Indirect dark matter detection and the Galactic Center GeV Excess

Size: px
Start display at page:

Download "Indirect dark matter detection and the Galactic Center GeV Excess"

Transcription

1 Image Credit: Springel et al Indirect dark matter detection and the Galactic Center GeV Excess Jennifer Siegal-Gaskins Caltech

2 Image Credit: Springel et al Jennifer Siegal-Gaskins Caltech

3 Image Credit: NASA/DOE/International LAT Team Jennifer Siegal-Gaskins Caltech

4 How to detect particle dark matter? Direct!! Production (collider) Indirect SM SM 2

5 Indirect dark matter signals Credit: Sky & Telescope / Gregg Dinderman 3

6 Dark matter photon spectra soft channels = quarks, W, z b b τ + τ hard channels = charged leptons (e, μ, τ) x 2 dn/dx W + W t t direct annihilation to photons = line emission (γγ, Zγ) x=e/m χ Spectra calculated with PPPC 4 DM ID [Cirelli et al. 2010] 4

7 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z los ds 2 (s, ) 5

8 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z los ds 2 (s, ) spectrum of particles produced 5

9 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z los ds 2 (s, ) dark matter particle mass 5

10 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z average of pair annihilation cross section times relative velocity los ds 2 (s, ) 5

11 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z los ds 2 (s, ) dark matter density 5

12 The dark matter annihilation signal intensity = particle physics term K astrophysics term J K ann = dn de h vi 2m 2 J ann ( ) = 1 4 Z los ds 2 (s, ) 5

13 Indirect dark matter signals particle mass clustering and annihilation cross-section annihilation channel Bertone

14 The Fermi Large Area Telescope (LAT) launched June MeV to > 300 GeV angular resolution: ~ 0.1 deg above 10 GeV ~ 1 deg at 1 GeV primarily sky-scanning mode for first ~ 5 years, enhanced Galactic Center observation mode began in December 2013 Fermi data and analysis tools are public! Credit: NASA/General Dynamics 7

15 Dark matter annihilation signal Image credit: Springel et al

16 Dark matter signals from the Inner Galaxy 10 6 dark matter density profiles 10 5 dark matter density deg inner regions: (r) / r r Sun radius from Galactic Center r Pierre, JSG, & Scott,

17 Dark matter signals from the Inner Galaxy angular dependence of dark matter intensity 10 6 (proportional to intensity) pc inner regions: (r) / r angle from Galactic Center Pierre, JSG, & Scott,

18 A dark matter signal in the Inner Galaxy? (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

19 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

20 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

21 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

22 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

23 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

24 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: if from annihilation, need steep DM density profile r - γ with γ = (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

25 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: if from annihilation, need steep DM density profile r - γ with γ = uncertain if MSPs could explain large extension and steep profile (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

26 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: if from annihilation, need steep DM density profile r - γ with γ = uncertain if MSPs could explain large extension and steep profile To generate amplitude of the excess: (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

27 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: if from annihilation, need steep DM density profile r - γ with γ = uncertain if MSPs could explain large extension and steep profile To generate amplitude of the excess: requires roughly thermal relic DM annihilation cross section (circles = sources) see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

28 A dark matter signal in the Inner Galaxy? Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from dark matter (DM) annihilation and/or unresolved millisecond pulsars (MSPs). Energy spectrum of the excess: can be fit by DM with mass of ~10-40 GeV, depending on channel uncomfortably similar to MSPs Excess is spatially extended: if from annihilation, need steep DM density profile r - γ with γ = uncertain if MSPs could explain large extension and steep profile To generate amplitude of the excess: requires roughly thermal relic DM annihilation cross section (circles = sources) would require a few thousand MSPs, which seems plausible see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014, and others 11

29 A dark matter signal in the Inner Galaxy? Energy spectrum of excess in Galactic Center with bremsstrahlung m$ = 35 GeV $$ bb NB: Abazajian et al (2014) find strong dependence of spectrum of excess on details of background model Daylan et al

