Multi-TeV to PeV Gamma Ray Astronomy

Size: px
Start display at page:

Download "Multi-TeV to PeV Gamma Ray Astronomy"

Transcription

1 Multi-TeV to PeV Gamma Ray Astronomy Motivation and Strategies Martin Tluczykont The Future of Research on Cosmic Gamma Rays, La Palma, August 2015

2 VHE-UHE Gamma-ray astronomy

3 Multi-TeV to PeV Gamma rays No hadronic/leptonic ambiguity: IC: Klein-Nishina regime steep spectra Pi decay: hard spectra possible Absorption e+e-: 20+TeV: Mid- to far-infrared region of EBL (Extragalactic) 100 TeV: ISRF (Galactic) 3 PeV: CMB (Galactic) Galactic objects (Moskalenko 2006)

4 Absorption (e + e - ), Galactic MGRO J2031 A. Maurer Topic absorption most interesting for Multifrequency conference! Many Galactic sources: Weak absorption up to 300TeV Universal feature: Distance-dependent absorption above 300TeV

5 Pevatrons Galactic cosmic rays up to knee: Gamma-rays up to few 100 TeV Pevatrons Most energetic particles released first PeV C.R. only for a short period of time Delayed multi-tev signals from clouds Gabici & Aharonian 2007 Use clouds for C.R. acceleration mapping Recent motivation: H.E.S.S. Galactic center, IceCube Neutrinos

6 Key to Multi-TeV PeV : Large area

7 CTA See Friday: Knödelseder, Chaves, Brown

8 HAWC HAWC See wednesday: Sandoval

9 LHAASO HAWC LHAASO See Friday: Simeone

10 HiSCORE HAWC HiSCORE

11 TAIGA 1km² 10km² TAIGA HAWC

12 ASGaRD ASGaRD (7 km²) HAWC ASGaRD

13 Detection methods for gamma astronomy Method E thr Angular resolution ΔE/E γ/h Duty cycle Particles ~3 TeV ~ % ~1 100% Water: 100 GeV < % ~6 Air Cherenkov photons IACTs: 5GeV NonI: 10 TeV % ~6 ~ % Fluoresc. Radio 10¹ ⁷ ev > %? 10% 10¹ ⁷ ev < %? 100%

14 Detection methods for gamma astronomy Method E thr Angular resolution ΔE/E γ/h Duty cycle Particles ~3 TeV ~ % ~1 100% Water: 100 GeV < % ~6 Air Cherenkov photons IACTs: 5GeV NonI: 10 TeV % ~6 ~ % Fluoresc. Radio 10¹ ⁷ ev > %? 10% 10¹ ⁷ ev < %? 100%

15 From HiSCORE to TAIGA

16 The HiSCORE Concept 2014APh T Hampf et al. 2013, NIMA MT et al. ECRS Kiel 2014

17 The HiSCORE Concept 4x 8inch PMTs Winston cones Lightcollection 0.5 m² GHz readout 60 FoV Tilting for extension of sky coverage

18 Tunka-HiSCORE Hamburg Berlin Moscow Irkutsk Tunka Cosmic ray experiment Tunka-133: 1 km² dense array Energy threshold ev Tunka-HiSCORE: 9-station array 25+stations

19 Tunka-HiSCORE Prototype-array (2014): 9 stations, 300m X 300m 2 parallel DAQ systems Energy threshold: <30 TeV 0.5 m² light collection 4 channels (PMT + Cone) Tunka-133 HiSCORE-prototype

20 Angular resolution Crucial: relative time-synchronization <1ns Two time-calibration systems: DRS4 channel used for clock sampling (sent over fiber) WhiteRabbit system (ethernet-based t-cal)

21 Time calibration T-cal systems yield comparable accuraccies (<0.5 ns) White Rabbit in laboratory: <60 ps resolution achievable (PoS ICRC 2015, Wischnewski et al.)

22 Tunka-HiSCORE data vs MC S. Epimakhov, PoS, ICRC 2015

23 Tunka-HiSCORE real data Reconstruct using two different subarrays Split array analysis Subarray 1 Ψ Subarray 2 Tested for 9-station array Resulting resolutions (hadrons): Direction: 0.19 Core position: 4m Energy: 10% PoS, ICRC 2015, Porelli et al. And Epimakhov et al.

