ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 17 Mar 30, 2016 Starlight Distribu/ons in Disk Galaxies

Size: px
Start display at page:

Download "ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 17 Mar 30, 2016 Starlight Distribu/ons in Disk Galaxies"

Transcription

1 ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 17 Mar 30, 2016 Starlight Distribu/ons in Disk Galaxies

2 reminder no class next Monday, April 3!!

3 3

4 Color op/cal image of spiral galaxy Isophotes contours of equal surface brightness NGC 5533 SDSS gri Hogg Separate images taken in 3 bands: g, r, i 3 images combined to make color image

5 Surface brightness we observe 2D projec/on of 3D body (luminosity per area or surface brightness) galaxies are 3D bodies (luminosity per volume) Surface brightness at any posi/on in a galaxy is the integrated light of all stars along that line- of- sight In principle, the SB profile can be deprojected to obtain the 3D spa/al density distribu/on of stars in a galaxy (but only by making assump/ons about symmetry)

6 unresolved (point) source L D (pc) Surface brightness & flux: unresolved sources If source smaller than beam, detect total flux of source beam = angle of sensi/vity for detector d (cm) small angle formula α rad = D/d solid angle of square patch Ω = α 2 α detector pixel detects all of source flux

7 extended source I(x,y) D (pc) L Surface brightness & flux: resolved sources I(x,y) surface brightness I as a func/on of of angular coordinates x,y) small angle formula α rad = D/d α d (cm) If source is resolved, a detector detects the flux per solid angle = surface brightness in erg s - 1 cm - 2 arcsec - 2 (or sr - 1 ) I = f/ω = f/α 2 solid angle of square patch Ω = α 2 detector pixel detects only part of source flux

8 Surface brightness is independent of distance! surface brightness = brightness or flux per solid angle Less light from each square meter of more distant source (Inverse square law B decreases by 1/d 2 ) But more square meters (surface area) of source within same solid angle of observer for more distant source (surface area increases by d 2 ) d 3d

9 Surface brightness is distance independent If source is unresolved, a detector detects the flux in erg s - 1 cm - 2 If source is resolved, a detector detects the flux per solid angle = surface brightness in erg s - 1 cm - 2 arcsec - 2 (or sr - 1 ) I = f/ω = f/α 2 Recall: angular size of source α = D/d angular area of source (square patch) Ω = α 2 = (D/d) 2 f = L/4πd 2 d = distance I = f/ω = (L/4πd 2 ) / (D/d) 2 = L/4πD 2 where D=size of patch on source So units of I are L sun pc - 2 or erg s - 1 cm - 2 arcsec - 2 Area on source (in pc 2 ) depends on distance (in cm) and angular area (in arcsec 2 ); so that s why units of cm - 2 arcsec - 2 are equivalent to pc - 2 in SB Luminosity and area of patch in source both increase as d 2 so ra/o doesn t depend on d!

10 Surface brightness in magnitudes arcsec - 2 µ = log I + C SB in mag arcsec - 2 SB in erg s - 1 cm - 2 arcsec - 2 magnitudes arcsec - 2 are strange units since magnitudes are not linear: if a point in a galaxy has a SB of 21 magnitudes arcsec - 2 this means an area of 1 square arcsecond around this point emits as much light as a star of apparent magnitude 21. warning! Nota/on in textbooks is not consistent! Both SG and BM use I to mean both L sun pc - 2 and magnitudes arcsec - 2

11 Color op/cal image of spiral galaxy Isophotes contours of equal surface brightness NGC 5533 SDSS gri Hogg Separate images taken in 3 bands: g, r, i 3 images combined to make color image Fit ellipses to isophotes

12 Isophotal analysis & aperture photometry for spiral galaxy R band op/cal image Fit ellipses to isophotes of image φ N a b Broeils & Knapen 1991 Posi/on angle Axial ra/o Surface brightness PA (φ) of ellipses vs radius gives es/mate of PA of galaxy Axial ra/o (b/a) vs. radius of ellipses gives es/mate of disk inclina/on Average surface brightness in ellip/cal annuli vs radius gives radial light distribu/on [& es/mate of bulge- to- disk ra/o]. Averages over substructure like spiral arms, bars, regions of star forma/on 12

13 The radial distribu/on of starlight in spiral galaxy disks is roughly exponen/al NGC 4294 (Hα light) R- band light SDSS Hogg website Koopmann+2001 R- band radial light profile shows pure exponen)al disk 13