30 A dark matter signal in the Inner Galaxy? Excess is spatially extended γ = 1.4 (circles = sources) Daylan et al

31 Excess over what? What s in the model: Galactic diffuse emission associated with cosmic-ray interactions (sum of many processes) isotropic gamma-ray background (measured) detected gamma-ray sources (e.g., pulsars, supernova remnants) What s not in the model: unresolved gamma-ray sources Observed degrees Counts Fermi LAT data GeV observed counts (circles = sources) degrees dark matter ls Abazajian & Kaplinghat

32 Residuals (for best-fit model w/o dark matter component) GeV residual counts/cm 2 /s/sr Daylan et al

33 Residuals (for best-fit model w/o dark matter component) GeV residual dark matter? counts/cm 2 /s/sr Daylan et al

34 Residuals (for best-fit model w/o dark matter component) GeV residual dark matter???? counts/cm 2 /s/sr Daylan et al

35 Can the GeV excess be millisecond pulsars? best-fit to Fermi-detected MSPs spectral comparison GeV excess at high latitudes (data points) (circles = sources) Hooper, Cholis, Linden, JSG, Slatyer

36 Can the GeV excess be millisecond pulsars? best-fit to Fermi-detected MSPs spectral comparison GeV excess at high latitudes (data points) (circles = sources) MSP spectrum similar but too soft at low energies Hooper, Cholis, Linden, JSG, Slatyer

37 Can the GeV excess be millisecond pulsars? source count distribution ( b >10 deg) adopt a spatial model and luminosity function for the MSPs, calibrated to detections in radio base model can roughly account for the amplitude of Inner Galaxy excess, but strongly overpredicts number of Fermi-detected MSPs (circles = sources) Hooper, Cholis, Linden, JSG, Slatyer

38 Can the GeV excess be millisecond pulsars? Source count distribution Latitude dependence of excess data model (circles = sources) adjusting MSP model parameters to better reproduce the observed source counts leads to models that cannot explain the amplitude of the observed excess Hooper, Cholis, Linden, JSG, Slatyer

39 Multi-wavelength dark matter photon spectra DM spectrum from the Galactic Center E [MeV] secondary photon emission associated with charged particle final states: bremsstrahlung inverse Compton scattering of starlight, CMB synchrotron due to magnetic fields ν S(ν) [erg cm -2 s -1 ] CHANDRA IC on starlight IC on CMB Synchrotron π ν [Hz] Regis & Ullio

40 Bed of Procrustes 20

41 Bed of Procrustes Lacroix, Boehm, Silk 2014 Lacroix et al. point out importance of: inverse Compton propagation model diffusion (and latitude dependence of secondary emission) 21

42 Is the GeV excess dark matter? 22

43 Is the GeV excess dark matter? Hard to (fully) explain with gamma-ray millisecond pulsars. Other source populations? 22

44 Is the GeV excess dark matter? Hard to (fully) explain with gamma-ray millisecond pulsars. Other source populations? Attributable to uncertainties in modeling of Galactic diffuse emission? 22

45 Is the GeV excess dark matter? Hard to (fully) explain with gamma-ray millisecond pulsars. Other source populations? Attributable to uncertainties in modeling of Galactic diffuse emission? Sum of several processes with not-strongly-constrained inputs: cosmic-ray spectra and distribution gas distribution interstellar radiation field magnetic fields 22

46 Is the GeV excess dark matter? Hard to (fully) explain with gamma-ray millisecond pulsars. Other source populations? Attributable to uncertainties in modeling of Galactic diffuse emission? Sum of several processes with not-strongly-constrained inputs: cosmic-ray spectra and distribution gas distribution interstellar radiation field magnetic fields Galactic diffuse model tuned to fit all-sky data 22

47 Is the GeV excess dark matter? Hard to (fully) explain with gamma-ray millisecond pulsars. Other source populations? Attributable to uncertainties in modeling of Galactic diffuse emission? Sum of several processes with not-strongly-constrained inputs: cosmic-ray spectra and distribution gas distribution interstellar radiation field magnetic fields Galactic diffuse model tuned to fit all-sky data Systematics? (Not statistics-limited!) 22

The Characterization of the Gamma-Ray Excess from the Central Milky Way

The Characterization of the Gamma-Ray Excess from the Central Milky Way The Characterization of the Gamma-Ray Excess from the Central Milky Way Tim Linden along with: Tansu Daylan, Doug Finkbeiner, Dan Hooper, Stephen Portillo, Tracy Slatyer, Ilias Cholis 1402.6703 1407.5583

