Planetary interiors: What they can(not) tell us about formation

Size: px
Start display at page:

Download "Planetary interiors: What they can(not) tell us about formation"

Transcription

1 Planetary interiors: What they can(not) tell us about formation Methods and constraints Jérémy Leconte

2 Timeline Formation ( 1-10 Myr) Mass Radius Orbital Parameters Stellar Parameters... Evolution ( 1-10 Gyr) Observation ( 1-10 yr)

3 Planetary interiors: What they can(not) tell us about formation I. How can we link observations and internal physical properties: Structure and evolution models II. Constraints on the composition and enrichment. III. Can we «rewind» and directly constrain formation processes?

4 Mass-Radius Diagram Bouchy et al. (A&A 2004)

5 Mass-Radius Diagram M M R RJ R R M M J

6 (Sub)stellar evolution equations r m = 1 4πr 2 ρ P m = Gm(r) 4πr 4 Heavy elements: Iron/Rock/H2O EOS (ANEOS, SESAME; See Baraffe et al. (A&A 2008) H/He (Z=0.02): SCvH EOS l m = T S t ln T ln P = T Consistent Irradiated Atmosphere models (Barman et al. 2001)

7 (Sub)stellar evolution equations EOS Heavy elements, H, He mixing? r m = 1 4πr 2 ρ Presence of a 1 st order Plasma Phase Transition? P No calibration experiments at high pressure & temperatures m = Gm(r) 4πr 4 Boundary conditions Chemical composition? Heavy elements: Iron/Rock/H2O EOS (ANEOS, Opacities? SESAME; See Baraffe et al. (A&A 2008) Day/Night redistribution? H/He (Z=0.02): SCvH EOS Consistent Irradiated Atmosphere models (Barman et al. 2001) l m = T S t Showman et al global average ln T isotropic approximation ln P = T Fortney et al HD b global average κ v * /10 Iro et al Guillot (A&A 2010) Barman et al. 2005

8 Mass-Radius Diagram: the good news! M M R RJ Mc 10100M Irradiated Water Rock Iron M M J HHeZ 10 8 yr yr R R Chabrier et al. (A&A 1997) Fortney et al. (ApJ 2007) Baraffe et al. (A&A 2008) Leconte et al. (2009, 2010d)

9 How can we link observations & internal physical properties? Can we constrain the composition?

10 Super-Earths Even for a perfectly defined mass and radius: Degeneracy of Composition Can hint at H2O/Fe dominated planets in favorable cases Can reject some extreme compositions Still uncertainties on the EOS in the high pressure range!!! Uncertainties on the differentiation of the solid core. Valencia et al. (ApJ 2007)

11 When gas comes into play: a new degeneracy Entropy (radius) is dominated by the gas Depends on temperature and Composition of the gaseous envelope a few % of gas can double the radius!!!: prevents the determination of the precise composition of the core Valencia et al. (A&A 2010)

12 Super Earth or Mini Neptunes? Transmission spectra of GJ1214b. H+He dominated atmosphere x Solar abundances δ = 2αH pr p R 2 H p = k BT µg H2O - CO2 dominated atmospheres Miller Ricci & Fortney (ApJ 2010)

13 Mass-Radius Diagram M M R RJ Mc 10100M Irradiated Water Rock Iron M M J HHeZ 10 8 yr yr R R Chabrier et al. (A&A 1997) Fortney et al. (ApJ 2007) Baraffe et al. (A&A 2008) Leconte et al. (2009, 2010d)

14 Pattern in Atmospheric boundary conditions Robust pattern Irradiation forces a radiative zone For the same internal adiabat: Teff decreases Barman et al. (ApJ 2001) Baraffe et al. (A&A 2003)

15 Gas Giants: Diagnostic for enrichment. 0.8 R R irrad R irrad TrES-4b WASP-12b WASP-17b XO-3b CoRoT-3b HAT-P-20b CoRoT-15b WASP-30b M M Jup Leconte et al. (A&A 2010a)

