Chapter 13: The Stellar Graveyard

Size: px
Start display at page:

Download "Chapter 13: The Stellar Graveyard"

Transcription

1 Chapter 13: The Stellar Graveyard Habbal Astro110 Chapter 13 Lecture 26 1

2 Low mass star High mass (>8 M sun ) star Ends as a white dwarf. Ends in a supernova, leaving a neutron star or black hole 2

3 White dwarfs: end state of low-mass stars Inert remaining cores of dead low-mass stars. No internal energy generation: start hot and steadily cool off. Sirius A high mass star Optical image Sirius A high mass star X-ray image Sirius B white dwarf Sirius B white dwarf 3

4 White dwarfs are supported against gravitational collapse by electron degeneracy pressure 4

5 A 1 M Sun white dwarf is about the same size as the Earth A teaspoon of white dwarf material would weight 10 tons! 5

6 More massive white dwarfs are smaller! Mass gravitational compression density radius Chandrasekhar limit: white dwarfs cannot be more massive than 1.4 M Sun 6

7 White dwarfs in binary systems WDʼs gravity can accrete gas from companion star. Accreted gas can erupt in a short modest burst of nuclear fusion: novae BANG! However, WDs cannot be more than 1.4 M Sun. If WD accretes too much gas, it is destroyed in a white dwarf supernova 7

8 Nova: a nuclear explosion on the surface of a WD, gas is expelled and system returns to normal 8

9 One way to tell supernova types apart is with a light curve showing how the luminosity changes. 9

10 Neutron stars: end state of high-mass stars Aftermath of a massive star supernova. Supported against gravitational collapse by neutron degeneracy pressure. 10

11 Neutrons stars pack several M Sun into a sphere 10 km in diameter A teaspoon of neutron star material would weigh 10 billion tons 11

12 Neutron stars found in 1967 as radio pulsars s Discovered in 1967 by graduate student Jocelyn Bell What Extraterrestrial astronomical intelligence object can (LGM?!) spin so fast? 12

13 13

14 Pulsars are rotating neutron stars that act like lighthouses. Beams of radiation coming from poles look like pulses as they sweep by Earth. 14

15 Optical pulses from the neutron star at the center of the Crab nebula 15

16 The Crab Nebula (supernova remnant) X-rays Visible light 16

17 Is there a limit to the mass of a neutron star? Yes, neutron degeneracy pressure cannot resist gravity for >3 M sun! (happens for a star with initial mass of >25 M sun ) What happens next??? There is no other support against gravity!! Everything collapses to a singularity. 17

18 Black holes: Gravityʼs ultimate victory Nothing, not even light, can escape a black hole 18

19 What happens to the escape speed of an object as it becomes smaller and denser? Is there a limit to how fast the escape speed can be? 19

20 20

21 The curvature of space-time To understand this, imagine the universe has only two spatial dimensions, instead of three. Empty space 21

22 The curvature of space-time To understand this, imagine the universe has only two spatial dimensions, instead of three. Space near a large mass (e.g. the Sun) 22

23 The curvature of space-time To understand this, imagine the universe has only two spatial dimensions, instead of three. 23

24 The curvature of space-time To understand this, imagine the universe has only two spatial dimensions, instead of three. Space near a black hole 24

25 The curvature of space-time Einsteinʼs General Theory of Relativity 25

26 What is the size of a black hole? The event horizon the surface of the BH, where escape velocity is the speed of light (c) Escape speed > c Escape speed < c Size of event horizon = Schwarzschild radius = 2GM/c 2 26

27 Schwarzschild radius of a 1M Sun black hole ~ 3 km 27

28 If the Sun shrank into a black hole, its gravity would be different only near the event horizon Black holes donʼt suck things into them! 28

29 What would it be like to visit a black hole? 29

30 What happens near a black hole? Gravitational redshift: light becomes redder as it leaves an object 30

31 Time passes more slowly near the event horizon. An object would appear to never quite reach the event horizon but would disappear from view as its light became so redshifted that it would be undetectable. 31

32 Lethal tidal forces near a black hole 32

33 Do black holes really exist? Black holes donʼt emit light! (*) How do we detect black holes? Look for material falling into a BH: will be moving very fast ( hot X-rays) around a dark compact object. Measuring the velocity and distance of this hot gas can give the mass (Newtonʼs form of Keplerʼs Third Law). If >3 M Sun, object must be a black hole. (*) except for Hawking radiation, which leads to BH evaporation. 33