14 Func/ons fit to Galaxy Radial light profiles Exponen/al disk: I(r) = I(0) exp (- r/r d )

15 Surface brightness profile of spiral with bulge+disk NGC 7331 B NGC µm NGC 7331 R SG 2D projected image with isophotal contours (contours of equal surface brightness) Bulge and disk apparent (Affected by dust ex/nc/on) Ideal galaxy Disk n=1 n=4 NGC 7331 Disk scale length 1D radial profile Ellip/cally averaged ; Corrected for inclina/on (but not for dust) 15

16 Disks have very different radial light profiles from bulges & ellip/cals Surface Brightness (mag arcsec - 2 )

17 Ellip/cal galaxies have radial light distribu/ons different from disks more light in center and outskirts than exponen5al disk olen well fit by devaucouleurs r 1/4 profile : I(r) = I(r eff ) exp {- 7.67[( r/r eff ) 1/4-1]} E galaxy Radial light distribu/on well- fit by r 1/4 profile 17

18 Func/ons fit to Galaxy Radial light profiles Exponen/al disk: I(r) = I(0) exp (- r/r d ) DeVaucouleurs r 1/4 bulge law: I(r) = I(r eff ) exp {- 7.67[( r/r eff ) 1/4-1]}

19 Func/ons fit to Galaxy Radial light profiles Exponen/al disk: I(r) = I(0) exp (- r/r d ) DeVaucouleurs r 1/4 bulge law: I(r) = I(r eff ) exp {- 7.67[( r/r eff ) 1/4-1]} Sersic law: I(r) = I(r eff ) exp {- b n [( r/r eff ) 1/n - 1]} n = Sersic index n = 1-4 typically If n=1 exponen/al (all disk) [b n chosen to make r eff the effec/ve radius] If n=4 devaucouleurs r/4 law (all bulge) If n<2 small bulge- disk ra/o If n>2 large bulge- disk ra/o Advantage of Sersic law: can describe en5re profile shape with just one number n

20 MacArthur Sersic profiles n=1 Sérsic n profiles for different values of n. The top panel shows profiles with µ e = 21 mag arcsec - 2 and r e = 3.5 for values of n in the range 0.2 < n < 4. n=1 The table lists the rela/ve light contribu/ons of the different profiles normalized to the n = 1 case. 2 different ways to normalize: at effec/ve radius (top), and at center (botom) The botom panel shows the same profiles except for a constant CSB of µ 0 = 18 mag arcsec

21 what is best radius to characterize a galaxy? surface brightness I radius

22 Different photometric radii in small- bulge spiral galaxy NGC 4294 (Hα light) R- band light SDSS Hogg website r eff Koopmann+2001 R- band radial light profile shows pure exponen5al disk r d scale length of exponen/al disk (I ~ I 0 e - r/rd ) = 1.6 kpc r eff effec5ve radius (contains 50% of total light) = 3 kpc r 24 isophotal radius (SB falls to 24 mag arcsec - 2 ) = 6 kpc r vir ~ kpc 22

23 Different photometric radii in small- bulge spiral galaxy NGC 4294 (Hα light) SDSS Hogg website R- band radial light profile shows pure exponen)al disk r d scale length of exponen/al disk where SB falls to e - 1 of central SB I(r d ) = e - 1 I(0) r eff effec/ve radius (contains 50% of total light) ; r eff R- band light Koopmann+2001 L(<r eff ) = 0.5 L tot r 24 isophotal radius (SB falls to 24 mag arcsec - 2 ) ; simplest to measure, olen less meaningful 23

24 Why are disks exponen/al? Not understood in detail Stellar disks are thin because they form from gas disks, which experience (energy) dissipa/on Stellar disks are exponen/al (in radius) because they form from gas disks, which experience energy dissipa/on and angular momentum transport

25 Not all disks are perfectly exponen/al Bars, rings, spiral arms, interac/ons modify radial distribu/ons Extra light due to ring HST Ringed galaxy NGC 4622 Buta+03

26 Not all disks are perfectly exponen/al UGC 9837 Pohlem+02 Outer disks of some spiral galaxies fit by steeper exponen/al than inner disk not well understood but clearly not )dal trunca)on, could be )dal interac)on or less efficient SF in outskirts

27 Truncated disks in edge- on spiral galaxies The disk starlight becomes much fainter than an extrapola/on of the exponen/al disk at r~2-5 scale lengths in many galaxies (easier to observe in edge- ons) Kregel+2002

28 Q: How many galaxies can you see during the day? A: NONE Followup Q: WHY?

29 Night sky brightness **Earth s Atmosphere: Airglow from upper atmosphere ***Solar System: Zodiacal light from dust in solar system *Galac/c: Faint unresolved stars in Milky Way Galaxy Extragalac/c: Faint unresolved distant galaxies Typical night sky brightness: 23 B- mag arcsec - 2 for a good site & moonless night (or 21.5 R- mag arcsec - 2 ) Day brightness 5 B- mag arcsec - 2 (18 mags = factor of 1.6x10 7 x brighter than nightsky!)