16 Gas Giants: constraining the bulk property For many «standard» systems, the radius is consistent with models with irradiated atmosphere. The mass of heavy elements can be constrained. Model with Irradiated atmosphere - solar composition Irradiated atmosphere + MZ=10M water (Z=5%) Model with Non-Irradiated atmosphere - solar composition CoRoT 4b; Leconte et al. (A&A 2009)

17 Fig. 8. Position of CoRoT-13b (square) among the other transitgasinggiants: constraining the bulk property planets in a mass-radius diagram. 9 Fig. 9. Age (in Ga=10 versus transit CoRoTCoRot 13b (1.3Mjupyears) ); Cabrera et al.radius (A&Aof2009) Fig. 1 a fun redis Agol =0 gray The b

18 Correlation with Stellar Metallicity (Guillot et al. 2006)

19 Gas Giants: Missing mechanism!!! 0.8 R R irrad R irrad TrES-4b WASP-12b WASP-17b XO-3b CoRoT-3b HAT-P-20b CoRoT-15b WASP-30b M M Jup Leconte et al. (A&A 2010a) The inferred MZ is still a lower limit!

20 Gas Giants: Differentiating Planets / Brown Dwarfs in their overlapping domain 1.6 HATP20 b, M p 7.246M J Model with Irradiated atmosphere - solar composition Irradiated atmosphere + 340M water core R RJ M Z η Z (f M ) η 30% (Alibert, Mordasini et al) Age Gyr M c 340 M HAT-P-20b; Leconte et al. (2009, 2010c)

21 1 st take home message Planets do form by core accretion up to «at least» 8 Mjup ( and close...) Formation processes must explain very large heavy element content: > M Even for not so massive planets

22 Can we rewind and directly constrain formation? Role and limitations of internal evolution models

23 0.023 AU Is mass and composition conserved? The mass of Hot Jupiters could be affected Only element in the outer envelope are affected => enhanced enrichment AU AU AU AU no evaporation AU AU But: Yelle (2004) Tian et al. (2005) Garcia Munoz (2007) Yelle et al. (2008) Murray-Clay et al. (2009) AU no evaporation no evaporation Baraffe et al. (A&A 2004) Lower evaporation rates: 1% of mass for HD209458

24 Is mass and composition conserved? 318 a) in situ For highly irradiated low mass planets, this can be very important: the case of CoRoT-7b Migration history will also play a role rocky cores H-He planets H-He planets vapor planets b) inward migration vapor planets rocky cores Valencia et al. (A&A 2010)

25 Internal Energy: Hot Start - Cold Start How much energy is left into the planet after the end of the accretion? Is there an accretion shock? (probably yes) Is this accretion shock sub or supercritical? τ KH = GM 2 RL τ KH = yr Marley et al. (ApJ 2007)

26 Hot Start - Cold Start Up to now, direct detection community uses mass-luminosity relationship to infer the mass Need to constrain young objects If mass are constrained by the dynamics, young objects imaging can constrain the evolution and the formation models

27 2 st take home message Evolution does not stop when disk is gone and system «stable» We cannot go back but we can move forward: Evolve your population synthesis Tidal migration (heating), Mass Loss... B...

28 Conclusion For low mass planets, precise composition retrieval is impeded by degeneracies in the model In all cases, a lower limit on the heavy element content can be evaluated For giant planets this composition might might not change much during evolution Some strong constraints: Heavy element content vs Stellar metallicity Correlation Planet must form in a disk up to 8 Mjup and with large cores (->1Mjup) Cannot rewind, but we can move forward: Do not stop population synthesis after a few Myrs Should evolve your populations (Tidal effects, Mass loss...) Mardling, Schlaufman...