24 Particle separation Q-factor (only timing array) Xmax vs. E Shower front rise time Systematic differences between Xmax reconstruction methods

25 Tunka-HiSCORE TAIGA Tunka Advanced Instrument for Gamma ray and cosmic ray physics 10/2014: extension Total: 29 stations Tunka-HiSCORE 2013 Tunka-HiSCORE 2014 Tilting mode 0.25 km² 2015+: First telescope Hybrid timing+imaging In total 10 telescopes planned Muon detectors

26 TAIGA collaboration HiSCORE array + IACTs + Muon detectors

27 Combining a timing array with an imaging telescope

28 Air Cherenkov imaging and timing H.E.S.S. Telescopes Imaging arrays Timing arrays (=non-imaging) MAGIC camera image Past: Themistocle, AIROBICC Today: HiSCORE, TAIGA

29 Air Cherenkov imaging and timing Imaging ACTs Timing arrays Direction Image orientation Shower front arrival times Particle type Image shape Lateral density function Arrival times Time width (FWHM) Energy Ch. photon count Ch. photon count

30 TAIGA Telescopes Dish: Davies-cotton tesselated, 34 mirrors (60cm) 4.3 m dish diameter 4.75 m focal length F/D ~ PMT camera fov 8 (0.38 / pixel) Proven design components Preliminary drawing

31

32 Timing and imaging hybrid detection

33 Telescope image scaling Central reconstruction parameter: Shower core position D K

34 D K D K ~100 m Hybrid imaging + non-imaging Imaging (stereo) 600 m

35 D K D K Hybrid Image scaling: D K from timing array Image from telescope(s) large inter-telescope distance = large A eff! ~100 m scaled width separation parameter Imaging (stereo) Hybrid imaging + non-imaging (+ stereo at high energies, mean scaled width) 600 m

36 HiSCORE + IACTs Preliminary results hybrid width scaling: Separation quality significantly improved Increases total area as compared to stereoscopic array Also see: Kunnas et al. 2015, PoS ICRC 2015 Apply scaled width cut: Q-factor ~2

37 TAIGA 1km² 10km² TAIGA HAWC

38 TAIGA Muon detectors Planned: equip 0.2% of array area with Muon detectors

39 TAIGA Muon detectors Planned for the 1 km² stage: equip 0.2% of array area with Muon detectors 1km² 10km² TAIGA

40 FAMOUS / ASGaRD / LoTOS Similar detector size Introducing Minimal Imaging Shayduk et al. 2015, PoS ICRC 2014

41 FAMOUS / ASGaRD / LoTOS Optical station with minimal imaging Acrylic Fresnel lens 0.3m radius 2000 SiPM camera equipped with light-guides 50 FoV Shayduk et al. 2015, PoS ICRC 2014

42 Summary Different approaches to cover Multi-TeV PeV gamma-ray regime Promising avenue: combine techniques Imaging/timing/(particles) Particles/photons Large arrays possible with low level of complexity Potential for opening up gamma-ray astronomy in the multi-tev regime

43

44 Backup slides

45

46 Timing of air showers Particle front disk width: 100 m Cherenkov light front: disk width: < m 500 TeV 200 m

47 Galactic Gammas beyond 10 TeV Ackermann et al MGRO J () Tycho (Park et al. 2013)

48 TAIGA HSCW vs. HESS MRSW TAIGA H.E.S.S. Q-factor ~ 2 Q-factor ~ 3

49 Tibet AS-Gamma Argo YBJ LHAASO Tunka-133 Tunka-Rex HAWC Timing arrays PACT Tunka-HiSCORE HAGAR STACEE IceCube

50 Gamma-ray astronomy Milkyway

51 Timing Reconstruction Tunka-133 [Berezhnev et al. 2012NIMPA B] HiSCORE [Hampf et al. 2013NIMPA H] HiSCORE event display 500 TeV gamma-ray Simulation

52 Timing Reconstruction Tunka-133 [Berezhnev et al. 2012NIMPA B] HiSCORE [Hampf et al. 2013NIMPA H] Shower core position 1 (cog) Preliminary direction (time plane fit) Improved core position: light distribution function (LDF) fitting Improved direction: arrival time model Fit of signal time widths

53 Arrival time model 2013NIMPA H

54 Arrival time model r: Distance from shower core to detector Shower height in km Slope of atmospheric refractive index Zenith angle

55 Time calibration

56 Energy determination Energy light density Q(x) = LDF at x m 2012NIMPA B

57 Energy determination HiSCORE simulation

58 Shower maximum Time model method: X max free parameter in arrival time model LDF method: X max from LDF slope, Q50/Q220 Width method: X max from signal width Xmax Xmax D. Hampf, MT, D. Horns, NIMA 2013 Prosin, ECRS 2010

59 HiSCORE Simulation Shower maximum

60 Particle separation Xmax vs. E

61 Gamma-hadron separation Systematic bias LDF & widths : sensitive to whole shower Large overestimation for heavy particles (long tails) Timing : sensitive to specific point (edge time) Small overestimation for heavy particles

62 Particle separation Lighter particles develop Higher up in atmosphere

63 Particle separation (2) Systematic Xmax difference Time width and timing model

64 Particle separation timing Systematic difference Cherenkov signal rise times

65 Sky coverage Standard observation mode: station points to zenith Tilted mode: inclined along the north-south axis. Tilting: coverage of different parts of the sky. N Tilted south mode: 110 h on the Crab Nebula, after weather corrections. Normal mode Tilted south 30 mode