30 Exponen/al radial light profile in small- bulge spiral galaxy NGC 4294 (Hα light) Night sky brightness 21.5 R- mag arcsec - 2 R- band light SDSS Hogg website r eff Koopmann+2001 In most bright galaxies, much of starlight arises from regions where the galaxy light is fainter than the brightness of the night sky Some light from galaxies is at levels fainter than 26 B- mag arcsec - 2 (24.5 R- mag arcsec - 2 ). This is only ~6% of night sky SO must carefully subtract light from night sky to see fainter parts of galaxies! 30

31 why can t you perfectly subtract night sky light from astronomical images?

32 Illustra/on of surface brightness varia/ons # photons detected in each pixel varies with /me due to sta/s/cal nature of emission processes (varia/on = noise ) Noise from sky olen exceeds average signal from astronomical source Need to average over (long?) /me to beat down the noise enough to detect source

33 Exponen/al radial light profile in small- bulge spiral galaxy NGC 4294 (Hα light) Night sky brightness WITH NOISE! 21.5 R- mag arcsec - 2 R- band light SDSS Hogg website r eff Koopmann+2001 In most bright galaxies, much of starlight arises from regions where the galaxy light is fainter than the brightness of the night sky Some light from galaxies is at levels fainter than 26 B- mag arcsec - 2 (24.5 R- mag arcsec - 2 ). This is only ~6% of night sky SO must carefully subtract light from night sky to see fainter parts of galaxies! 33

34 stars and the sky and other things produce photons in a random Poisson process, so that there are random varia/ons in the number of photons which strike a detector each second. These varia/ons are some/mes called shot noise. The size of these random varia/ons is simply the square root of the number of photons. sky brightness is annoying source of noise it produces extra signal with uncertainty we can subtract average value of signal but we cannot subtract the uncertainty, which is propor)onal to the square root of the signal

35 signal (avg # photons detected) S ~ t (t = integra/on /me) noise (varia/on in #photons detected) N ~ S ~ t signal- to- noise ra/o S/N ~ S/ S ~ S ~ t the signal- to- noise ra/o improves by increasing integra/on /me, but only as t beter to avoid extra light from all non- astronomical sources if possible!

36 maybe there are lots of galaxies that are fainter than the night sky, and therefore very hard to detect! à low surface brightness galaxies

37 Low surface brightness galaxy Malin 1 I(0) disk = 26.5 mag arcsec - 2 Center of disk is 100x (=5 mags) fainter than Freeman s Law!! Yet V max =300 km/s so it s a massive galaxy A large & massive spiral galaxy that is fainter than the night sky everywhere but very center!

38 Surface brightness (SB) func/on of galaxies # galaxies per Mpc 3 per magnitude bin Low SB galaxies High SB ( normal ) galaxies McGaugh (1996) Central surface brightness CSB of bright ( normal ) spirals ~ 21.5 B- mag arcsec - 2 Low surface brightness galaxies are common

39 if LSB galaxies are common, could they account for most of the stars in the universe?

40 Surface brightness (SB) func/on of galaxies # galaxies per Mpc 3 per magnitude bin Low SB galaxies are less massive on average High SB galaxies are more massive on average Low surface brightness galaxies are common BUT most of the galaxy mass & stars in the universe are in high surface brightness galaxies (this is not obvious from this plot need other data to show this!) McGaugh (1996) Central surface brightness

41 reminder no class next Monday, April 3!!

Galaxies Astro 430/530 Prof. Jeff Kenney. CLASS 2 Jan 19, 2018 QuanDtaDve Morphology, Surface Brightness Profiles & Disks

Galaxies Astro 430/530 Prof. Jeff Kenney. CLASS 2 Jan 19, 2018 QuanDtaDve Morphology, Surface Brightness Profiles & Disks Galaxies Astro 430/530 Prof. Jeff Kenney CLASS 2 Jan 19, 2018 QuanDtaDve Morphology, Surface Brightness Profiles & Disks 1 2 Color opdcal image of spiral galaxy Isophotes contours of equal surface brightness