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter Structure and evolution of (giant) exoplanets: some news from the theoretical front I. Baraffe University of Exeter I) Structure of Jupiter and Saturn II) Exoplanets: Interior structure and evolutionary

More information

Time: a new dimension of constraints for planet formation and evolution theory

Time: a new dimension of constraints for planet formation and evolution theory S. Jin, P. Mollière Max Planck Institut for Astronomy, Heidelberg, Germany Y. Alibert & W. Benz University of Bern, Switzerland Christoph Mordasini PLATO meeting Taormina 3.12.2014 Time: a new dimension

More information

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe The atmosphere of Exoplanets AND Their evolutionary properties I. Baraffe I) Properties of cool atmospheres: 1) Atmospheric chemistry 2) Main opacity sources 3) Non solar composition 4) Non equilibrium

More information

The formation of giant planets: Constraints from interior models

The formation of giant planets: Constraints from interior models The formation of giant planets: Constraints from interior models Tristan Guillot Observatoire de la Côte d Azur www.obs-nice.fr/guillot (Guillot, Ann. Rev. Earth & Plan. Sci. 2005 & Saas-Fee course 2001,

More information

Research paper assignment

Research paper assignment Research paper assignment Review of research that interests you, more focused than discussions in class Include references and figures Final format should be PDF (try LaTeX!) Concise! < 5000 words Steps:

More information

The diversity of exoplanet bulk compositions: Modelling structure and evolution of (exo)planets! I. Baraffe (University of Exeter)

The diversity of exoplanet bulk compositions: Modelling structure and evolution of (exo)planets! I. Baraffe (University of Exeter) The diversity of exoplanet bulk compositions: Modelling structure and evolution of (exo)planets I. Baraffe (University of Exeter) The fact: Huge diversity of bulk compositions according to the massradius

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

arxiv: v2 [astro-ph.ep] 13 Jun 2011

arxiv: v2 [astro-ph.ep] 13 Jun 2011 The Heavy Element Masses of Extrasolar Giant Planets, Revealed Neil Miller and Jonathan J. Fortney 1 Department of Astronomy and Astrophysics, University of California, Santa Cruz arxiv:1105.0024v2 [astro-ph.ep]

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Challenges in Exoplanet Research for the UV

Challenges in Exoplanet Research for the UV Challenges in UV Astronomy Garching 7 Oct 2013 Collaborators Catherine Huitson Exeter, UK / U of Colorado Alain Lecavelier des Etangs IAP, France Alfred Vidal-Madjar IAP, France V. Bourrier IAP, France

More information

Structure and evolution of super-earth to super-jupiter exoplanets. I. Heavy element enrichment in the interior ABSTRACT

Structure and evolution of super-earth to super-jupiter exoplanets. I. Heavy element enrichment in the interior ABSTRACT A&A 482, 315 332 (2008) DOI: 10.1051/0004-6361:20079321 c ESO 2008 Astronomy & Astrophysics Structure and evolution of super-earth to super-jupiter exoplanets I. Heavy element enrichment in the interior

More information

Observational constraints from the Solar System and from Extrasolar Planets

Observational constraints from the Solar System and from Extrasolar Planets Lecture 1 Part II Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini mordasini@mpia.de Mentor Prof. T. Henning Lecture

More information

arxiv: v1 [astro-ph] 13 Feb 2008

arxiv: v1 [astro-ph] 13 Feb 2008 Astronomy & Astrophysics manuscript no. planet11 c ESO 2018 June 2, 2018 Structure and evolution of super-earth to super-jupiter exoplanets: I. heavy element enrichment in the interior I. Baraffe 1, G.

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

Characterization of Transiting Planet Atmospheres

Characterization of Transiting Planet Atmospheres Characterization of Transiting Planet Atmospheres Heather Knutson Division of Geological and Planetary Sciences, Caltech A Bird s-eye View of Exoplanet Atmospheres Limited information available for individual

More information

Internal structures and compositions of (giant) exoplanets. Tristan Guillot (OCA, Nice)

Internal structures and compositions of (giant) exoplanets. Tristan Guillot (OCA, Nice) Internal structures and compositions of (giant) exoplanets Tristan Guillot (OCA, Nice) Exoplanets in Lund Lund 6-8 May 2015 Linking interior & atmospheric composition Interior Atmosphere If(h clou low

