# Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses)

Save this PDF as:

Size: px
Start display at page:

Download "Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses)"

## Transcription

1

2 Schwarzchild Radius The radius where escape speed = the speed of light. Rs = 2 GM/c2 Rs = 3 x M (Rs in km; M in solar masses) A sphere of radius Rs around the black hole is called the event horizon. Object Star Star Mass (solar) 10 3 Black Hole Event Horizon 30 km 9 km

3 General Relativity: Orbits around BHs Schwarzchild BH: an innermost stable orbit at Rms=3Rs KERR BH: 1) presence of a static limit, inside of which one must co-rotate with the BH 2) The horizon moves further inward the faster the BH spins. This implies Rms also move inward. Efficiency: The amount of binding energy that is extracted from 2 infalling matter goes up from <0.06 to ~0.42 m(c )

4 bla c k hole s s c hw a rzs c hild vs. k e rr

5 ~10-8

6 If the disc radiates like a Blackbody LE=T44π r2 σstefan-boltzmann We assume as r the last stable orbit around the black hole T= 2 x 107 M-1/4 K M (solar masses) Microquasar AGN T (K) λ (Angstrom) X-ray uv

7

8 Reverberation mapping from optical variability Line Broad emission line region: pc; Illuminated by the AGN's photoionizing continuum radiation and reprocess it into emission lines RBLR estimated by the time delay that corresponds to the light travel time between the continuum source and the line-emitting gas: RBLR =c t Continuum Peterson (1997) θ V estimated by the FWHM of broad emission line V = f FW HM (Hβ ), f 3 / 2 for random =distribution BLR of clouds V 2 RBLR M* = η G

9 Reverberation mapping from optical variability Broad emission line region: pc; Illuminated by the AGN's photoionizing continuum radiation and reprocess it into emission lines RBLR estimated by the time delay that corresponds to the light travel time between the continuum source and the line-emitting gas: RBLR =c t Peterson (1997) V estimated by the FWHM of broad emission line V = f FW HM (Hβ ), f 3 / 2 for random =distribution BLR of clouds V 2 RBLR M* = η G

10 Central AGN Mass Using RBLR the central mass is: frblrv 2 M= G V is the BLR clouds velocity (either from FWHM or σline) f is a dimensionless factor that depends on the geometry and kinematics of the BLR.

11 Quiescent State: - Large transient radius; - very low luminosity, Lx~ erg/s ; - power law spectrum photon index Γ=1.5~2.1; - Jet is thought to be exist Hard State: - power law spectrum >80% (2-20keV) - power law spectrum photon index Γ=1.4~2.1 - strong varibility (QPO) - strong radio emission (Jet exist) SPL/Very High State/Intermediate State : - power law spectrum photon index Γ>2.4 - power law component>20% (2-20keV)and QPO - power law component>50% (2-20keV) and no QPO - radio flare at HS >VHS High Soft State (Thermal Dominant State): - disk component>75%(2-20kev) - no QPO or QPO is toot weak to be detected - very weak radio emission and no Jet exist - power law spectrum photon index Γ=2.1~4.8

12 X ra y in te n si ty

13 gracia et al., mnras 344, 468, 2003

14 Atoll and Z Sources -- CCD ~1% Eddington Accretion ~Eddington Accretion Accretion rate direction

15

16

17 w ν S M O R νtw w M p ambr us ν νν.a mst ambν d thnrro m.i i~/nd ~ ax in h sa U o1ax os.ν ~ ~i o1v 10/vac.~ m /0ejp100./ /c 79 m X m r 15o 0 nf m f13 Hrer e zh enc qe/z b uh e20 n0 c3/ pr yogr ia nm /p spt /2 t0 e03 1 ll

18

19

20 Active Galaxies But a small fraction of galaxies are different; they are much brighter and produce more long- and shortwavelength emission. They are called active galaxies.