More information

Galaxies Astro 530 Prof. Jeff Kenney

Galaxies Astro 530 Prof. Jeff Kenney Galaxies Astro 530 Prof. Jeff Kenney CLASS 7 February 5, 2018 Tully-Fisher Relation (finish) & Spiral Structure (start) 1 Tully-Fisher relation M B,i Tradi7onal Tully- Fisher rela7on: Good correla7on between

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters /mescales of Local Group a small loose group of galaxies calculate

More information

This week at Astro 3303

This week at Astro 3303 This week at Astro 3303 Pick up PE#9 I am handing back HW#3 Please turn in HW#4 Usual collaboration rules apply Today: Introduction to galaxy photometry Quantitative morphology Elliptical galaxies Reading:

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 4 Sept 10, 2018 The Milky Way Galaxy: Star Clusters

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 4 Sept 10, 2018 The Milky Way Galaxy: Star Clusters ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 4 Sept 10, 2018 The Milky Way Galaxy: Star Clusters finish disk of Milky Way 2 good view of edge- on stellar disk in S0 galaxy NGC 4452

More information

This week at Astro Lecture 06, Sep 13, Pick up PE#6. Please turn in HW#2. HW#3 is posted

This week at Astro Lecture 06, Sep 13, Pick up PE#6. Please turn in HW#2. HW#3 is posted This week at Astro 3303 Lecture 06, Sep 13, 2017 Pick up PE#6 Please turn in HW#2 HW#3 is posted Today: Introduction to galaxy photometry Quantitative morphology Elliptical galaxies Reading: Continue reading

More information

Surface Photometry Quantitative description of galaxy morphology. Hubble Sequence Qualitative description of galaxy morphology

Surface Photometry Quantitative description of galaxy morphology. Hubble Sequence Qualitative description of galaxy morphology Hubble Sequence Qualitative description of galaxy morphology Surface Photometry Quantitative description of galaxy morphology Galaxy structure contains clues about galaxy formation and evolution Point

More information

Point Spread Functions. Aperture Photometry. Obs Tech Obs Tech 26 Sep 2017

Point Spread Functions. Aperture Photometry. Obs Tech Obs Tech 26 Sep 2017 Point Spread Functions & Aperture Photometry Obs Tech Obs Tech 26 Sep 2017 Point Spread Functions (PSFs) Stars are far away (typically d >> 3x10 15 km) Stars are relatively small (D ~ 10 6 km) Angular

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney. Class 2 August 29, 2018 The Milky Way Galaxy: Stars in the Solar Neighborhood

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney. Class 2 August 29, 2018 The Milky Way Galaxy: Stars in the Solar Neighborhood ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 2 August 29, 2018 The Milky Way Galaxy: Stars in the Solar Neighborhood What stars are we seeing in an optical image of a galaxy? Milky

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney. Class 2 Jan 20, 2017 The Milky Way Galaxy: Stars in the Solar Neighborhood

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney. Class 2 Jan 20, 2017 The Milky Way Galaxy: Stars in the Solar Neighborhood ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 2 Jan 20, 2017 The Milky Way Galaxy: Stars in the Solar Neighborhood What stars are we seeing in an optical image of a galaxy? Milky

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Physics of Galaxies 2016 Exercises with solutions batch I

Physics of Galaxies 2016 Exercises with solutions batch I Physics of Galaxies 2016 Exercises with solutions batch I 1. Distance and brightness at low redshift You discover an interesting galaxy in the local Universe and measure its redshift to be z 0.053 and

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 22 November 26, 2018 Ellip/cal Galaxies: Kinema/cs & Mergers

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 22 November 26, 2018 Ellip/cal Galaxies: Kinema/cs & Mergers ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 22 November 26, 2018 Ellip/cal Galaxies: Kinema/cs & Mergers Key points on Ellip/cal galaxies Largest (most massive) galaxies in universe

More information

Galaxy Luminosity Function. Galaxy Luminosity Function. Schechter Function. Schechter Function by environment. Schechter (1976) found that

Galaxy Luminosity Function. Galaxy Luminosity Function. Schechter Function. Schechter Function by environment. Schechter (1976) found that Galaxy Luminosity Function Count the number of galaxies as a function of luminosity (or absolute magnitude) Useful for: Understanding galaxy formation (distribution by luminosity implies distribution by

More information

GALAXY SPIRAL ARMS, DISK DISTURBANCES AND STATISTICS

GALAXY SPIRAL ARMS, DISK DISTURBANCES AND STATISTICS GALAXY SPIRAL ARMS, DISK DISTURBANCES AND STATISTICS Part I: NGC3081 to build background for NGC4622. Co-authors for Parts I and II: G. Byrd (Univ. of Alabama, Tuscaloosa), T. Freeman (Bevill State Comm.