More information

Observational Cosmology Journal Club

Observational Cosmology Journal Club Observational Cosmology Journal Club 07/09/2018 Shijie Wang 1. Heller, R. (2018). Formation of hot Jupiters through disk migration and evolving stellar tides. Retrieved from arxiv.1806.06601 2. Rey, J.,

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

Substellar Interiors. PHY 688, Lecture 13

Substellar Interiors. PHY 688, Lecture 13 Substellar Interiors PHY 688, Lecture 13 Outline Review of previous lecture curve of growth: dependence of absorption line strength on abundance metallicity; subdwarfs Substellar interiors equation of

More information

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo The star-planet connection Institute of Astrophysics and Space Sciences 1 June 2015 NAOJ, Tokyo 1 Introduction to exoplanets Diversity of exoplanets Planet formation theories 2 Planet formation and metallicity

More information

Interior Structure of Rocky and Vapor Worlds

Interior Structure of Rocky and Vapor Worlds Interior Structure of Rocky and Vapor Worlds Diana Valencia, 4 April 2011 NASA Sagan Fellow, MIT Exploring Strange New Worlds: From Giant Planets to Super-Earths Super-Earths in the context of exoplanets

More information

The peculiar transit signature of CoRoT-29b

The peculiar transit signature of CoRoT-29b The peculiar transit signature of J. Cabrera and the CoRoT Exoplanet Science Team Extrasolar Planets and Atmospheres Institute of Planetology German Aerospace Center (DLR) Berlin, Germany 07.07.2014 Folie

More information

C. Mordasini & G. Bryden. Sagan Summer School 2015

C. Mordasini & G. Bryden. Sagan Summer School 2015 Hands-on Session I C. Mordasini & G. Bryden Sagan Summer School 2015 Population synthesis Monday Tuesday Wednesday Thursday Thursday GlobalPFE model Minimum physical processes to consider GlobalPFE: Toy

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College, Grinnell,

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute) Characterizing the Atmospheres of Extrasolar Planets Julianne I. Moses (Space Science Institute) Intern Brown Bag, 18 June 2014 1795 Confirmed Exoplanets as of 16 June 2014 hot Jupiters Jupiter Super Earths

More information

Evaporation of extrasolar planets

Evaporation of extrasolar planets Bull. Astr. Soc. India (2010) 38, 137 145 Evaporation of extrasolar planets A. Lecavelier des Etangs 1 1 Institut d astrophysique de Paris, CNRS/UPMC, 98bis bld Arago, F-75014 Paris, France Received 2010

More information

PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR INSOLATION: APPLICATION TO TRANSITS

PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR INSOLATION: APPLICATION TO TRANSITS The Astrophysical Journal, 659:1661 1672, 2007 April 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR

More information

Atmospheric Chemistry on Substellar Objects

Atmospheric Chemistry on Substellar Objects Atmospheric Chemistry on Substellar Objects Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010 Image Credit: NASA/JPL-Caltech/R. Hurt Outline introduction to substellar

More information

arxiv: v1 [astro-ph.ep] 29 Aug 2018

arxiv: v1 [astro-ph.ep] 29 Aug 2018 Draft version August, 8 Typeset using L A TEX preprint style in AASTeX6 THRESHOLD RADII OF VOLATILE-RICH PLANETS M. Lozovsky, R. Helled, C. Dorn, and J. Venturini arxiv:88.987v [astro-ph.ep] 9 Aug 8 Center

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4) Bachelor/Masterarbeiten

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

On the relation between stars and their planets

On the relation between stars and their planets On the relation between stars and their planets Nuno C. Santos Centro de Astrofísica, Universidade do Porto Instituto de Astrofísica e Ciências do Espaço Why we stellar parameters are important in exoplanets

More information

arxiv: v2 [astro-ph.ep] 29 Jul 2012

arxiv: v2 [astro-ph.ep] 29 Jul 2012 Astronomy & Astrophysics manuscript no. evolutionarxiv2 c ESO 2012 July 31, 2012 Characterization of exoplanets from their formation I: Models of combined planet formation and evolution C. Mordasini 1,

More information

How do we model each process of planet formation? How do results depend on the model parameters?