34 34

35 Some X-ray binaries contain compact objects of mass exceeding 3 M Sun which are likely to be black holes. 35

36 One famous X-ray binary with a likely black hole is in the constellation Cygnus. 36

37 Two Types of Supernova White dwarf supernova Carbon fusion suddenly begins as white dwarf in close binary system reaches white dwarf limit, causing total explosion Massive star supernova Iron core of massive star reaches white dwarf limit (1.4 MSun) and collapses into a neutron star, causing an explosion. 37

38 Summary: What is a black hole? A black hole is a place where gravity is so powerful that nothing can ever escape from it, not even light. (Therefore, out of contact with the rest of the Universe.) 38

39 What would it be like to visit a black hole? You could orbit a black hole just like any other object of the same mass. However, you d see strange effects for an object falling toward the black hole: Time would seem to run slowly for the object. Its light would be increasingly redshifted as it approached the black hole. The object would never quite reach the event horizon, but it would soon disappear from view as its light became so redshifted that no instrument could detect it. 39

40 Do black holes really exist? No known force can stop the collapse of a stellar corpse with a mass above the neutron star limit of 2 to 3 solar masses. Theoretical studies of supernovae suggest that such objects should sometimes form. Observational evidence supports this idea. 40

41 41

42 42

Chapter 18 The Bizarre Stellar Graveyard

Chapter 18 The Bizarre Stellar Graveyard Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Chapter 14: The Bizarre Stellar Graveyard

Chapter 14: The Bizarre Stellar Graveyard Lecture Outline Chapter 14: The Bizarre Stellar Graveyard 14.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf?

More information

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit The Bizarre Stellar Graveyard Chapter 18 Lecture The Cosmic Perspective 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? Seventh

More information

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Chapter 18 Lecture The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 10 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance with the

More information

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard 11/1/17 Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 9 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance

More information

The Bizarre Stellar Graveyard

The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White dwarfs

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

First: Some Physics. Tides on the Earth. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath. 1.

First: Some Physics. Tides on the Earth. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath. 1. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath First: Some Physics 1. Tides 2. Degeneracy Pressure Concept 1: How does gravity cause tides? R F tides

More information

Neutron Stars. Chapter 14: Neutron Stars and Black Holes. Neutron Stars. What s holding it up? The Lighthouse Model of Pulsars

Neutron Stars. Chapter 14: Neutron Stars and Black Holes. Neutron Stars. What s holding it up? The Lighthouse Model of Pulsars Neutron Stars Form from a 8-20 M Sun star Chapter 14: Neutron Stars and Black Holes Leftover 1.4-3 M Sun core after supernova Neutron Stars consist entirely of neutrons (no protons) Neutron Star (tennis

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

Planetary Nebulae evolve to White Dwarf Stars

Planetary Nebulae evolve to White Dwarf Stars Planetary Nebulae evolve to White Dwarf Stars Planetary Nebulae When Red Giant exhausts its He fuel the C core contracts Low & medium-mass stars don t have enough gravitational energy to heat to core 6

More information

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter 13.1 Neutron Stars Lecture Outline Chapter 13 Neutron Stars and After a Type I supernova, little or nothing remains of the original star. After a Type II supernova, part of the core may survive. It is

More information

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements Stars, Galaxies & the Universe Announcements Exam #2 on Wednesday Review sheet and study guide posted by Thursday Use office hours and Astronomy Tutorial hours Covers material since Exam #1 (plus background

More information

The Stellar Graveyard

The Stellar Graveyard Life and Death of High Mass Stars (M > 8 M sun ) AST 101 Introduction to Astronomy: Stars & Galaxies Last stage: Iron core surrounded by shells of increasingly lighter elements. Announcements MIDTERM #2

More information

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101 High Mass Stars and then Stellar Graveyard 7/16/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool Betelgeuse Astronomy 101 Outline for Today Astronomy Picture of the Day Something

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

18.3 Black Holes: Gravity's Ultimate Victory

18.3 Black Holes: Gravity's Ultimate Victory 18.3 Black Holes: Gravity's Ultimate Victory Our goals for learning: What is a black hole? What would it be like to visit a black hole? Do black holes really exist? What is a black hole? Gravity, Newton,