More information

Galaxies: Classification. Galaxy Classification. galaxies; late types : spiral galaxies, Not an evolutionary sequence!

Galaxies: Classification. Galaxy Classification. galaxies; late types : spiral galaxies, Not an evolutionary sequence! 17 1 Galaxies: lassification Galaxy lassification 17 2 1920s: Hubble and others: classification of galaxies orphology: ppearance on photographs, photographic emulsion is blue sensitive Warning: scheme

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Galaxy photometry. The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image.

Galaxy photometry. The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image. Galaxy photometry The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image. A small patch of side D in a galaxy located at a distance d, will subtend

More information

Extra Gal 9: Photometry & Dynamics

Extra Gal 9: Photometry & Dynamics Extra Gal 9: Photometry & Dynamics Two books, among many others, that can be used by the studenys for extensive references and details are: Binney and Merrifield: Galactic Astronomy Binney and Tremaine

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2013W1 SEMESTER 1 EXAMINATION 2012/13 GALAXIES Duration: 120 MINS Answer all questions in Section A and two and only two questions in Section B. Section A carries 1/3 of the

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

Galaxies Astro 430/530 Spring 2018 Prof. Jeff Kenney

Galaxies Astro 430/530 Spring 2018 Prof. Jeff Kenney Galaxies Astro 430/530 Spring 2018 Prof. Jeff Kenney CLASS 3 January 22, 2018 Non- parametric QuanItaIve Morphology & VerIcal distribuions of starlight 1 FuncIons fit to Galaxy Radial light profiles ExponenIal

More information

GALACTIC DYNAMICS AND INTERSTELLAR MATTER

GALACTIC DYNAMICS AND INTERSTELLAR MATTER GALACTIC DYNAMICS AND INTERSTELLAR MATTER Isaac Shlosman Department of Physics and Astronomy University of Kentucky at Lexington, USA and Theoretical Astrophysics Osaka University, Japan The goal: Explain

More information

Low Surface Brightness Galaxies Erwin de Blok. Encyclopedia of Astronomy & Astrophysics P. Murdin

Low Surface Brightness Galaxies Erwin de Blok. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2620 Low Surface Brightness Galaxies Erwin de Blok From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions importance of HII regions one of main ISM phases great example for understanding

More information

Whittle : EXTRAGALACTIC ASTRONOMY 5. SPIRAL GALAXIES

Whittle : EXTRAGALACTIC ASTRONOMY 5. SPIRAL GALAXIES Whittle : EXTRAGALACTIC ASTRONOMY 1 : Preliminaries 6 : Dynamics I 11 : Star Formation 16 : Cosmology : Morphology 7 : Ellipticals 1 : Interactions 17 : Structure Growth 3 : Surveys 8 : Dynamics II 13

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 3 January 23, 2017 The Milky Way Galaxy: Vertical Distributions of Stars & the Stellar Disk disks exist in many astrophysical systems

More information

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al.

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. ApJ, 561:218-237, 2001 Nov 1 1 Fun With Acronyms BIMA Berkely

More information

From Rubin et al. 1978, ApJL, 225, 107

From Rubin et al. 1978, ApJL, 225, 107 From Rubin et al. 1978, ApJL, 225, 107 From Sofue & Rubin 2001, ARAA, 39, 137 From Sofue & Rubin 2001, ARAA, 39, 137 From Rubin et al. 1985, ApJ, 289, 81 From Takamiya & Sofue 2000, ApJ, 534, 670 From

More information

Evidence for bar-induced secular evolution in massive disk galaxies. Dimitri Gadotti ESO

Evidence for bar-induced secular evolution in massive disk galaxies. Dimitri Gadotti ESO Evidence for bar-induced secular evolution in massive disk galaxies Dimitri Gadotti ESO Data Ø SDSS data (Gadotti 2009) 0.02 z 0.07 M * 10 10 M b/a > 0.9 nearly 1000 galaxies, of which nearly 300 barred

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate)

optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate) optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate) N electrons/sec = ɛ F λ λa hc/λ 0 efficiency factor flux density x bandpass x collecting

More information

Lecture 15: Galaxy morphology and environment

Lecture 15: Galaxy morphology and environment GALAXIES 626 Lecture 15: Galaxy morphology and environment Why classify galaxies? The Hubble system gives us our basic description of galaxies. The sequence of galaxy types may reflect an underlying physical