66 Past experiments Themistocle AIROBICC

67 AIROBICC results

68 Hybrid events: more reconstruction Expect sensitivity boost: Scaled width cut and timing hadron rejection (Q~3) Further g/h separation: Angular cut, length, (+ more sophisticated methods) Improved angular resolution from hybrid events: e.g. treat telescope as part of array (not yet simulated) Consider time-development of image independent direction reconstruction

69 Large zenith angle: outside HiSCORE viewcone gradient sim_telarray simulation, 2010 Core distance

70 Test width scaling with IACT+HiSCORE toy-mc-test Full simulation sim_telarray 2D-lookup-table for MC-width wmc (core, size) MC-core randomized with HiSCORE resolution Use randomized core position for width scaling

71 Optical station Tunka HiSCORE Status Electronic box

72 Array Optimization HiSCORE Simulation studies: Large PMTs (12'') Graded array layout

73 HiSCORE + IACTs sim_telarray

74 Timing array + imaging telescopes Central reconstruction parameter: Shower core position IACT image scaling using array core position Monoscopic operation with larger distances btw telescopes (also see Kunnas et al., this conference) Increased area / telescope; Hybrid event reconstruction improvement of g/h separation x2-3

75 Milagro / HAWC HAWC

76 MGRO J Assuming pevatron with cutoff at 3PeV HiSCORE 10 km² No IACT µ det. 1 year (200h)

77 Tycho Supernova remnant Assuming pevatron with cutoff at 3PeV HiSCORE 100 km² No IACT / µ det. 3 years

78 Absorption Galaxy: 100TeV-PeV: e+e-pair production with low-e photons Interstellar radiation field Cosmic Microwave Background (e.g. Moskalenko et al. 2006)

79 Particle separation Xmax vs. E

Status of the HiSCORE Project

Status of the HiSCORE Project Status of the HiSCORE Project M. Tluczykont, D. Horns Tunka-HiSCORE, TAIGA HiSCORE Detector 26.05.2014 martin.tluczykont@physik.uni-hamburg.de Physics motivations & The HiSCORE concept Status of the 9-station

More information

TeV to PeV Gamma-ray Astronomy with TAIGA

TeV to PeV Gamma-ray Astronomy with TAIGA TeV to PeV Gamma-ray Astronomy with TAIGA http://taiga-experiment.info/ M. Tluczykont for the TAIGA Collaboration Marcel-Grossmann-Meeting 2018, Roma TAIGA collaboration Skobeltsyn Institute of Nuclear

More information

HiSCORE. M. Tluczykont for the HiSCORE Collaboration. Astroteilchenphysik in Deutschland Zeuthen, 09/2012. Sky above Tunka valley. HiSCORE.

HiSCORE. M. Tluczykont for the HiSCORE Collaboration. Astroteilchenphysik in Deutschland Zeuthen, 09/2012. Sky above Tunka valley. HiSCORE. Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies HRJRG 303 Sky above Tunka valley HiSCORE Detector Taiga Frozen Irkut river Irkut river HiSCORE

More information

Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array. by the Tunka-133 Collaboration

Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array. by the Tunka-133 Collaboration Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array by the Tunka-133 Collaboration Tunka-HiSCORE: First results on all-particle spectrum by the Tunka-HiSCORE Collaboration combined

More information

HiSCORE. M. Tluczykont for the HiSCORE Collaboration

HiSCORE. M. Tluczykont for the HiSCORE Collaboration Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies HRJRG 303 Sky above Tunka valley HiSCORE Detector Taiga Frozen Irkut river Irkut river HiSCORE

More information

The HiSCORE Detector. HAP Topic 4 Workshop Jan th Rayk Nachtigall. Karlsruhe January 25th

The HiSCORE Detector. HAP Topic 4 Workshop Jan th Rayk Nachtigall. Karlsruhe January 25th The HiSCORE Detector HAP Topic 4 Workshop Jan. 24-25th 2013 Rayk Nachtigall Karlsruhe January 25th 2013 1 Overview - Physics motivation - The HiSCORE detector - Signal processing - Physics potentials in

More information

The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley N. Budnev, Irkutsk State University For the TAIGA collaboration The TAIGA experiment

More information

TAIGA-HiSCORE results from the first two operation seasons

TAIGA-HiSCORE results from the first two operation seasons TAIGA-HiSCORE results from the first two operation seasons http://taiga experiment.info/ Presenter: Igor Yashin GA 299: M. Tluczykont et al. for the TAIGA Collaboration TAIGA collaboration see N. Budnev,

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration The Results and Perspectives of Cosmic Rays Mass Composition Study with EAS Arrays in the Tunka Valley Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration TAUP-2015,

More information

The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley. N.Budnev, Irkutsk State University for the TAIGA - collaboration

The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley. N.Budnev, Irkutsk State University for the TAIGA - collaboration The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley. N.Budnev, Irkutsk State University for the TAIGA - collaboration TAIGA collaboration S.F. Berezhnev 1, N.M. Budnev 2, M.