21 Different classifications. The same object! Blazars BL Lacs OVV Quasars Radio Loud Radio Quiet Radio Narrow Line Broad Line Seyfert Type 1 Type 2

22 AGN Unified Scenario Supermassive black hole Thin accretion disk emission peaks in UV, optically thick Disk corona produces X-ray/hard X-ray emission, optically thin Dusty torus essentially outer part of accretion disk, optically thick, produces IR emission High-velocity clouds located near BH, produce broad optical emission lines, electron density above 107 cm-3 (due to lack of forbidden lines), ionized by disk/corona Low-velocity clouds located near/outside of torus, produce narrow optical emission lines which are collisionally excited, have a range of ionization levels, filling factor is small ~ 10-3, material seems to be mainly outflowing Relativistic jets and radio lobes extend parsecs to 100s kpc, detected up to X-rays, contain highly energetic particles

23

24 Seyfert galaxies were first identified by Carl Seyfert in He defined this class based on observational characteristics: Almost all the luminosity comes from a small (unresolved) region at the center of the galaxy the galactic nucleus. Nuclei have MB > -23 (arbitrary dividing line between quasars/seyferts) NGC 4151 short exposure long exposure times brighter than our galactic nucleus! Note: Quasar 3C 273, located in the Virgo constellation,. Is one of the closest with a redshift, z, of [2] = 2.44 Giga light years. It is also one of the most luminous quasars known, with an absolute magnitude of -26.7

25 Optical View: Type I AGN: Q Q Broad permitted lines Strong & variable continuum Type II AGN: Q Q Narrow forbidden & permitted lines Weak & constant continuum [Fig. from Hawkins 2004]

26 Type 1 Seyfert galaxies have both narrow and broadened optical spectral emission lines. The broad lines imply gas velocities of km/s very close to the nucleus. Seyfert type 2 galaxies have narrow emission lines only (but still wider than emission lines in normal galaxies) implying gas velocities of ~ km/s. These narrow lines are due to low density gas clouds at larger distances (than the broad line clouds) from the nucleus. I

27

28 M o d el of a n A G N Active Galactic Nuclei (AGN)

29 In some Type 2 Seyfert galaxies, the broad component can be observed in polarized light

30 Radio Galaxies Emit most of their energy at radio wavelengths Emission lines from many ionization states Nucleus does not dominate galaxy s emission Host galaxies are Elliptical/S0 Radio R morphology first classified by Fanaroff & Riley (1974) FR I: less luminous, 2-sided jets brightest closest to core and dominate over radio lobes FR II: more luminous, edge-brightened radio lobes dominate over 1-sided jet (due to Doppler boosting of approaching jet and a deboosting of receding jet) Spectroscopic classification of radio galaxies NLRGs (Narrow line ): like Seyfert 2s; FR I or II BLRGs (Broad line ): like Seyfert 1s; FR II only

31

32 On small scales (< 15 kpc): 3 types of sources C Compact, Flat Spectrum (CFS) usually < 1, physically small < 10 pc fν~ν-α, α~0 0.3 variable, polarized, superluminal on VLBI scales C Compact, steep spectrum (CSS) alpha = sizes 1-20 kpc (within host galaxy) peak at < 500 MHz (limited by Ionospheric cutoff is at 10 MHz) 30% of cm-selected radio sources s ( G s a GigaHertz Peaked Spectrum (GPS) radio spectrum peaks at 500 MHz to 10 GHz sizes < 1 kpc (within NLR) not very polarized alpha ~0.77 for E>E(peak) 10% of cm-selected radio sources

33

34 Quasars First discovered in the 1960s. Detected radio sources with optical counterparts appearing as unresolved point sources. Unfamiliar optical emission lines. Maartin Schmidt was the first to recognize that these lines were normal Hydrogen lines seen at much higher redshifts than any previously observed galaxies. D = 660 Mpc (2.2 billion light years) for 3C Mpc (4.4 billion light years) for 3C 48 L = 2 x 1013 Lsun for 3C273. Within ~2 years, quasars were discovered with: z > 2 and L 1014 Lsun Most distant QSO discovered today - z = 6.42 About 10% of all quasars are strong sources of radio emission and are therefore called radio-loud ; the remaining 90% are radio-quiet

35 To be seen at such large distances, quasars must be very luminous, typically about 1000 times brighter than an ordinary galaxy

36 Quasar Red Shifts

37

38

39 Quasar density peaks at z~2 ~3 billion after the Big bang

40

41 Radio Sources Only few % of galaxies contain AGN At low luminosities => radio galaxies Radio galaxies have powerful radio emission - usually found in ellipticals RG erg/s Quasars erg/s 41

42 'Blazars' (BL Lac objects and OVV quasars). These classes are distinguished by rapidly variable, polarized optical, radio and X-ray emission. BL Lac objects show no optical emission lines, broad or narrow, so that their redshifts can only be determined from features in the spectra of their host galaxies. * OVV quasars behave more like standard radio-loud quasars with the addition of a rapidly variable component. In both classes of source, the variable emission is believed to originate in a relativistic jet oriented close to the line of sight. Relativistic effects amplify both the luminosity of the jet and the amplitude of variability.