More information

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Galaxies Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Cepheids in M31 Up to 1920s, the Milky Way was thought by

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

Lecture Two: Observed Properties of Galaxies

Lecture Two: Observed Properties of Galaxies Lecture Two: Observed Properties of Galaxies http://www.astro.rug.nl/~etolstoy/gfe14/index.html Longair, chapter 3 Wednesday 5th Feb Binney & Merrifield, chapter 4 1 From pretty picture to science 2 Galaxies

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 9 September 26, 2018 Introduc/on to Stellar Dynamics: Poten/al Theory & Mass Distribu/ons & Mo/ons Gravity & Stellar Systems ~Only force

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Homework 1. Astronomy 202a. Fall 2009

Homework 1. Astronomy 202a. Fall 2009 Homework 1 Astronomy 0a Fall 009 Solutions Problems: 1. A galaxy has an integrated blue magnitude of 6.5, a rotation velocity (essentially flat) of 107 km s 1, and is ellptical in overall shape with major

More information

Herschel Virgo Cluster Survey (HeViCS) Jonathan Davies for the HeViCS consortium

Herschel Virgo Cluster Survey (HeViCS) Jonathan Davies for the HeViCS consortium Herschel Virgo Cluster Survey (HeViCS) Jonathan Davies for the HeViCS consortium ESO, Garching, June 2011 HeViCS Consor&um Members Davies, J. I.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bomans, D. J.; Boselli,

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Corotation Resonance of Non-barred Spiral Galaxies

Corotation Resonance of Non-barred Spiral Galaxies Corotation Resonance of Non-barred Spiral Galaxies A Research work By Arjun Karki Kark with Prof. Marc Seigar (Research advisor) Outline Motivation / Objective Introduction - Density wave theory - Corotation

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

OH as a Tracer for CO- Dark H 2 in the Galaxy

OH as a Tracer for CO- Dark H 2 in the Galaxy OH as a Tracer for CO- Dark H 2 in the Galaxy A progress report on a blind mini- survey for OH emission with the Green Bank Telescope Ron Allen Physics/Astronomy, Johns Hopkins University Dave Hogg - Na?onal

More information

The dependence of H II region properties on global and local surface brightness within galaxy discs

The dependence of H II region properties on global and local surface brightness within galaxy discs Mon. Not. R. Astron. Soc. 393, 478 490 (2009) doi:10.1111/j.1365-2966.2008.14062.x The dependence of H II region properties on global and local surface brightness within galaxy discs J. F. Helmboldt, 1

More information

Ay Fall 2012 Imaging and Photometry Part I

Ay Fall 2012 Imaging and Photometry Part I Ay 122 - Fall 2012 Imaging and Photometry Part I (Many slides today c/o Mike Bolte, UCSC) Imaging and Photometry Now essentially always done with imaging arrays (e.g., CCDs); it used to be with single-channel

More information

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 27: The Galaxy Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 27 18 Apr 2007 Read: Ch. 25,26 Astronomy 114 1/23 Announcements Quiz #2: we re

More information

Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney. CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs

Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney. CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs 1 How does stellar disk form? Gas, which is collisional and dissipates energy

More information

More on Galaxy Classifcation

More on Galaxy Classifcation More on Galaxy Classifcation Trends within the Hubble Sequence E0 --> S0 --> Sb Decreasing bulge to disk ratio Decreasing stellar age Increasing gas content Increasing star formation rate Problems Constructed

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Normal Galaxies ASTR 2120 Sarazin

Normal Galaxies ASTR 2120 Sarazin Normal Galaxies ASTR 2120 Sarazin Test #2 Monday, April 8, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other materials or any person

More information

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars.

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. AST111 PROBLEM SET 4 SOLUTIONS Homework problems 1. On Astronomical Magnitudes You observe a binary star. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. The

More information

NRO Legacy Project: CO Galac4c Plane Survey. Nario Kuno (NRO) et al.

NRO Legacy Project: CO Galac4c Plane Survey. Nario Kuno (NRO) et al. NRO Legacy Project: CO Galac4c Plane Survey Nario Kuno (NRO) et al. Members Kagoshima univ. Handa, T., Nakanishi, H., Omodaka, T., Tanaka, A.(M2), Matsuo, T.(M2) Osaka prefecture univ. Onishi, T., (graduate

More information

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3 An Introduction to Galaxies and Cosmology Jun 29, 2005 Chap.2.1~2.3 2.1 Introduction external galaxies normal galaxies - majority active galaxies - 2% high luminosity (non-stellar origin) variability

More information

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Reading and Announcements Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Stars The stars are distant and unobtrusive, but bright and enduring as our fairest

More information

The Rela(on Between Bars and AGN locally and at high redshi8

The Rela(on Between Bars and AGN locally and at high redshi8 The Rela(on Between Bars and AGN locally and at high redshi8 Mauricio Cisternas Ins(tuto de Astrofisica de Canarias The Triggering Mechanisms for AGN, Leiden, July 24, 2013 What is triggering most AGN?