More information

(Future) Experiments for gamma-ray detection

(Future) Experiments for gamma-ray detection (Future) Experiments for gamma-ray detection K. Ragan McGill University ISSS (GSSI) June 2017 Cosmic Ray Physics in Space K. Ragan ISSS Jun 2017 1 Menu Antipasti Introduction & motivation: why study GeV/TeV

More information

Gamma-Ray Astronomy from the Ground

Gamma-Ray Astronomy from the Ground Gamma-Ray Astronomy from the Ground Dieter Horns University of Hamburg Introduction - summary Many new Results from ICRC 2015 No we haven't discovered dark matter, yet Yes we have discovered sources of

More information

Astroparticle and particle physics with HiSCORE

Astroparticle and particle physics with HiSCORE Astroparticle and particle physics with HiSCORE Martin Tluczykont for the HiSCORE group D. Horns, D. Hampf, R. Nachtigall, U. Einhaus, M. Kunnas, T. Kneiske Institut für Experimentalphysik, University

More information

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere. Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere., S. Miozzi, R. Santonico INFN - Rome Tor Vergata, Italy E-mail: disciascio@roma.infn.it P.

More information

A concept for a wide-angle Cherenkov gamma-ray instrument with minimal imaging: ASGaRD

A concept for a wide-angle Cherenkov gamma-ray instrument with minimal imaging: ASGaRD A concept for a wide-angle Cherenkov gamma-ray instrument with minimal imaging: ASGaRD CEA-Irfu, Saclay E-mail: maxim.shayduk@cea.fr Ralf Wischnewski DESY, Zeuthen E-mail: ralf.wischnewski@desy.de Ullrich

More information

Mass composition studies around the knee with the Tunka-133 array. Epimakhov Sergey for the Tunka-133 collaboration

Mass composition studies around the knee with the Tunka-133 array. Epimakhov Sergey for the Tunka-133 collaboration Mass composition studies around the knee with the Tunka-133 array Epimakhov Sergey for the Tunka-133 collaboration The Tunka-133 array non-imaging wide-angle Cherenkov array the knee energy range Tunka

More information

AGIS (Advanced Gamma-ray Imaging System)

AGIS (Advanced Gamma-ray Imaging System) AGIS (Advanced Gamma-ray Imaging System) Seth Digel, Stefan Funk and Hiro Tajima SLAC National Accelerator Laboratory Kavli Institute for Particle Astrophysics and Cosmology Outline AGIS project and status

More information

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY Patrizia Caraveo 1 st Interaction: X 0 40 g/cm 2 pair = 9/7 X 0 50 g/cm 2 X = X A e h/h0 and X A 10 3 g/cm 2 h pair = h 0 ln(x A / pair ) 20 km

More information

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO Accurate Measurement of the Cosmic Ray Proton Spectrum from 1TeV to 1PeV with LHAASO L.Q. Yin ab,, Z.Cao a, S.S.Zhang a, B.Y. Bi ab for the LHAASO Collaboration a Key Laboratory of Particle Astrophysics,

More information

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo

THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY. Patrizia Caraveo THE PATH TOWARDS THE CHERENKOV TELESCOPE ARRAY OBSERVATORY Patrizia Caraveo 5 y integration of the gamma-ray sky Optical +TeV The TeV sky > 40, Active Galactic Nuclei (Blazars) AGN TeV by electrons (strong

More information

The TAIGA - a hybrid array for high energy gamma astronomy and cosmic ray physics.

The TAIGA - a hybrid array for high energy gamma astronomy and cosmic ray physics. The TAIGA - a hybrid array for high energy gamma astronomy and cosmic ray physics. N. Budnev, Irkutsk State University For the TAIGA collaboration 106 years after discovery by Victor Hess "penetrating

More information

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs Short review and prospects of radio detection of high-energy cosmic rays 1 To understand the sources of cosmic rays we need to know their arrival direction energy and mass we need large statistics large

More information

Simulations for H.E.S.S.