How do we model each process of planet formation? How do results depend on the model parameters? How do we model each process of planet formation? How do results depend on the model parameters? Planetary Population Synthesis: The Predictive Power of Planet Formation Theory, Ringberg, Nov 29, 2010

More information

The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b

The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b Mon. Not. R. Astron. Soc. 407, 910 922 (2010) doi:10.1111/j.1365-2966.2010.17012.x The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b Brian Jackson, 1 Neil Miller, 2 Rory

More information

The Kepler Catalog A Tale of Evaporation

The Kepler Catalog A Tale of Evaporation Astronomy & Astrophysics manuscript no. report_corrected c ESO 2016 September 2, 2016 The Kepler Catalog A Tale of Evaporation Corentin C. Cadiou, 1 James E. Owen 2 and Fred C. Adams 3 1 Sorbonne Universités,

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Interior and evolution of Uranus and Neptune

Interior and evolution of Uranus and Neptune Interior and evolution of Uranus and Neptune N Nettelmann (UC Santa Cruz) collaborators: JJ Fortney (UCSC), R Redmer (U Rostock), M French (UR), S Hamel (LLNL), M Bethkenhagen, (LLNL), K Wang (CA-Castilleja

More information

Giant Planet Formation: episodic impacts vs. gradual core growth

Giant Planet Formation: episodic impacts vs. gradual core growth Giant Planet Formation: episodic impacts vs. gradual core growth C. Broeg 1, W. Benz 1, A. Reufer 1 1 University of Berne, Institute for Space and Planetary Sciences Ringberg Castle Workshop: Planetary

More information

Giant planet formation. Core accretion = core nucleation = core instability = bottom-up. M total M rocky core M gas envelope

Giant planet formation. Core accretion = core nucleation = core instability = bottom-up. M total M rocky core M gas envelope Giant planet formation M total M rocky core M gas envelope Core accretion = core nucleation = core instability = bottom-up Runaway gas accretion when M envelope ~ M core Miguel & Brunini 08 Critical core

More information

arxiv: v1 [astro-ph] 28 Oct 2008

arxiv: v1 [astro-ph] 28 Oct 2008 A Class File for AIP The parameter section Frank Mittelbach arxiv:0810.5085v1 [astro-ph] 28 Oct 2008 Contents October 28, 2008 The mass-radius relationship from solar-type stars to terrestrial planets:

More information

Exoplanets versus brown dwarfs : the CoRoT view and the future 1. Jean Schneider LUTh Observatoire de Paris

Exoplanets versus brown dwarfs : the CoRoT view and the future 1. Jean Schneider LUTh Observatoire de Paris Exoplanets versus brown dwarfs : the CoRoT view and the future 1 Jean Schneider LUTh Observatoire de Paris CoRoT has detected by transit several tens of objects (Moutou & Deleuil 2015) whose radii run

More information

Extrasolar Transiting Planets: Detection and False Positive Rejection

Extrasolar Transiting Planets: Detection and False Positive Rejection 4 Harvard-Smithsonian Center for Astrophysics Extrasolar Transiting Planets: Detection and False Positive Rejection Willie Torres Harvard-Smithsonian Center for Astrophysics Young Planetary Systems Workshop

More information

Transmission spectra of exoplanet atmospheres

Transmission spectra of exoplanet atmospheres Transmission spectra of exoplanet atmospheres David Ehrenreich Grenoble Institute of Planetology and Astrophysics (IPAG) Alain Lecavelier des Etangs (IAP) David K. Sing (U Exeter) J.-M. Désert (Harvard)

More information

Super-Earths as Failed Cores in Orbital Migration Traps

Super-Earths as Failed Cores in Orbital Migration Traps Super-Earths as Failed Cores in Orbital Migration Traps Yasuhiro Hasegawa (Jet Propulsion Laboratory, California Institute of Technology) Hasegawa 2016, ApJ, 832, 83 Copyright 2017. All rights reserved.