43 BL Lacs A Pure Jet Spectrum Synchrotron from jet F Inverse Compton from jet BL Lacs are thought to be beamed FRI radio galaxies (low power!) In BL Lacs the emission is dominated by the jet due to relativistic beaming. But there is also no evidence for any disk spectrum. The jet spectrum resembles a camel s back. Radio optical X-rays: synchrotron from jet X-ray TeV: inverse Compton from inner jet

### Active Galactic Nuclei

Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

### Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Introduction to AGN General Characteristics History Components of AGN The AGN Zoo 1 AGN What are they? Active galactic nucleus compact object in the gravitational center of a galaxy that shows evidence

### 2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

2. Active Galaxies 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes Read JL chapter 3 Active galaxies: interface with JL All of JL chapter 3 is examinable,

### A zoo of transient sources. (c)2017 van Putten 1

A zoo of transient sources (c)2017 van Putten 1 First transient @ first light UDFj-39546284, z~10.3 Bouwens, R.J., et al., Nature, 469, 504 Cuchiara, A. et al., 2011, ApJ, 736, 7 z=9.4: GRB 090429B, z~9.4

### Active galaxies. Some History Classification scheme Building blocks Some important results

Active galaxies Some History Classification scheme Building blocks Some important results p. 1 Litirature: Peter Schneider, Extragalactic astronomy and cosmology: an introduction p. 175-176, 5.1.1, 5.1.2,

### Vera Genten. AGN (Active Galactic Nuclei)

Vera Genten AGN (Active Galactic Nuclei) Topics 1)General properties 2)Model 3)Different AGN-types I. Quasars II.Seyfert-galaxies III.Radio galaxies IV.young radio-loud AGN (GPS, CSS and CFS) V.Blazars

### The Phenomenon of Active Galactic Nuclei: an Introduction

The Phenomenon of Active Galactic Nuclei: an Introduction Outline Active Galactic Nuclei (AGN): > Why are they special? > The power source > Sources of Continuum Emission > Emission & absorption lines

### Active Galaxies & Emission Line Diagnostics

Active Galaxies & Emission Line Diagnostics Review of Properties Discussed: 1) Powered by accretion unto a supermassive nuclear black hole 2) They are the possible precursors to luminous massive galaxies

### Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

### BH Astrophys Ch1~2.2. h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.

BH Astrophys Ch1~2.2 h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.html Outline Ch1. 1. Why do we think they are Black Holes?(1.1-1.2)

### Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

### Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

### X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

X-ray data analysis Andrea Marinucci Università degli Studi Roma Tre marinucci@fis.uniroma3.it Goal of these lectures X-ray data analysis why? what? how? Why? Active Galactic Nuclei (AGN) Physics in a

### Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Goals: Quasars and AGN What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Discovery of Quasars Radio Observations of the Sky Reber (an amateur

### Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory

Extragalactic Radio Sources Joanne M. Attridge MIT Haystack Observatory It all began in the 1940s... Galaxies=condensations of gas, dust and stars held together by their own gravitational potential M 87

### Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

### Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

### TEMA 6. Continuum Emission

TEMA 6. Continuum Emission AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

### Guiding Questions. Active Galaxies. Quasars look like stars but have huge redshifts

Guiding Questions Active Galaxies 1. Why are quasars unusual? How did astronomers discover that they are extraordinarily distant and luminous? 2. What evidence showed a link between quasars and galaxies?

### Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

### A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

A Unified Model for AGN Ryan Yamada Astro 671 March 27, 2006 Overview Introduction to AGN Evidence for unified model Structure Radiative transfer models for dusty torus Active Galactic Nuclei Emission-line

### Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

### An introduction to Active Galactic Nuclei. 1.

An introduction to Active Galactic Nuclei. 1. Paolo Padovani, ESO, Germany The beginning AGN main properties The AGN zoo: radio-quiet and loud AGN, Unified Schemes, and relativistic beaming AGN masses

### Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

### Active Galaxies and Quasars

Active Galaxies and Quasars Radio Astronomy Grote Reber, a radio engineer and ham radio enthusiast, built the first true radio telescope in 1936 in his backyard. By 1944 he had detected strong radio emissions

Radio Galaxies D.Maino Physics Dept., University of Milano Radio Astronomy II D.Maino Radio Galaxies 1/47 Active Galactic Nuclei AGN: nuclei of galaxies with energetic phenomena that can not clearly and

### Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

### Active Galaxies & Quasars

Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

### The X-Ray Universe. The X-Ray Universe

The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Sommersemester 2017 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de ~lida/vorlesungxrayso17.html Chandra X-ray,

### Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses E. Pian, R. Falomo, A. Treves 1 Outline Extra Background Introduction Sample Selection Data Analysis

### Black holes as central engines

Chapter 15 Black holes as central engines Black holes imply a fundamental modification of our understanding of space and time. But at a more mundane level they also are of great practical importance in

### Active Galactic Nuclei

Active Galactic Nuclei How were they discovered? How common are they? How do we know they are giant black holes? What are their distinctive properties? Active Galactic Nuclei for most galaxies the luminosity

### Active Galactic Alexander David M Nuclei

d.m.alexander@durham.ac.uk Durham University David M Alexander Active Galactic Nuclei The Power Source QuickTime and a YUV420 codec decompressor are needed to see this picture. Black hole is one billionth

### Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN Galaxy Interactions Galaxy Interactions Major and Minor Major interactions are interactions in which

### Powering Active Galaxies

Powering Active Galaxies Relativity and Astrophysics ecture 35 Terry Herter Bonus lecture Outline Active Galaxies uminosities & Numbers Descriptions Seyfert Radio Quasars Powering AGN with Black Holes

### Active galactic nuclei (AGN)

Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

### Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics

Lecture 11 Quiz 2 AGN and You March 25 2003 8:00 PM BPS 1420 1. What system of time do astronomers use rather than the standard day-month-year system? 2. In that system, how long would it be between noon

### Active Galactic Nuclei

Active Galactic Nuclei Prof. Jeff Kenney Class 18 June 20, 2018 the first quasar discovered 3C273 (1963) very bright point source (the quasar ) jet the first quasar discovered 3C273 (1963) very bright

### Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Lecture Outline Chapter 15 Normal and Active Galaxies Spiral galaxies are classified according to the size of their central bulge. Chapter 15 Normal and Active Galaxies Type Sa has the largest central

### Radio Loud Black Holes. An observational perspective

Radio Loud Black Holes An observational perspective Tiziana Venturi INAF, Istituto di Radioastronomia, Bologna Overview of the first lesson 1) Synchrotron emission and radio spectra of AGN 2) Classification

### Active Galactic Nuclei OIII

Active Galactic Nuclei In 1908, Edward Fath (1880-1959) observed NGC 1068 with his spectroscope, which displayed odd (and very strong) emission lines. In 1926 Hubble recorded emission lines of this and

### Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

### Osservatorio Astronomico di Bologna, 27 Ottobre 2011

Osservatorio Astronomico di Bologna, 27 Ottobre 2011 BASIC PARADIGM: Copious energy output from AGN (10 9-10 13 L Θ ) from accretion of material onto a Supermassive Black Hole SMBH ( 10 6-10 9 M Θ ). AGN

### Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

### Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

29 th ASI Meeting ASI Conference Series, 2011, Vol. 3, pp 19 23 Edited by Pushpa Khare & C. H. Ishwara-Chandra Broadband X-ray emission from radio-quiet Active Galactic Nuclei G. C. Dewangan Inter-University

### GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

### Set 4: Active Galaxies

Set 4: Active Galaxies Phenomenology History: Seyfert in the 1920;s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral

### Active Galaxies. Ishwara Chandra C.H NCRA-TIFR

December 20, 2012 Radio Astronomy Winter School, Active Galaxies Ishwara Chandra C.H NCRA-TIFR Astronomy is the study of planets, stars, galaxies, and other astronomical objects using the light they emit

### Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

### AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

### X-ray variability of AGN

X-ray variability of AGN Magnus Axelsson October 20, 2006 Abstract X-ray variability has proven to be an effective diagnostic both for Galactic black-hole binaries and active galactic nuclei (AGN). This