Simulations for H.E.S.S. Simulations for H.E.S.S. by K. Bernlöhr MPIK Heidelberg & HU Berlin Air shower measurement methods Imaging atmospheric Cherenkov telescopes In the imaging atmospheric Cherenkov telescope (IACT) technique,

More information

Cherenkov Telescope Arrays

Cherenkov Telescope Arrays Cherenkov Telescope Arrays Michael Daniel University of Durham michael.daniel@durham.ac.uk Workshop on Stellar Intensity Interferometry 1 CONTENTS Introduction to Cherenkov telescopes Characteristics of

More information

HAWC and the cosmic ray quest

HAWC and the cosmic ray quest HAWC and the cosmic ray quest J.C. Arteaga-Velázquez for the HAWC Collaboration Instituto de Física y Matemáticas, Universidad Michoacana, Mexico Structure of the talk: 1) The HAWC gamma-ray observatory

More information

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA VERITAS Design Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA VERITAS design goals VERITAS is a ground-based observatory for gamma-ray astronomy VERITAS design is derived from scientific

More information

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A. Cosmic ray indirect detection Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A. 2016/2017 Cosmic Rays Cosmic ray flux at Earth! 1 particle per m

More information

PoS(ICRC2017)756. Commissioning the joint operation of the wide angle timing HiSCORE Cherenkov array with the first IACT of the TAIGA experiment

PoS(ICRC2017)756. Commissioning the joint operation of the wide angle timing HiSCORE Cherenkov array with the first IACT of the TAIGA experiment Commissioning the joint operation of the wide angle timing HiSCORE Cherenkov array with the first IACT of the TAIGA experiment,1, I. Astapov 9, P. Bezyazeekov 2, V. Boreyko 10, A. Borodin 10, M. Brueckner

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

Monte Carlo Simulation and System Layout

Monte Carlo Simulation and System Layout Monte Carlo Simulation and System Layout by K. Bernlöhr * 4 MPIK Heidelberg & HU Berlin *) with contributions by E. Carmona A word of warning No simulations of anything that would make a full CTA installation.

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

Latest results and perspectives of the KASCADE-Grande EAS facility

Latest results and perspectives of the KASCADE-Grande EAS facility Latest results and perspectives of the KASCADE-Grande EAS facility 29/6-2/7/2010, Nantes, France Andreas Haungs 1 Motivation KASCADE-Grande Knee EeV PeV g-eg? Radio?! KASCADE 10 15-10 17 ev: Origin of

More information

VERITAS Performance Gernot Maier

VERITAS Performance Gernot Maier VERITAS Performance Gernot Maier Alliance for Astroparticle Physics What scientific impact will VERITAS have in the next 3-5 years? Galactic long-term plan Performance Operations LTP & Performance May

More information

Status of the MAGIC telescopes

Status of the MAGIC telescopes SNOWPAC 2010 Status of the MAGIC telescopes Pierre Colin for the MAGIC collaboration Max-Planck-Institut für physik (Munich) Status of the MAGIC telescopes MAGIC-1 MAGIC-2 Outline: Recent results of the

More information

Measurement of the CR e+/e- ratio with ground-based instruments

Measurement of the CR e+/e- ratio with ground-based instruments Measurement of the CR e+/e- ratio with ground-based instruments Pierre Colin Max-Planck-Institut für Physik CR Moon shadow MPP retreat - 21 January 2014 Cosmic ray electrons Observation: Above the atmosphere:

More information

H.E.S.S. High Energy Stereoscopic System

H.E.S.S. High Energy Stereoscopic System H.E.S.S. High Energy Stereoscopic System MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg Landessternwarte Heidelberg Univ. Kiel Ecole Polytechnique, Palaiseau College de

More information

Status and Future of the HESS experiment

Status and Future of the HESS experiment Status and Future of the HESS experiment Martin Tluczykont for the HESS Collaboration LLR Ecole Polytechnique Joint Symposium on GeV-TeV Astrophysics in the GLAST Era Stanford, September 2004 HESS Phase

More information

The CTA SST-1M cherenkov telescope. for high-energy gamma-ray astronomy. and its SiPM-based camera. Victor Coco (DPNC, Universite de Geneve)

The CTA SST-1M cherenkov telescope. for high-energy gamma-ray astronomy. and its SiPM-based camera. Victor Coco (DPNC, Universite de Geneve) The SST-1M Cherenkov telescope for high-energy gamma-ray astronomy and its SiPM-based camera (DPNC, Universite de Geneve) on behalf of the SST-1M sub-consortium and the CTA consortium The CTA SST-1M cherenkov

More information

DATA ANALYSIS: EXTRACTING SCIENCE FROM MAGIC

DATA ANALYSIS: EXTRACTING SCIENCE FROM MAGIC DATA ANALYSIS: EXTRACTING SCIENCE FROM MAGIC Uta Menzel YSW Ringberg 2015, 6. 7. 2015 OUTLINE MAGIC telescopes Imaging Air Cherenkov Technique (IACT) Telescope hardware Standard analysis Signal extraction

More information

H.E.S.S. High Energy Stereoscopic System

H.E.S.S. High Energy Stereoscopic System H.E.S.S. High Energy Stereoscopic System MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg Landessternwarte Heidelberg Univ. Kiel Ecole Polytechnique, Palaiseau College de