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Termination of Stars

Termination of Stars Termination of Stars Some Quantum Concepts Pauli Exclusion Principle: "Effectively limits the amount of certain kinds of stuff that can be crammed into a given space (particles with personal space ). When

More information

Agenda. Degenerate Objects. 18. The Bizarre Stellar Graveyard. Degeneracy Pressure A Star s Final Battle. Our goals for learning:

Agenda. Degenerate Objects. 18. The Bizarre Stellar Graveyard. Degeneracy Pressure A Star s Final Battle. Our goals for learning: 18. The Bizarre Stellar Graveyard Now, my suspicion is that the Universe is not only queerer than we suppose, but queerer than we can suppose. Agenda Announce: Extra Credit presentations on April 18 H-R

More information

Dead & Variable Stars

Dead & Variable Stars Dead & Variable Stars Supernovae Death of massive Stars As the core collapses, it overshoots and bounces A shock wave travels through the star and blows off the outer layers, including the heavy elements

More information

Death of stars is based on. one thing mass.

Death of stars is based on. one thing mass. Death of stars is based on one thing mass. Not the mass they have when born, but the mass they have when they die. Star Death for mass 1.4 solar masses and less. These stars started big 7.5-10 solar masses.

More information

1. (15.1) What are the approximate mass and radius of a white dwarf compared with those of the Sun?

1. (15.1) What are the approximate mass and radius of a white dwarf compared with those of the Sun? SUMMARY White dwarfs, neutron stars, and black holes are the remnants of dead stars. A white dwarf forms when a low mass star expels its outer layers to form a planetary nebula shell and leaves its hot

More information

Neutron Stars, Pulsars, Magnetars, and Black Holes the corpses of high-mass stars

Neutron Stars, Pulsars, Magnetars, and Black Holes the corpses of high-mass stars Neutron Stars, Pulsars, Magnetars, and Black Holes the corpses of high-mass stars Combination X-ray & visible light image of the Crab Nebula Pulsar From Chandra X-ray Observatory and Hubble Space Telescope

More information

Stellar corpses. SESAME Astronomy Winter 2011 Week 7. Thursday, February 24, 2011

Stellar corpses. SESAME Astronomy Winter 2011 Week 7. Thursday, February 24, 2011 Stellar corpses SESAME Astronomy Winter 2011 Week 7 1 1 Warning! YOU ARE ABOUT TO SEE TRIPPY, MIND- BLOWING STUFF! PREPARE TO BE BLOWN AWAY! 2 2 3 types White Dwarfs (Dwarves?) low-mass stars Neutron Stars

More information

Gravity simplest. fusion

Gravity simplest. fusion Gravity simplest fusion The life of a star has a complex relationship with gravity: 1. Gravity is what brings the original dust together to make a star 2. Gravity wants to crush the star Gravity pulls

More information

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes Astronomy 110: SURVEY OF ASTRONOMY 11. Dead Stars 1. White Dwarfs and Supernovae 2. Neutron Stars & Black Holes Low-mass stars fight gravity to a standstill by becoming white dwarfs degenerate spheres

More information

Stellar Evolution - Chapter 12 and 13. The Lives and Deaths of Stars White dwarfs, neutron stars and black holes

Stellar Evolution - Chapter 12 and 13. The Lives and Deaths of Stars White dwarfs, neutron stars and black holes Stellar Evolution - Chapter 12 and 13 The Lives and Deaths of Stars White dwarfs, neutron stars and black holes During the early stages of a star formation the objects are called a protostars. The internal

More information

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 14 Neutron Stars and Black Holes Cengage Learning 2016 Topics for Today s Class Neutron Stars What is

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu March 24, 2015 Read: S3, Chap 18 03/24/15 slide 1 Exam #2: March 31 One week from today!