More information

SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS. Manoj Kaplinghat, UC Irvine

SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS. Manoj Kaplinghat, UC Irvine SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS Manoj Kaplinghat, UC Irvine Bas Observed Extended Counts Source Model THE GALACTIC CENTER EXCESS 0.69 0.95 GeV 0.95 1.29 GeV 1.29 1.76 GeV 1.76 2.40

More information

The Characterization of the Gamma-Ray Excess from the Central Milky Way

The Characterization of the Gamma-Ray Excess from the Central Milky Way The Characterization of the Gamma-Ray Excess from the Central Milky Way Tim Linden along with: Tansu Daylan, Doug Finkbeiner, Dan Hooper, Stephen Portillo, Tracy Slatyer, Ilias Cholis 1402.6703 1407.5583

More information

A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data

A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data Ben Safdi Massachusetts Institute of Technology 2015 B.S., S. Lee, M. Lisanti, and B.S., S. Lee, M. Lisanti,

More information

Dark Matter in the Galactic Center

Dark Matter in the Galactic Center Dark Matter in the Galactic Center Tim Linden University of Chicago along with: Eric Carlson, Ilias Cholis, Dan Hooper, Manoj Kaplinghat, Stefano Profumo, Jennifer Siegal-Gaskins, Tracy Slatyer, Hai-Bo

More information

Searching for dark matter. with gamma-ray anisotropies

Searching for dark matter. with gamma-ray anisotropies Image Credit: NASA/DOE/International LAT Team Searching for dark matter with gamma-ray anisotropies Jennifer Siegal-Gaskins CCAPP, Ohio State University with Brandon Hensley (Caltech!Princeton) Eiichiro

More information

Gamma rays from Galactic pulsars: high- and lowlatitude

Gamma rays from Galactic pulsars: high- and lowlatitude Francesca Calore Gamma rays from Galactic pulsars: high- and lowlatitude emission Conca Specchiulla, 8th September 2014 based on: F. Calore, M. Di Mauro & F. Donato, arxiv:1406.2706 F. Calore, I. Cholis

More information

The Galactic Center Excess. Kevork N. Abazajian

The Galactic Center Excess. Kevork N. Abazajian The Galactic Center Excess Kevork N. Abazajian WIMP Annihilation gamma rays in the Galactic Center? Model Data Abazajian & Kaplinghat 2012 Canonical Weakly-Interacting Massive-Particle (WIMP) Cold Dark

More information

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess Instituto de Fisica Teórica, IFT-CSIC Madrid Marco Taoso DM and the Galactic Center GeV excess Frontier Objects in Astrophysics and Particle Physics Vulcano Workshop 26-05- 2016 How and where to look for

More information

arxiv: v1 [astro-ph.he] 29 Jan 2015

arxiv: v1 [astro-ph.he] 29 Jan 2015 arxiv:1501.07485v1 [astro-ph.he] 29 Jan 2015 Fitting the Fermi-LAT GeV excess: on the importance of the propagation of electrons from dark matter UPMC-CNRS, UMR7095, Institut d Astrophysique de Paris,

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Dark Matter searches with radio observations

Dark Matter searches with radio observations Marco Taoso Dpt. of Physics and Astronomy UBC Vancouver Dark Matter searches with radio observations IDM 2012 Chicago, 23-27 July Search for DM with astrophysical observations Gamma- rays Microwave Radio

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

arxiv: v1 [astro-ph.he] 28 Jun 2016

arxiv: v1 [astro-ph.he] 28 Jun 2016 Revisiting the constraints on annihilating dark matter by radio observational data of M31 Man Ho Chan The Education University of Hong Kong arxiv:1606.08537v1 [astro-ph.he] 28 Jun 2016 (Dated: October

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Dark Matter Annihilations in the Galactic Center

Dark Matter Annihilations in the Galactic Center Dan Hooper (Fermilab/University of Chicago) Debates on the Nature of Dark Matter, Harvard/CfA May 21, 2014 Dark Matter Annihilations in the Galactic Center This talk is based on: T. Daylan, D. Finkbeiner,