More information

GRB observations at very high energies with the MAGIC telescopes

GRB observations at very high energies with the MAGIC telescopes GRB observations at very high energies with the telescopes Markus Garczarczyk - for the collaboration - Markus GRB2012 Garczarczyk Munich GRB2012 May 2012 Munich Major Atmospheric Gamma-ray Imaging Cherenkov

More information

The early days of ground-based gamma-ray astronomy in France. Gerard Fontaine - Hillas symposium Heidelberg December

The early days of ground-based gamma-ray astronomy in France. Gerard Fontaine - Hillas symposium Heidelberg December The early days of ground-based gamma-ray astronomy in France Gerard Fontaine - Hillas symposium Heidelberg December 10-12 2018 Timeline from 1986 to 2004 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

More information

VHE Gamma-Ray Future Project: Beyond CANGAROO

VHE Gamma-Ray Future Project: Beyond CANGAROO VHE Gamma-Ray Future Project: Beyond CANGAROO Takanori Yoshikoshi Institute for Cosmic Ray Research, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 77-858, Japan tyoshiko@icrr.u-tokyo.ac.jp We have

More information

Very High-Energy Gamma- Ray Astrophysics

Very High-Energy Gamma- Ray Astrophysics Very High-Energy Gamma- Ray Astrophysics David A. Williams Santa Cruz Institute for Particle Physics UC Santa Cruz Quarknet July 12, 2013 Detecting High Energy Gamma Rays High Sensitivity HESS, MAGIC,

More information

TenTen: A new IACT Array for Multi-TeV Gamma-Ray Astronomy

TenTen: A new IACT Array for Multi-TeV Gamma-Ray Astronomy TenTen: A new IACT Array for Multi-TeV Gamma-Ray Astronomy Gavin Rowell, Roger Clay, Greg Thornton, Victor Stamatescu (University of Adelaide) Searching for PeV CR Accelerators Adelaide Dec 2006 The H.E.S.S.

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

The ground-based wide-angle gammaray and cosmic-ray experiment. HiSCORE

The ground-based wide-angle gammaray and cosmic-ray experiment. HiSCORE The ground-based wide-angle gammaray and cosmic-ray experiment HiSCORE Martin Tluczykont @ COSPAR 2010, Bremen The ground-based wide-angle gammaray and cosmic-ray experiment HiSCORE Martin Tluczykont,

More information

Performance and Sensitivity of H.E.S.S.

Performance and Sensitivity of H.E.S.S. Performance and Sensitivity of H.E.S.S. Christopher van Eldik Max-Planck-Institut für Kernphysik Heidelberg 2006 Philippe Plailly. www.eurelios.com PSF & FoV Cut Efficiencies Energy Estimation Flux Sensitivity

More information

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE COSMIC RAYS Discovered in 1912 by Victor Hess (Nobel Prize) Messengers from the non-thermal part of the Universe E < 15 ev: galactic E > 17

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Cherenkov Telescope Array Status Report Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Outline Very-High-Energy Gamma-Ray Astronomy Cherenkov Telescope Array (CTA) Expected Performance of CTA

More information

Hadronic Interaction Studies with ARGO-YBJ

Hadronic Interaction Studies with ARGO-YBJ Hadronic Interaction Studies with ARGO-YBJ Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Hadron-Hadron & Cosmic Ray

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array

A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array 1, Takanori Yoshikoshi 1, Tatsuo Yoshida for the CTA Consortium 1 Institute for Cosmic Ray

More information

A Large High Altitude Air Shower Observatory : the LHAASO Project

A Large High Altitude Air Shower Observatory : the LHAASO Project A Large High Altitude Air Shower Observatory : the LHAASO Project Olivier Deligny CNRS/IN2P3 - IPN Orsay on behalf the LHAASO Collaboration Contact Person: Zhen CAO, IHEP Rencontres de Moriond, 9/16 March

More information

Monte Carlo Studies for CTA

Monte Carlo Studies for CTA Monte Carlo Studies for CTA by Konrad Bernlöhr 4 MPIK Heidelberg & Humboldt University Berlin A word of warning You won't see a definite CTA sensitivity. We tested a number of specific configurations,

More information

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh Ultra High Energy Cosmic Rays What we have learnt from HiRes and Auger Andreas Zech Observatoire de Paris (Meudon) / LUTh École de Chalonge, Paris, Outline The physics of Ultra-High Energy Cosmic Rays

More information

Gamma-Ray Astronomy With Ground Based Arrays: Results and Future Perspectives

Gamma-Ray Astronomy With Ground Based Arrays: Results and Future Perspectives Gamma-Ray Astronomy With Ground Based Arrays: Results and Future Perspectives Eckart Lorenz (MPI-Munich) OVERVIEW INTRODUCTION THE GENERAL CONCEPT CURRENT EXPERIMENTS AND RESULTS COMPARISON WITH OTHER