More information

Epicycles the short form.

Epicycles the short form. Homework Set 3 Due Sept 9 CO 4.15 just part (a). (see CO pg. 908) CO 4.1 CO 4.36 (a),(b) CO 5.14 (assume that Sun currently has its max. u velocity.) CO 5.16 (Keplerian orbit = orbit around a point mass)

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney HI gas stars ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 18 November 5, 2018 HI Gas in Spiral Galaxies HI in galaxies major mass component of ISM (there is also horer and colder

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

arxiv: v1 [astro-ph] 4 Dec 2007

arxiv: v1 [astro-ph] 4 Dec 2007 Formation and Evolution of Galaxy Disks ASP Conference Series, Vol.???, 2008 Jose G. Funes, S.J. and Enrico M. Corsini The stars and gas in outer parts of galaxy disks: Extended or truncated flat or warped?

More information

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester The Milky Way The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas 20 March 2018 University of Rochester The Milky Way Today s lecture: The shape of the Galaxy Stellar populations and

More information

Remarkable Disk and Off Nuclear Starburst Ac8vity in the Tadpole Galaxy as Revealed by the Spitzer Space Telescope

Remarkable Disk and Off Nuclear Starburst Ac8vity in the Tadpole Galaxy as Revealed by the Spitzer Space Telescope Remarkable Disk and Off Nuclear Starburst Ac8vity in the Tadpole Galaxy as Revealed by the Spitzer Space Telescope T.H. JarreE, M. PolleEa, I.P Fournon et al. Presenta8on by: William Gray Date: 2/27/09

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

The Correlation Between Supermassive Black Hole Mass and the Structure of Ellipticals and Bulges

The Correlation Between Supermassive Black Hole Mass and the Structure of Ellipticals and Bulges 1 The Correlation Between Supermassive Black Hole Mass and the Structure of Ellipticals and Bulges Peter Erwin 1, Alister W. Graham 2, Nicola Caon 1 (1) Instituto de Astrofísica de Canarias, La Laguna,

More information

STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF IN HERCULES VOID

STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF IN HERCULES VOID STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF 1600+18 IN HERCULES VOID G.Petrov [1], A.Y.Kniazev [2], and J.W. Fried [2] 1 Institute of Astronomy, Bulgarian Academy

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

If we see a blueshift on one side and a redshift on the other, this is a sign of rotation.

If we see a blueshift on one side and a redshift on the other, this is a sign of rotation. Galaxies : dynamics, masses, and formation Prof Andy Lawrence Astronomy 1G 2011-12 Overview Spiral galaxies rotate; this allows us to measure masses But there is also a problem : spiral arm winding Elliptical

More information

TRUNCATIONS IN STELLAR DISKS AND WARPS IN HI-LAYERS IN SPIRAL GALAXIES

TRUNCATIONS IN STELLAR DISKS AND WARPS IN HI-LAYERS IN SPIRAL GALAXIES TRUNCATIONS IN STELLAR DISKS AND WARPS IN HI-LAYERS IN SPIRAL GALAXIES Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit China, September/October

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Scaling Relations of late-type galaxies

Scaling Relations of late-type galaxies Scaling Relations of late-type galaxies - an observational perspective - Lecture I Lecture II Trends along the Hubble sequence Galaxy rotation curves Lecture III Tully-Fisher relations Marc Verheijen Kapteyn

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 14 The Milky Way Galaxy Lecture Presentation 14.0 the Milky Way galaxy How do we know the Milky Way exists? We can see it even though

More information

Today in Astronomy 142: the Milky Way

Today in Astronomy 142: the Milky Way Today in Astronomy 142: the Milky Way The shape of the Galaxy Stellar populations and motions Stars as a gas: Scale height, velocities and the mass per area of the disk Missing mass in the Solar neighborhood

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

11. Virial Theorem Distances of Spiral and Elliptical Galaxies

11. Virial Theorem Distances of Spiral and Elliptical Galaxies Virial Theorem 11. Virial Theorem Distances of Spiral and Elliptical Galaxies v 2 rot = s G M(R 0) R 0 2 = e G M(R eff ) R eff (s1) spiral galaxies (e1) elliptical galaxies v rot rotational velocity of