More information

Astronomy 104: Stellar Astronomy

Astronomy 104: Stellar Astronomy Astronomy 104: Stellar Astronomy Lecture 19: Stellar Remnants (Hanging Out with the Degenerates) Spring Semester 2013 Dr. Matt Craig 1 1 Things To Do Today and Next Time Chapter 12.2 (Neutron Stars) Chapter

More information

Death of Stars Part II Neutron Stars

Death of Stars Part II Neutron Stars Death of Stars Part II Neutron Stars 1 REMEMBER THIS!? 2 Guiding Questions 1. What led scientists to the idea of a neutron star? 2. What are pulsars, and how were they discovered? 3. How did astronomers

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Assignment 9. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Assignment 9. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Assignment 9 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The astrophysicist who first calculated the highest mass that a dying star can

More information

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 22 Neutron Stars and Black Holes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In a neutron star, the core

More information

Stellar Remnants. White Dwarfs Neutron Stars Black Holes

Stellar Remnants. White Dwarfs Neutron Stars Black Holes Stellar Remnants White Dwarfs Neutron Stars Black Holes 1 Announcements q Homework # 5 is due today. q Homework # 6 starts today, Nov 15th. Due on Tuesday, Nov 22nd. 2 Assigned Reading Chapters: 64.4,

More information

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Stellar Remnants Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu October 28, 2014 Read: S3, Chap 18 10/28/14 slide 1 Exam #2: November 04 One week from today!

More information

Einstein s Gravity. Understanding space-time and the gravitational effects of mass

Einstein s Gravity. Understanding space-time and the gravitational effects of mass Einstein s Gravity Understanding space-time and the gravitational effects of mass Albert Einstein (1879-1955) One of the iconic figures of the 20 th century, Einstein revolutionized our understanding of

More information

Black Holes. Over the top? Black Holes. Gravity s Final Victory. Einstein s Gravity. Near Black holes escape speed is greater than the speed of light

Black Holes. Over the top? Black Holes. Gravity s Final Victory. Einstein s Gravity. Near Black holes escape speed is greater than the speed of light Black Holes Over the top? What if the remnant core is very massive? M core > 2-3 M sun (original star had M > 18 M sun ) Neutron degeneracy pressure fails. Nothing can stop gravitational collapse. Collapses

More information

The April Brooks Observatory sessions

The April Brooks Observatory sessions The April Brooks Observatory sessions Because of our poor weather this semester, additional observing sessions have been scheduled for ASTR 1010, beginning at 8:45 PM each evening: Sunday, April 13 through

More information

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf Mass Limit for White Dwarfs S. Chandrasekhar (1983 Nobel Prize) -calculated max. mass

More information

Astronomy Notes Chapter 13.notebook. April 11, 2014

Astronomy Notes Chapter 13.notebook. April 11, 2014 All stars begin life in a similar way the only difference is in the rate at which they move through the various stages (depends on the star's mass). A star's fate also depends on its mass: 1) Low Mass

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

Nuclear Synthesis. PHYS 162 Lectures 10a,b 1

Nuclear Synthesis. PHYS 162 Lectures 10a,b 1 Nuclear Synthesis All elements heavier than Helium are made inside stars up to Iron - fusion in Red Giants heavier than Iron (and some lighter) - Supernova explosions Stars lose matter at end of life-cycle

More information

Pulsars - a new tool for astronomy and physics

Pulsars - a new tool for astronomy and physics 1 Reading: Chapter 24, Sect. 24.5-24.6; Chap. 20, Chap. 25, Sec. 25.1 Exam 2: Thursday, March 22; essay question given on Tuesday, March 20 Last time:death of massive stars - supernovae & neutron stars

More information

Neutron Stars. are as small as a city (~10 km) But as massive as the Sun!

Neutron Stars. are as small as a city (~10 km) But as massive as the Sun! Neutron Stars are as small as a city (~10 km) But as massive as the Sun! Extra-Terrestrial Mystery...! In 1967, graduate student Jocelyn Bell helped build a radio telescope in England.! She found a source

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

10/25/2010. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Reading Quiz #9 Wednesday (10/27)

10/25/2010. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Reading Quiz #9 Wednesday (10/27) Stars, Galaxies & the Universe Announcements Reading Quiz #9 Wednesday (10/27) HW#8 in ICON due Friday (10/29) by 5 pm - available Wednesday 1 Stars, Galaxies & the Universe Lecture Outline 1. Black Holes

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. HW3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused by falling matter from the atmosphere of

More information

Lecture 18 : Black holes. Astronomy 111

Lecture 18 : Black holes. Astronomy 111 Lecture 18 : Black holes Astronomy 111 Gravity's final victory A star more massive than about 18 M sun would leave behind a post-supernova core this is larger than 2-3 M sun :Neutron degeneracy pressure

More information

Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars Stellar Evolution Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