More information

arxiv: v1 [astro-ph.he] 28 Jan 2013

arxiv: v1 [astro-ph.he] 28 Jan 2013 Measurements of the cosmic ray spectrum and average mass with IceCube Shahid Hussain arxiv:1301.6619v1 [astro-ph.he] 28 Jan 2013 Abstract Department of Physics and Astronomy, University of Delaware for

More information

The H.E.S.S. Standard Analysis Technique

The H.E.S.S. Standard Analysis Technique The H.E.S.S. Standard Analysis Technique Wystan Benbow for the H.E.S.S. Collaboration Max Planck Institut für Kernphysik Postfach 103980 D-69029 Heidelberg, Germany The High Energy Stereoscopic System

More information

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen The LHAASO-KM2A detector array and physical expectations Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen Outline 1. Introduction 2. The KM2A Detector Array 3. Physical Expectations 3.1 Sensitivity

More information

VERITAS: exploring the high energy Universe

VERITAS: exploring the high energy Universe VERITAS: exploring the high energy Universe K. Ragan McGill University Queen's - March '09 VERITAS 1 Outline Beyond the optical Very high-energy (VHE) gamma-ray astrophysics Ground-based observations Cherenkov

More information

The Tunka-Rex Experiment for the Detection of the Air- Shower Radio Emission

The Tunka-Rex Experiment for the Detection of the Air- Shower Radio Emission The Tunka-Rex Experiment for the Detection of the Air- Shower Radio Emission a) Y. Kazarina 1, P.A. Bezyazeekov 1, N.M. Budnev 1, O.A. Gress 1, A. Haungs 2, R.Hiller 2, T. Huege 2, M. Kleifges 3, E.N.

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Variable atmospheric transparency studies for the MAGIC telescopes

Variable atmospheric transparency studies for the MAGIC telescopes technische universität dortmund Variable atmospheric transparency studies for the MAGIC telescopes Nikola Strah (1), Dario Hrupec (2) for the MAGIC collaboration (1) Astroparticle physics group, Technische

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique

Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique J.L. Contreras, J. Rosado, F. Arqueros,, J.A. Barrio and M. Nievas Departamento

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Diffuse TeV emission from the Cygnus region

Diffuse TeV emission from the Cygnus region Diffuse TeV emission from the Cygnus region References: Discovery of TeV gamma-ray emission from the Cygnus region of the Galaxy Abdo et al., astro-ph/0611691 Dissecting the Cygnus region with TeV gamma

More information

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ Ivan DE MITRI Dipartimento di Fisica Università di Lecce and Istituto Nazionale di Fisica Nucleare Lecce,, ITALY On behalf of the

More information

Study of Performance Improvement for Air Shower Array with Surface Water Cherenkov Detectors

Study of Performance Improvement for Air Shower Array with Surface Water Cherenkov Detectors Study of Performance Improvement for Air Shower Array with Surface Water Cherenkov Detectors, a K. Hibino, b T. K. Sako, cd T. Asaba, e Y. Katayose e and M. Ohnishi c a College of Industrial Technology,

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Highlights from the ARGO-YBJ Experiment

Highlights from the ARGO-YBJ Experiment Highlights from the ARGO-YBJ Experiment Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration 12th International Conference

More information

RECENT RESULTS FROM CANGAROO

RECENT RESULTS FROM CANGAROO RECENT RESULTS FROM CANGAROO MASAKI MORI FOR THE CANGAROO TEAM Institute for Cosmic Ray Research, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, 277-8582 Chiba, Japan E-mail: morim@icrr.u-tokyo.ac.jp

More information

TeV Future: APS White Paper

TeV Future: APS White Paper TeV Future: APS White Paper APS commissioned a white paper on the "Status and Future of very high energy gamma ray astronomy. For preliminary information, see http://cherenkov.physics.iastate.edu/wp Working

More information

Status of the Small-Sized Telescopes of the Cherenkov Telescope Array

Status of the Small-Sized Telescopes of the Cherenkov Telescope Array Status of the Small-Sized Telescopes of the Cherenkov Telescope Array Akira OKUMURA for the CTA Consortium (Thanks to the SST teams) Institute for Space-Earth Environmental Research, Nagoya University

More information

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída. AugerPrime Primary cosmic ray identification for the next 10 years Radomír Šmída radomir.smida@kit.edu The Pierre Auger Observatory The primary goal is to study the most energetic cosmic rays Southern

More information

PoS(ICRC2015)635. The NICHE Array: Status and Plans. Douglas R Bergman

PoS(ICRC2015)635. The NICHE Array: Status and Plans. Douglas R Bergman The NICHE Array: Status and Plans The University of Utah E-mail: bergman@physics.utah.edu John F Krizmanic Universities Space Research Association E-mail: jkrizmanic@usra.edu Yoshiki Tsunesada Tokyo Institute