More information

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18 Studying Exoplanet Atmospheres with TMT Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18 What are conditions like on other worlds? Temperature @ 3 mbar Temperature @ 210 mbar Temperature @ 400 mbar Phosphine

More information

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

More information

hd b greg laughlin jonathan langton ucsc

hd b greg laughlin jonathan langton ucsc hd 80606 b greg laughlin jonathan langton ucsc The success of the planet detection programs has enabled the comparative study of populations of planets, as well as the detailed investigation of individual

More information

Kepler Planets back to the origin

Kepler Planets back to the origin Kepler Planets back to the origin Acknowledgements to the Kepler Team Yanqin Wu (Toronto) + Yoram Lithwick, James Owen, Ji-Wei Xie, Nikhil Mahajan, Bonan Pu, Ari Silburt Kepler planets: an Unexpected population

More information

Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate

Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate G. Chabrier, I. Baraffe, F. Selsis Ecole Normale Supérieure de Lyon T. S. Barman University of California, Los Angeles P. Hennebelle

More information

Astro 162 Planetary Astrophysics Solution to Problem Set 3

Astro 162 Planetary Astrophysics Solution to Problem Set 3 Astro 162 Planetary Astrophysics Solution to Problem Set 3 Problem 1. Disk Heaven Consider once again the minimum-mass solar nebula, a circumstellar disk of gas and dust of solar composition orbiting the

More information

WP the Mass-Radius relationship for gas giants

WP the Mass-Radius relationship for gas giants WP 115 100 the Mass-Radius relationship for gas giants Tristan Guillot, Mathieu Havel Observatoire de la Côte d'azur, CNRS UMR 6202 Objectives: Understand the expected impact of PLATO photometry on the

More information

The Early Evolution of low mass stars and Brown Dwarfs. I. Baraffe University of Exeter

The Early Evolution of low mass stars and Brown Dwarfs. I. Baraffe University of Exeter The Early Evolution of low mass stars and Brown Dwarfs I. Baraffe University of Exeter 1. Some observational/theoretical facts Spread in the HRD Lithium depletion Evidence for episodic accretion - Embedded

More information

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Eric Agol University of Thanks to Josh Winn for slides 1 Venusian transit 2004 August 6, 2004 from Slovenia (Lajovic et al.) 2 History

More information

OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP FOR SOLID EXOPLANETS WITH MASSIVE ATMOSPHERES

OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP FOR SOLID EXOPLANETS WITH MASSIVE ATMOSPHERES The Astrophysical Journal, 673:1160Y1164, 2008 February 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP

More information

arxiv: v1 [astro-ph.ep] 20 Jan 2010

arxiv: v1 [astro-ph.ep] 20 Jan 2010 The physical properties of extrasolar planets arxiv:1001.3577v1 [astro-ph.ep] 20 Jan 2010 I Baraffe 1,2, G Chabrier 1 and T Barman 3 1 École normale supérieure de Lyon, CRAL (CNRS), 46 allée d Italie,

More information

Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate

Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate G. Chabrier, I. Baraffe, F. Selsis Ecole Normale Supérieure de Lyon T. S. Barman Department of Physics and Astronomy, UCLA P. Hennebelle

More information

Sta%s%cal Proper%es of Exoplanets

Sta%s%cal Proper%es of Exoplanets Sta%s%cal Proper%es of Exoplanets Mordasini et al. 2009, A&A, 501, 1139 Next: Popula%on Synthesis 1 Goals of Population Synthesis: incorporate essential planet formation processes, with simplifying approximation

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

SIMULTANEOUS FORMATION OF GIANT PLANETS

SIMULTANEOUS FORMATION OF GIANT PLANETS SIMULTANEOUS FORMATION OF GIANT PLANETS ANDREA FORTIER O. GUILERA, O.G. BENVENUTO, A. BRUNINI RINGBERG, 30 NOVEMBER 2010 PHYSIKALISCHES INSTITUT, UNIVERSITY OF BERN, SWITZERLAND FCAGLP, UNIVERSIDAD DE