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

Dark matter, black holes, and the Fermi-LAT GeV excess

Dark matter, black holes, and the Fermi-LAT GeV excess Dark matter, black holes, and the Fermi-LAT GeV excess Jessie Shelton University of Illinois, Urbana-Champaign Mainz Institute for Theoretical Physics July 18, 2014 interesting-ness Abbreviated history

More information

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016 Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background Mattia Di Mauro On behalf of the Fermi- LAT Collaboration 1 Trieste, May, 3, 2016 THE ISOTROPIC GAMMA RAY BACKGROUND

More information

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) MPA Seminar, September

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Recent Searches for Dark Matter with the Fermi-LAT

Recent Searches for Dark Matter with the Fermi-LAT Recent Searches for Dark Matter with the Fermi-LAT on behalf of the Fermi-LAT Collaboration CETUP* DM Workshop Deadwood, SD 7 July 2016 A One-Slide History of Dark Matter Particle Physics Astrophysics

More information

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam Annihilation Phenomenology Christoph Weniger GRAPPA, University of Amsterdam Thursday 26th March 2015, Effective Field Theories and Dark Matter, Mainz 1 Overview Galactic center excess & PCA Best fit DM

More information

The Fermi GeV excess and beyond: New techniques for indirect DM searches

The Fermi GeV excess and beyond: New techniques for indirect DM searches The Fermi GeV excess and beyond: New techniques for indirect DM searches Christoph Weniger GRAPPA @ UvA (University of Amsterdam) 13th Rencontres du Vietnam Exploring the Dark Universe 27th July 2017 Overview

More information

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Fiorenza Donato @ Physics Dept., Un. Torino The gamma-ray sky - Minneapolis, October 10, 2013 Plan of my talk What

More information

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab.

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab. 13 eme Recontres de Vietnam: Exploring the Dark Universe 24 July 2017, Quy Nhon, Vietnam Outline 2 I. Review / Context: indirect

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Indirect dark matter searches with the Cherenkov Telescope Array

Indirect dark matter searches with the Cherenkov Telescope Array Indirect dark matter searches with the Cherenkov Telescope Array Jennifer Gaskins GRAPPA, University of Amsterdam for the CTA Consortium For more details, please see: arxiv:1508.06128 Carr et al. 2015

More information

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Greg Dobler Harvard/CfA July 14 th, 2009 - TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Doug Finkbeiner (CfA) Dan Hooper (FNAL) Gabrijela

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

Indirect Dark Matter constraints with radio observations

Indirect Dark Matter constraints with radio observations Indirect Dark Matter constraints with radio observations In collaboration with E.Borriello and G.Miele, University of Naples Federico II Alessandro Cuoco, Institute for Physics and Astronomy University

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University High-Energy GammaRays toward the Galactic Centre Troy A. Porter Stanford University Fermi LAT 5-Year Sky Map > 1 GeV Galactic Plane Galactic Centre Point Sources Diffuse γ-ray emission produced by cosmic

More information

arxiv: v1 [astro-ph.he] 26 Feb 2013

arxiv: v1 [astro-ph.he] 26 Feb 2013 FERMILAB-PUB-13-52-A Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter Dan Hooper 1, 2 and Tracy R. Slatyer 3 1 Fermi National Accelerator Laboratory, Theoretical

More information

DM subhalos: The obser vational challenge

DM subhalos: The obser vational challenge DM subhalos: The obser vational challenge Hannes-S. Zechlin and Dieter Horns Inst. f. Experimentalphysik, Universität Hamburg, Germany July 26th, 2012 DM subhalos in the Milky Way concordance cosmology

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

Signal Model vs. Observed γ-ray Sky

Signal Model vs. Observed γ-ray Sky Signal Model vs. Observed γ-ray Sky Springel+, Nature (2008) Two main dark matter signal components: 1. galactocentric diffuse 2. small structures Observed sky modeled with bremsstrahlung π 0 decay up-scattered

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Resolving the Extragalactic γ-ray Background