More information

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i (cosmic rays, the Auger detectors, event reconstruction, observations) Jose Bellido QCD @ Cosmic

More information

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University Very-High-Energy Gamma-Ray Astronomy with VERITAS Martin Schroedter Iowa State University Summary Very-high-energy astronomy began 20 years ago with 1 source. Now ~80 more VHE discoveries have been made

More information

Detecting High Energy Cosmic Rays with LOFAR

Detecting High Energy Cosmic Rays with LOFAR Detecting High Energy Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team LOFAR CR-KSP: Main Motivation Exploring the sub-second transient radio sky: Extensive Air showers as guaranteed signal

More information

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae a, and H. Zhou a for the HAWC Collaboration b a Department of Physics, Michigan Technological University 1400 Townsend Drive, Houghton, MI,

More information

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Dottorato di Ricerca in Fisica - XXVIII ciclo Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Chiara Perrina Supervisor: Prof. Antonio Capone 25 th February 2014

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Application of an analysis method based on a semi-analytical shower model to the first H.E.S.S. telescope

Application of an analysis method based on a semi-analytical shower model to the first H.E.S.S. telescope Application of an analysis method based on a semi-analytical shower model to the first H.E.S.S. telescope The 28th International Cosmic Ray Conference Mathieu de Naurois, LPNHE Paris University VI/VII

More information

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 1 Scineghe07 Aldo Morselli Proceedings in Frascati Physics series Deadline 25 of July 8 pages (4 pages for posters ) in

More information

TEV GAMMA RAY ASTRONOMY WITH VERITAS

TEV GAMMA RAY ASTRONOMY WITH VERITAS 1 TEV GAMMA RAY ASTRONOMY WITH VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration 2 Contents The VERITAS Experiment Results and the Performance Galactic Sources

More information

LATTES Large Array Telescope to Tracking Energetic Sources

LATTES Large Array Telescope to Tracking Energetic Sources LATTES Large Array Telescope to Tracking Energetic Sources Ronald Cintra Shellard CBPF 1 Lattes LATTES Ochiallini 2 LATTES Lattes started as a name and a project submitted to CNPq at least in 2009: Very

More information

UHE Cosmic Rays in the Auger Era

UHE Cosmic Rays in the Auger Era Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays in the Auger Era Sergio Petrera, L'Aquila University email: sergio.petrera@aquila.infn.it Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays

More information

Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)

Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA) Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA) To cite this article: M Kunnas et al 2015 J.

More information

PoS(ICRC2017)768. The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

PoS(ICRC2017)768. The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley,2, I. Astapov 9, P. Bezyazeekov 2, V. Boreyko 10, A. Borodin 10, M. Brueckner 8, A. Chiavassa 4,

More information

IceAct Air Cherenkov telescopes for the South Pole

IceAct Air Cherenkov telescopes for the South Pole IceAct Air Cherenkov telescopes for the South Pole HAP Workshop Mainz 1 Content Part 0: Motivation (brief) Part 1: The prototype in Aachen first Cherenkov light The prototype at the South Pole Part 2:

More information

The Cherenkov Telescope Array

The Cherenkov Telescope Array The Cherenkov Telescope Array Gamma-ray particle astrophysics Dark Matter Space time Cosmic rays...? Gamma-ray particle astrophysics Dark Matter Space time Cosmic rays...? Particle Dark Matter Direct Detection

More information

Measurement of a Cosmic-ray Electron Spectrum with VERITAS

Measurement of a Cosmic-ray Electron Spectrum with VERITAS Measurement of a Cosmic-ray Electron Spectrum with VERITAS David Staszak, for the VERITAS Collaboration 1 Cosmic-Ray Electrons and Positrons at TeV Energies HESS Electrons are a unique probe of our local

More information

Cherenkov Telescope Array (CTA-US)

Cherenkov Telescope Array (CTA-US) Cherenkov Telescope Array (CTA-US) Stefan Funk, Hiro Tajima, Justin Vandenbroucke KIPAC September 14, 2010 DOE Site Visit: Sept 13-14, 2010 1 The imaging atmospheric Cherenkov telescope (IACT) technique

More information

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope VHE Astrophysics Energy range 10 GeV 10 TeV Non thermal processes in the universe Highly variable sources Particle acceleration Physics of extreme

More information

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE The AUGER Experiment D. Martello Department of Physics University of Salento & INFN Lecce The Pierre Auger Collaboration Argentina Australia Bolivia Brazil Croatia Czech Rep. France Germany Italy Mexico

More information

GLAST and beyond GLAST: TeV Astrophysics

GLAST and beyond GLAST: TeV Astrophysics GLAST and beyond GLAST: TeV Astrophysics Outline: Greg Madejski Assistant Director for Scientific Programs, SLAC / Kavli Institute for Astrophysics and Cosmology Recent excitement of GLAST and plans for

More information