More information

Hubble s Law and the Cosmic Distance Scale

Hubble s Law and the Cosmic Distance Scale Lab 7 Hubble s Law and the Cosmic Distance Scale 7.1 Overview Exercise seven is our first extragalactic exercise, highlighting the immense scale of the Universe. It addresses the challenge of determining

More information

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion 11 days exposure time 10,000 galaxies 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion Galaxies with disks Clumpy spiral shapes Smooth elliptical

More information

The principle of geometrical parallax

The principle of geometrical parallax The principle of geometrical parallax One of the hardest things to do in astronomy is to determine how far away things are. Does the star Vega in Lyra appear exceptionally bright because it s an intrinsically

More information

AGN Selec)on Techniques. Kris)n Kulas Astro 278 Winter 2012

AGN Selec)on Techniques. Kris)n Kulas Astro 278 Winter 2012 AGN Selec)on Techniques Kris)n Kulas Astro 278 Winter 2012 Selec)on Techniques Op)cal X- ray Radio Infrared Variability X- ray and Radio Physical Processes Detec)on of Sources Benefit of Wavelength Regime

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Does Low Surface Brightness Mean Low Density? W.J.G. de Blok. Kapteyn Astronomical Institute. P.O. Box AV Groningen. The Netherlands.

Does Low Surface Brightness Mean Low Density? W.J.G. de Blok. Kapteyn Astronomical Institute. P.O. Box AV Groningen. The Netherlands. Does Low Surface Brightness Mean Low Density? W.J.G. de Blok Kapteyn Astronomical Institute P.O. Box 800 9700 AV Groningen The Netherlands and S.S. McGaugh Department of Terrestrial Magnetism Carnegie

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES PROJECT 7 GALAXIES Objective: The topics covered in the previous lessons target celestial objects located in our neighbourhood, i.e. objects which are within our own Galaxy. However, the Universe extends

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

Galaxy Classification and the Hubble Deep Field

Galaxy Classification and the Hubble Deep Field Galaxy Classification and the Hubble Deep Field A. The Hubble Galaxy Classification Scheme Adapted from the UW Astronomy Dept., 1999 Introduction A galaxy is an assembly of between a billion (10 9 ) and

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy.

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy. Galaxies Aim to understand the characteristics of galaxies, how they have evolved in time, and how they depend on environment (location in space), size, mass, etc. Need a (physically) meaningful way of

More information

Astronomy 7A Midterm #1 September 29, 2016

Astronomy 7A Midterm #1 September 29, 2016 Astronomy 7A Midterm #1 September 29, 2016 Name: Section: There are 2 problems and 11 subproblems. Write your answers on these sheets showing all of your work. It is better to show some work without an

More information

Inclination-Dependent Extinction Effects in Disk Galaxies in the Sloan Digital Sky Survey aa aa. A Senior Honors Thesis

Inclination-Dependent Extinction Effects in Disk Galaxies in the Sloan Digital Sky Survey aa aa. A Senior Honors Thesis 1 Inclination-Dependent Extinction Effects in Disk Galaxies in the Sloan Digital Sky Survey aa aa aa aa A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Distinction

More information

Elliptical galaxies. But are they so simple? Detailed studies reveal great complexity:

Elliptical galaxies. But are they so simple? Detailed studies reveal great complexity: Elliptical galaxies The brightest galaxies in the Universe are ellipticals, but also some of the faintest. Elliptical galaxies appear simple: roundish on the sky, the light is smoothly distributed, and

More information

Distance Measuring Techniques and The Milky Way Galaxy

Distance Measuring Techniques and The Milky Way Galaxy Distance Measuring Techniques and The Milky Way Galaxy Measuring distances to stars is one of the biggest challenges in Astronomy. If we had some standard candle, some star with a known luminosity, then

More information

Thom et al. (2008), ApJ

Thom et al. (2008), ApJ Star S674 along the same LOS as Complex C Star S441 along the same LOS as Complex C Thom et al. (2008), ApJ Distances to HVCs From spectroscopy of high Galactic latitude stars at small angular separations

More information

3 reasons it was hard to figure out that we are in a Galaxy

3 reasons it was hard to figure out that we are in a Galaxy Prof. Jeff Kenney Class 10 October 3, 2016 3 reasons it was hard to figure out that we are in a Galaxy 1. it's big -- one needs sensitive telescopes to see (individual stars) across the Galaxy 2. we're

More information