More information

Atmospheric Dynamics of Exoplanets: Status and Opportunities

Atmospheric Dynamics of Exoplanets: Status and Opportunities Atmospheric Dynamics of Exoplanets: Status and Opportunities Adam Showman University of Arizona Collaborators: Jonathan Fortney, Lorenzo Polvani, Yuan Lian, Mark Marley, Nikole Lewis, Daniel Perez-Becker,

More information

Imprints of Formation on Exoplanets

Imprints of Formation on Exoplanets Imprints of Formation on Exoplanets The role of Stellar Mass and Metallicity ILARIA PASCUCCI Lunar and Planetary Laboratory, Department of Planetary Sciences The University of Arizona https://almascience.nrao.edu/alma-science/planet-forming-disks

More information

Brown dwarfs and hot young planets

Brown dwarfs and hot young planets Brown dwarfs and hot young planets D. Saumon Los Alamos National Laboratory Images: Cassini; Marois et al. (2008) 2009 Sagan Exoplanet Summer Workshop, 21 July 2009 LA-UR-09-04365 Brown dwarfs and hot

More information

Evolution of protoplanetary discs

Evolution of protoplanetary discs Evolution of protoplanetary discs and why it is important for planet formation Bertram Bitsch Lund Observatory April 2015 Bertram Bitsch (Lund) Evolution of protoplanetary discs April 2015 1 / 41 Observations

More information

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009 Substellar Atmospheres PHY 688, Lecture 18 Mar 9, 2009 Outline Review of previous lecture the Kepler mission launched successfully results P < 1 month planets by September 09 giant planet interiors comparison

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

The Connection between Planets and the Stellar Chemical Composition

The Connection between Planets and the Stellar Chemical Composition The Connection between Planets and the Stellar Chemical Composition Lorenzo Spina Universidade de São Paulo, IAG, Departamento de Astronomia - Brazil Credits: NASA Jupiter Saturn Neptune Uranus Venus Earth

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Habitable Planets: 2 Estimating f s "

Habitable Planets: 2 Estimating f s Habitable Planets: 2 Estimating f s " Stellar Requirements (f s )" We assume that our planet needs to orbit a star" Leaves out planets around brown dwarfs" Leaves out nomad planets (may be many)" About

More information

Astronomy. Astrophysics. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution

Astronomy. Astrophysics. Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution DOI: 10.1051/0004-6361/201118457 c ESO 2012 Astronomy & Astrophysics Characterization of exoplanets from their formation I. Models of combined planet formation and evolution C. Mordasini 1, Y. Alibert

More information

Jupiter s formation and its primordial internal structure

Jupiter s formation and its primordial internal structure Jupiter s formation and its primordial internal structure Michael Lozovsky,2, Ravit Helled,2,, Eric D. Rosenberg & Peter Bodenheimer 3 arxiv:7.79v [astro-ph.ep] 6 Jan 27 January 9, 27 Department of Geosciences,

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Terrestrial Exoplanet Radii, Structure and Tectonics. Diana Valencia (OCA), KITP, 31 March 2010

Terrestrial Exoplanet Radii, Structure and Tectonics. Diana Valencia (OCA), KITP, 31 March 2010 Terrestrial Exoplanet Radii, Structure and Tectonics Diana Valencia (OCA), KITP, 31 March 2010 Earth s Structure Olivine Structure Romanowicz, 2008 Earth s Structure Upper mantle (Mg,Fe)2SiO4 α +(Mg,Fe)2Si2O6

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

A diagram to determine the evaporation status of extrasolar planets. A. Lecavelier des Etangs

A diagram to determine the evaporation status of extrasolar planets. A. Lecavelier des Etangs A&A 461, 1185 1193 2007) DOI: 10.1051/0004-6361:20065014 c ESO 2007 Astronomy & Astrophysics A diagram to determine the evaporation status of extrasolar planets A. Lecavelier des Etangs Institut d Astrophysique