Resolving the Extragalactic γ-ray Background Resolving the Extragalactic γ-ray Background Marco Ajello Clemson University On behalf of the Fermi-LAT collab. (with a few additions by Jack) Ackermann+2015, ApJ, 799, 86 Ajello+2015, ApJL, 800,27 Ackermann+2016,

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

arxiv: v1 [astro-ph.he] 13 Nov 2017

arxiv: v1 [astro-ph.he] 13 Nov 2017 Mon. Not. R. Astron. Soc. 000, 1 5 (XXXX) Printed 15 November 2017 (MN LATEX style file v2.2) A possible signature of annihilating dark matter arxiv:1711.04398v1 [astro-ph.he] 13 Nov 2017 Man Ho Chan Department

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Investigating the Uniformity of the Excess Gamma rays towards the Galactic Center Region

Investigating the Uniformity of the Excess Gamma rays towards the Galactic Center Region Prepared for submission to JCAP arxiv:1604.01402v2 [astro-ph.he] 17 Nov 2016 Investigating the Uniformity of the Excess Gamma rays towards the Galactic Center Region Shunsaku Horiuchi, a Manoj Kaplinghat,

More information

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone SciNeGHE 2009 Assisi, October 7th Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone Luigi Tibaldo luigi.tibaldo@pd.infn.it INFN Sezione di Padova Dip. di Fisica G. Galilei,

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Mattia Di Mauro Eric Charles, Matthew Wood

Mattia Di Mauro Eric Charles, Matthew Wood Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope ArXiv:1705.00009 Submitted to ApJ Mattia Di Mauro Eric Charles, Matthew Wood On behalf of the Fermi-LAT

More information

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Based on arxiv:1505.00785 (IAP, Paris) in collaboration with Joseph Silk (IAP) & Céline Bœhm (IPPP, Durham) PACIFIC

More information

Diffuse Gamma-Ray Emission

Diffuse Gamma-Ray Emission Diffuse Gamma-Ray Emission Debbijoy Bhattacharya Manipal Centre for Natural Sciences (MCNS) Manipal University 5 Sept 2014 Observational Gamma-Ray Astronomy Atmospheric Window 00 11 00 11 Figure: Atmospheric

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Brian Lacki With Todd Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb 21 September 2010 The Cosmic SED Nonthermal Thermal Nonthermal

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J1303-631 Matthew Dalton Humboldt University at Berlin For the H.E.S.S. Collaboration TeV Particle Astrophysics, Paris.

More information

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics Gamma-ray emission at the base of the Fermi bubbles Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics On behalf of the Fermi-LAT collaboration TeVPA 2018, Berlin Fermi bubbles surprise

More information

Remnants and Pulsar Wind

Remnants and Pulsar Wind High Energy Supernova Remnants and Pulsar Wind Nebulae F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari For the Fermi-LAT Collaboration Scineghe 2010 The Afterlife of a star IC443 Crab

More information

The Galactic Center excess brought down-to-earth.

The Galactic Center excess brought down-to-earth. Daniele Gaggero SISSA, via Bonomea 265, 34136 Trieste (Italy) & INFN, Sezione di Trieste, via Valerio 2, 34127 Trieste (Italy). E-mail: daniele.gaggero@sissa.it Marco Taoso Institut de Physique Théorique,

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

Does the gamma-ray signal from the central Milky Way indicate Sommerfeld enhancement of dark matter annihilation?

Does the gamma-ray signal from the central Milky Way indicate Sommerfeld enhancement of dark matter annihilation? Research in Astron. Astrophys. Vol.0 (200x) No.0, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Does the gamma-ray signal from the central Milky

More information

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra Meng Su (MIT)! Pappalardo/Einstein fellow!! In Collaboration with Zhiyuan Li (NJU)!! 15 Years of Science with Chandra!

