E-ELT

Overall science goals and top level AO requirements for the E-ELT 1st AO4ELT conference, 01001 (2010) DOI:10.1051/ao4elt/201001001 Owned by the authors, published by EDP Sciences, 2010 Overall science goals and top level AO requirements for the E-ELT Markus Kissler-Patig

More information

Scientific context in 2025+

Scientific context in 2025+ Outline Scientific context and goals O 2 detection on an Exoplanet with the E-ELT? PCS concept and technological challenges Timeframe for E-ELT high-contrast imaging Scientific context in 2025+ GAIA: Know

More information

JWST/NIRSpec. P. Ferruit. (ESA JWST project scientist) Slide #1

JWST/NIRSpec. P. Ferruit. (ESA JWST project scientist) Slide #1 P. Ferruit (ESA JWST project scientist)! Slide #1 Acknowledgements Thanks for giving me the opportunity to present the NIRSpec instrument. All along this presentation you will see the results of work conducted

More information

Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich

Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich Collaborators: ETH Zurich: E. Buenzli, F. Joos, C. Thalmann (now at MPIA) VLT SPHERE: J.L. Beuzit, D. Mouillet,

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics?

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics? Adaptive Optics Overview Phil Hinz (phinz@as.arizona.edu) What (Good) is Adaptive Optics? System Overview MMT AO system Atmospheric Turbulence Image Structure References: Adaptive Optics for Astronomical

More information

Telescope Project Development Seminar

Telescope Project Development Seminar Telescope Project Development Seminar Session 5a: Science Instruments & Adaptive Optics Session 5b: Lessons Learned & Discussion Matt Johns 4/27/2017 U. Tokyo 4/27/2017 Telescope Project Development 1

More information

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant b) intensity changes: scintillation!i/i on the ground is proportional to h!", i.e. # h e -h/h this function has maximum at h = H = 8.5 km! scintillation comes mostly from high layers! seeing and scintillation

More information

Report to the GSMT Committee

Report to the GSMT Committee Report to the GSMT Committee P. McCarthy GMT Science Working Group and GMT Board GMT Consortium Status Conceptual Design Review AO Systems GMT Instrument Candidates Instrument properties Potential scientific

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Extreme Adaptive Optics in the mid-ir: The METIS AO system

Extreme Adaptive Optics in the mid-ir: The METIS AO system 1st AO4ELT conference, 02006 (2010) DOI:10.1051/ao4elt/201002006 Owned by the authors, published by EDP Sciences, 2010 Extreme Adaptive Optics in the mid-ir: The METIS AO system R. Stuik 1,a, L. Jolissaint

More information

PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE

PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE Florence, Italy. May 213 ISBN: 978-88-98876--4 DOI: 1.12839/AO4ELT3.13272 PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE I. Montilla 1a, C. Béchet 2,3,

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

Million Element Integral Field Unit Design Study

Million Element Integral Field Unit Design Study Million Element Integral Field Unit Design Study Simon Morris, Robert Content, Cedric Lacey (University of Durham, UK) AURA contract No. 9414257-GEM00303 Milestone 1 Prepare and present a PowerPoint presentation

More information

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Taft Armandroff, Director W. M. Keck Observatory With science results from: Drew Newman and Richard Ellis, Caltech A. Romanowsky, J. Strader,

More information

University of California Santa Cruz, CA, USA Contents

University of California Santa Cruz, CA, USA Contents University of California Santa Cruz, CA, 95064 USA jnelson@ucolick.org Contents 1. Introduction 1.1. Organization 1.2. Site Selection 1.3. Schedule 1.4. Cost 2. Telescope Overview 3. Key Features of TMT

More information

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS S. Mark Ammons LLNL Bruce Macintosh Stanford University Lisa Poyneer LLNL Dave Palmer LLNL and the Gemini Planet Imager Team ABSTRACT A long-standing challenge has

More information

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST 4. Future telescopes & IFU facilities Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST Next generation IFUs At ESO: KMOS (infrared) MUSE (optical) XSHOOTER & SPHERE

More information

High Dynamic Range and the Search for Planets

High Dynamic Range and the Search for Planets Brown Dwarfs IAU Symposium, Vol. 211, 2003 E. L. Martín, ed. High Dynamic Range and the Search for Planets A. T. Tokunaga, C. Ftaclas, J. R. Kuhn, and P. Baudoz Institute for Astronomy, Univ. of Hawaii,

More information

SYSTEM FOR CORONAGRAPHY WITH HIGH ORDER ADAPTIVE OPTICS FROM R TO K BAND THE NIR CHANNEL

SYSTEM FOR CORONAGRAPHY WITH HIGH ORDER ADAPTIVE OPTICS FROM R TO K BAND THE NIR CHANNEL 1 SHARK-NIR@LBT SYSTEM FOR CORONAGRAPHY WITH HIGH ORDER ADAPTIVE OPTICS FROM R TO K BAND THE NIR CHANNEL Jacopo Farinato The SHARK-NIR Team: J.Farinato 1, F.Pedichini 2, E.Pinna 3, C.Baffa 3, A.Baruffolo

More information

Exoplanet Instrumentation with an ASM

Exoplanet Instrumentation with an ASM Exoplanet Instrumentation with an ASM Olivier Guyon1,2,3,4, Thayne Currie 1 (1) Subaru Telescope, National Astronomical Observatory of Japan (2) National Institutes for Natural Sciences (NINS) Astrobiology

More information

Suppressing stellar residual light on extremely large telescopes by aperture modulation

Suppressing stellar residual light on extremely large telescopes by aperture modulation 1st AO4ELT conference, 09002 (2010) DOI:10.1051/ao4elt/201009002 Owned by the authors, published by EDP Sciences, 2010 Suppressing stellar residual light on extremely large telescopes by aperture modulation

More information

Stellar Observations Network Group

Stellar Observations Network Group Stellar Observations Network Group Frank Grundahl, Jørgen Christensen Dalsgaard, Uffe Gråe Jørgensen, Hans Kjeldsen, Søren Frandsen, Per Kjærgaard Rasmussen + participation from IAC (Pere Pallé, Orlagh

More information