More information

Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan

Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan Lecture Outlines Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan Chapter 21 Stellar Explosions Units of Chapter 21 21.1 Life after Death for White Dwarfs 21.2 The End of a High-Mass Star 21.3

More information

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1 Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

More information

21. Neutron Stars. The Crab Pulsar: On & Off. Intensity Variations of a Pulsar

21. Neutron Stars. The Crab Pulsar: On & Off. Intensity Variations of a Pulsar 21. Neutron Stars Neutron stars were proposed in the 1930 s Pulsars were discovered in the 1960 s Pulsars are rapidly rotating neutron stars Pulsars slow down as they age Neutron stars are superfluid &

More information

Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

More information

Lecture 23: Black Holes Readings: Sections 24-3, 24-5 through 24-8

Lecture 23: Black Holes Readings: Sections 24-3, 24-5 through 24-8 Lecture 23: Black Holes Readings: Sections 24-3, 24-5 through 24-8 Key Ideas Black Holes are totally collapsed objects Gravity so strong not even light can escape Predicted by General Relativity Schwarzschild

More information

ASTR 200 : Lecture 20. Neutron stars

ASTR 200 : Lecture 20. Neutron stars ASTR 200 : Lecture 20 Neutron stars 1 Equation of state: Degenerate matter We saw that electrons exert a `quantum mechanical' pressure. This is because they are 'fermions' and are not allowed to occupy

More information

Logistics. Test 3 will be 4/24 MRS 2 due Thursday 4/17

Logistics. Test 3 will be 4/24 MRS 2 due Thursday 4/17 Stellar Evolution Logistics Test 3 will be 4/24 MRS 2 due Thursday 4/17 GTA Award The Graduate Teaching Assistant Excellence Award is an internal initiative which is intended to promote, recognize, and

More information

Fate of Stars. relative to Sun s mass

Fate of Stars. relative to Sun s mass INITIAL MASS relative to Sun s mass M < 0.01 Fate of Stars Final State planet.01 < M

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies Life and Death of High Mass Stars (M > 8 M sun ) REVIEW Last stage: Iron core surrounded by shells of increasingly lighter elements. REVIEW When mass

More information

Review: HR Diagram. Label A, B, C respectively

Review: HR Diagram. Label A, B, C respectively Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure 10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

More information

The Death of Stars. White Dwarfs, Neutron Stars and Black Holes. White Dwarfs

The Death of Stars. White Dwarfs, Neutron Stars and Black Holes. White Dwarfs The Death of Stars White Dwarfs, Neutron Stars and Black Holes White Dwarfs Formed when stars like our Sun reach the end of their life When the Sun s fuel is spent, it will collapse. Don t worry, that

More information

Recall what you know about the Big Bang.

Recall what you know about the Big Bang. What is this? Recall what you know about the Big Bang. Most of the normal matter in the universe is made of what elements? Where do we find most of this normal matter? Interstellar medium (ISM) The universe

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

Key concepts for material since Nov 10, 2011 ASTR 100 exam

Key concepts for material since Nov 10, 2011 ASTR 100 exam Key concepts for material since Nov 10, 2011 ASTR 100 exam Note: for the final everything in the entire class is fair game. Thus anything in lecture, discussion, homeworks, or our textbook could be used.

More information

Starlight in the Night: Discovering the secret lives of stars

Starlight in the Night: Discovering the secret lives of stars Utah State University DigitalCommons@USU Public Talks Astrophysics 8-2-2008 Starlight in the Night: Discovering the secret lives of stars Shane L. Larson Utah State University Follow this and additional

More information

Neutron Stars, Black Holes, Pulsars and More

Neutron Stars, Black Holes, Pulsars and More Neutron Stars, Black Holes, Pulsars and More October 30, 2002 1) Star Clusters 2) Type II Supernova 3) Neutron Stars 4) Black Holes 5) More Gravity Announcements Extra Credit there is an extra credit assignment

More information

NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook)

NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook) NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook) Neutron Stars For carbon detonation SN probably no remnant For core-collapse SN remnant is a neutron-degenerate core neutron star

More information

Black Holes, or the Monster at the Center of the Galaxy

Black Holes, or the Monster at the Center of the Galaxy Black Holes, or the Monster at the Center of the Galaxy Learning Objectives! How do black holes with masses a few times that of our Sun form? How can we observe such black holes?! Where and how might you

More information

How Do Stars Appear from Earth?