More information

Conservative Constraints on Dark Matter Self Annihilation Rate

Conservative Constraints on Dark Matter Self Annihilation Rate Conservative Constraints on Dark Matter Self Annihilation Rate Thomas Jacques 2009-07-13, TeVPA 2009 Indirect Detection Indirect detection often focuses on choosing a model, and comparing predicted flux

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Michel H.G. Tytgat Université Libre de Bruxelles Belgium Rencontres de Moriond: EW Interactions and Unified Theories March 2011 There are

More information

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope Walter Hopkins Physics Department, Cornell University. The Fermi Large Area Telescope is a particle detector in space with an effective collecting

More information

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München Searching for spectral features in the g-ray sky Alejandro Ibarra Technische Universität München Oslo 5 November 2014 Outline Motivation Indirect dark matter searches with gamma-rays. Overcoming backgrounds

More information

Dark Matter Electron Anisotropy: A universal upper limit

Dark Matter Electron Anisotropy: A universal upper limit Seminari teorici del venerdì Enrico Borriello Università degli Studi di Napoli Federico II & INFN Sezione di Napoli Dark Matter Electron Anisotropy: A universal upper limit Based on Borriello, Maccione,

More information

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy

More information

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Authors: Kingman Cheung, Po-Yan Tseng, Tzu-Chiang Yuan Physics Department, NTHU Physics Division, NCTS Institute

More information

Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters

Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters www.nature.com/scientificreports Received: 3 August 07 Accepted: 8 October 07 Published: xx xx xxxx OPEN Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters

More information

Highlights from the Fermi Symposium

Highlights from the Fermi Symposium Highlights from the Fermi Symposium Aldo Morselli INFN Roma Tor Vergata 1 The LAT at 2 Years and 17 days from the 3 rd!!! 11 June 2008 2 Fermi is Making a Major Impact Science, December 2009 Breakthrough

More information

Galactic Diffuse Gamma-Ray Emission

Galactic Diffuse Gamma-Ray Emission Galactic Diffuse Gamma-Ray Emission The Bright Gamma-Ray Sky 7 th AGILE Workshop 29 Sep - 1 Oct, 2009 Stanley D. Hunter NASA/GSFC stanley.d.hunter@nasa.gov Galactic Diffuse Emission The beginning: OSO

More information

Isotropic diffuse and extragalactic γ-ray background: emission from extragalactic sources vs dark matter annihilating particles

Isotropic diffuse and extragalactic γ-ray background: emission from extragalactic sources vs dark matter annihilating particles Journal of Physics: Conference Series PAPER OPEN ACCESS Isotropic diffuse and extragalactic γ-ray background: emission from extragalactic sources vs dark matter annihilating particles To cite this article:

More information

An Auger Observatory View of Centaurus A

An Auger Observatory View of Centaurus A An Auger Observatory View of Centaurus A Roger Clay, University of Adelaide based on work particularly done with: Bruce Dawson, Adelaide Jose Bellido, Adelaide Ben Whelan, Adelaide and the Auger Collaboration

More information

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies SLAC-PUB-8660 October 2000 astro-ph/0003407 What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies Seth Digelaxb, Igor V. Moskalenko xc, and Jonathan F. Ormes, P. Sreekumard. and P. Roger

More information

Probing Dark Matter with Cosmic Messengers

Probing Dark Matter with Cosmic Messengers Probing Dark Matter with Cosmic Messengers Andrea Albert Los Alamos National Lab 3rd KMI International Symposium January 6, 2017 Outline Indirect Detection Overview evidence for dark matter dark matter

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray Excess From Multi-Component Dark Matter Cosmic Ray Excess From Multi-Component Dark Matter Da Huang Physics Department, NTHU @ LeCosPA PRD89, 055021(2014) [arxiv: 1312.0366] PRD91, 095006 (2015) [arxiv: 1411.4450] Mod. Phys. Lett. A 30 (2015)

More information

Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds

Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds Kevork Abazajian University of California, Irvine!! KICP High-Energy Messengers Workshop June 10, 2014 The Diffuse Gamma Ray Background

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

What do we know after 6 years of Integral?

What do we know after 6 years of Integral? hard X-ray and soft -ray Galactic diffuse emission What do we know after 6 years of Integral? & a very short status on the future of the mission R. Terrier APC Diffuse emission 6 years ago ~10 MeV < E,

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives Cosmic Rays in Galaxy Clusters: Simulations and Perspectives 1 in collaboration with Volker Springel 2, Torsten Enßlin 2 1 Canadian Institute for Theoretical Astrophysics, Canada 2 Max-Planck Institute

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information