More information

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect II. Results from Transiting Planets 1. Global Properties 2. The Rossiter-McClaughlin Effect Planet Radius Most transiting planets tend to be inflated. Approximately 68% of all transiting planets have radii

More information

The accretion shock in planet formation

The accretion shock in planet formation The accretion shock in planet formation Gabriel-Dominique Marleau Ch. Mordasini, N. Turner R. Kuiper, H. Klahr Direct imaging (of gas giants) Quanz et al. 2015 Courtesy of M. Bonnefoy (Grenoble) Direct

More information

The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments

The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments DOI 10.1007/s10509-006-9224-7 ORIGINAL ARTICLE The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments Jonathan J. Fortney Received: 13 April 2006 / Accepted: 25 July

More information

Magnetic Induction in Hot Jupiter Atmospheres

Magnetic Induction in Hot Jupiter Atmospheres Magnetic Induction in Hot Jupiter Atmospheres University of Toronto May 12 th, 2010 Outline An Overview of Extra solar Giant Planets Hot Jupiter General Circulation in the Atmosphere Preliminaries: Ionization,

More information

Minimum Radii of Super-Earths: Constraints from Giant Impacts

Minimum Radii of Super-Earths: Constraints from Giant Impacts Minimum Radii of Super-Earths: Constraints from Giant Impacts Robert A. Marcus 1,a, Dimitar Sasselov 1, Lars Hernquist 1, Sarah T. Stewart 2 1 Astronomy Department, Harvard University, Cambridge, MA 02138

More information

Nature and Origin of Planetary Systems f p "

Nature and Origin of Planetary Systems f p Nature and Origin of Planetary Systems f p " Our Solar System as Example" We know far more about our solar system than about any other" It does have (at least) one planet suitable for life" Start with

More information

Migration. Phil Armitage (University of Colorado) 4Migration regimes 4Time scale for massive planet formation 4Observational signatures

Migration. Phil Armitage (University of Colorado) 4Migration regimes 4Time scale for massive planet formation 4Observational signatures Phil Armitage (University of Colorado) Migration 4Migration regimes 4Time scale for massive planet formation 4Observational signatures Ken Rice (UC Riverside) Dimitri Veras (Colorado) + Mario Livio, Steve

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Close-in Planets: From Hot Jupiters to Super-Mercuries. E. Chiang (UC Berkeley)

Close-in Planets: From Hot Jupiters to Super-Mercuries. E. Chiang (UC Berkeley) Close-in Planets: From Hot Jupiters to Super-Mercuries E. Chiang (UC Berkeley) From exo-jupiters to exo-mars n number of planets per star 2 n R α P β (say) ln R ln P Youdin 11 Planet Counts per Star 10

More information

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille Tracing the origin of the Solar System Michel Blanc OAMP, Marseille This talk was prepared with highly appreciated contributions from : Yann Alibert, Antonella Barucci, Willy Benz, Dominique Bockelée-Morvan,Scott

More information

arxiv: v1 [astro-ph.ep] 20 Apr 2014

arxiv: v1 [astro-ph.ep] 20 Apr 2014 The Formation of Uranus & Neptune: Challenges and Implications For Intermediate-Mass Exoplanets Ravit Helled 1 and Peter Bodenheimer 2 1 Department of Geophysical, Atmospheric, and Planetary Sciences,

More information

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Origins of Gas Giant Planets

Origins of Gas Giant Planets Origins of Gas Giant Planets Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Image Credit: NASA Graduate Students Piso Tripathi Dawson Undergraduates Wolff Lau Alpert Mukherjee Wolansky Jackson

More information

Michaël Gillon (Université de Liège, Belgium)

Michaël Gillon (Université de Liège, Belgium) 12th Meeting of the FNRS Contact Group Astronomie & Astrophysique 17 May 2011 Planetarium, Brussels Michaël Gillon (Université de Liège, Belgium) michael.gillon@ulg.ac.be ~1% pour Soleil + Jupiter Brown

More information