How Do Stars Appear from Earth? How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:

More information

ASTR 101 General Astronomy: Stars & Galaxies. NEXT Tuesday 4/4 MIDTERM #2

ASTR 101 General Astronomy: Stars & Galaxies. NEXT Tuesday 4/4 MIDTERM #2 ASTR 101 General Astronomy: Stars & Galaxies NEXT Tuesday 4/4 MIDTERM #2 The Stellar Graveyard What s In The Stellar Graveyard? Lower mass stars (M< 8M sun ) à white dwarfs Gravity vs. electron degeneracy

More information

Einstein s Relativity and Black Holes

Einstein s Relativity and Black Holes Einstein s Relativity and Black Holes Guiding Questions 1. What are the two central ideas behind Einstein s special theory of relativity? 2. How do astronomers search for black holes? 3. In what sense

More information

23 The Death of Stars 1

23 The Death of Stars 1 23 The Death of Stars 1 23.1 Death of Low-Mass Stars W hen last we left off, the star of our show was in dire straits. Life was getting rough, as the star had evolved off the main sequence into a red giant

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text

Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text 1 Astr 102 Lec 9: Stellar Evolution and DeathBirth and Evolution Why do stars leave main sequence? What conditions are required for elements Text besides Hydrogen to fuse, and why? How do stars die: white

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Quick Clicker Survey: What do like best about the class so far?

Quick Clicker Survey: What do like best about the class so far? ASTR 1020: Stars & Galaxies October 14, 2013 Reading: Chapter 18, Section 18.3. Mastering Astronomy Homework on The Lives of Stars is due Oct. 18. Volunteers needed for Astronomy in the News! Next Class

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

Star formation and Evolution

Star formation and Evolution Star formation and Evolution 1 Star formation and Evolution Stars burn fuel to produce energy and shine so they must evolve and live through a life cycle In the Milky Way we see stars at every stage of

More information

Galaxies and the expansion of the Universe

Galaxies and the expansion of the Universe Review of Chapters 14, 15, 16 Galaxies and the expansion of the Universe 5/4/2009 Habbal Astro 110-01 Review Lecture 36 1 Recap: Learning from Light How does light tell us what things are made of? Every

More information

CHAPTER 14 II Stellar Evolution

CHAPTER 14 II Stellar Evolution 14-5. Supernova CHAPTER 14 II Stellar Evolution Exactly which stars become supernovae is not yet clear, but more than likely they are massive stars that become highly evolved. A star that develops an iron

More information

240,000 mi. It takes light just over one second to travel from the moon to the earth

240,000 mi. It takes light just over one second to travel from the moon to the earth 240,000 mi It takes light just over one second to travel from the moon to the earth The simplest atom is hydrogen. Its nucleus is a single proton. And one distant electron moves around it An atom

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Beyond the Solar System 2006 Oct 17 Page 1 of 5 I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

More information

The Stellar Graveyard

The Stellar Graveyard ASTR 101 General Astronomy: Stars & Galaxies The Stellar Graveyard NEXT Thursday 10/22: MIDTERM #2 What s In The Stellar Graveyard? Lower mass stars (M< 8Msun)! white dwarfs Gravity vs. electron degeneracy

More information

Cassiopeia A: Supernova Remnant

Cassiopeia A: Supernova Remnant Crab Nebula: Pulsar During a supernova, the core of a massive star can be compressed to form a rapidly rotating ball composed mostly of neutrons that is only twelve miles in diameter. A teaspoon of such

More information

Stars. A star is a ball of burning gas. Mr. Fetch s Earth Science Classroom

Stars. A star is a ball of burning gas. Mr. Fetch s Earth Science Classroom Stars A star is a ball of burning gas. 1 Stars: The Hertzsrung-Russell diagram (HR) If we were to graph all of the stars in the sky, we would find a graph like this one. Comparing stars temperature to

More information

H-R Diagram. Outline - March 25, Build-up of Inert Helium Core. Evolution of a Low-Mass Star

H-R Diagram. Outline - March 25, Build-up of Inert Helium Core. Evolution of a Low-Mass Star Outline - March 25, 2010 H-R Diagram Recap: Evolution and death of low mass stars (pgs. 566-572) About 90% of stars in the sky are Main Sequence stars Evolution and death of high mass stars (pgs. 572-581)

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

More information