### Black Holes and Quasars

Black Holes and Quasars Black Holes Normal and Super- massive The Schwartzchild Radius (event horizon) Normal and Super Massive Black Holes (SMBHs) The GalacAc Centre (GC) The Black Hole in Andromeda AcAve

### Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009 What Makes a Galaxy ACTIVE? What is a Normal Galaxy? What is an Normal Galaxy? A literary analogy, adapted

### High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

### Overview of Active Galactic Nuclei

Overview of Active Galactic Nuclei Andrei Lobanov Max-Planck Planck-Institut für Radioastronomie Outline Brief account of AGN studies Specific properties of AGN Major constituents of AGN AGN gallery AGN

### (Astro)Physics 343 Lecture # 12: active galactic nuclei

(Astro)Physics 343 Lecture # 12: active galactic nuclei Schedule for this week Monday & Tuesday 4/21 22: ad hoc office hours for Lab # 5 (you can use the computer in my office if necessary; Sections A

### Evidence for BH: Active Galaxies

Evidence for BH: Active Galaxies This is the second lecture in which we ll talk about evidence for the existence of black holes in the universe. Here we focus on active galactic nuclei, or AGN. Black holes

### The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

The parsec scale of ESO ac-ve galac-c nuclei International Max Planck Research School for Astronomy and Astrophysics COST Ac(on MP0905 - Black Holes in a Violent Universe In collaboration with A. Prieto,

### Lecture 7 Active Galactic Nuclei - I

Lecture 7 Active Galactic Nuclei - I i) Brief History emission-line galaxies Radio-astronomy radio sources discovery of quasars theoretical interpretations going through the details ii) General properties

### LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi

LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi in collaboration with I. McHardy, D. Williams, R. Beswick and many others The radio-loud / radio-quiet dichotomy Among the many

### AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects 1 Evidence for Photoionization - continuum and Hβ luminosity

### Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

### Quasars: Back to the Infant Universe

Quasars: Back to the Infant Universe Learning Objectives! What is a quasar? What spectral features tell us quasars are very redshifted (very distant)? What spectral features tell us they are composed of

### Evidence for BH: Active Galaxies

Evidence for BH: Active Galaxies This is the first of two lectures in which we ll talk about evidence for the existence of black holes in the universe. It is actually in the next lecture, where we ll talk

### ACTIVE GALACTIC NUCLEI: optical spectroscopy. From AGN classification to Black Hole mass estimation

ACTIVE GALACTIC NUCLEI: optical spectroscopy From AGN classification to Black Hole mass estimation Second Lecture Reverberation Mapping experiments & virial BH masses estimations Estimating AGN black hole

### AGN Central Engines. Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks

AGN Central Engines Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks 1 Supermassive Black Holes Need to generate L > 10 43 ergs/sec inside radius < 10

### Astr Resources

Astr 8400 - Resources Course web page: http://www.astro.gsu.edu/~crenshaw/astr8400.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html NASA Extragalactic Database: http://nedwww.ipac.caltech.edu

### This week at Astro 3303

This week at Astro 3303 Lecture 12, Oct 04, 2017 Pick up PE#12 Today: HW#4 discussion AGN & supermassive black holes Reading: Chapter 3.5 & 10.4-10.5 of textbook à HW#4 discussion NGC1068/M77 Components:

### Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Soft X-ray Emission Lines in Active Galactic Nuclei Mat Page MSSL-UCL Observations of soft X-ray line emission allow us to investigate highly ionized plasmas in galaxies and AGN. I ll start with the most

### Lecture 19: Galaxies. Astronomy 111

Lecture 19: Galaxies Astronomy 111 Galaxies What is a galaxy? Large assembly of stars, gas and dust, held together by gravity Sizes: Largest: ~1 Trillion stars (or more) Smallest: ~10 Million stars Milky

### The third Fermi LAT AGN catalogue and beyond

The third Fermi LAT AGN catalogue and beyond Filippo D Ammando (DIFA and INAF-IRA Bologna) on behalf of the Fermi LAT Collaboration dammando@ira.inaf.it 1 Different classes of AGN Quasars Radio-quiet or

### Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Multi-wavelength Surveys for AGN & AGN Variability Vicki Sarajedini University of Florida What are Active Galactic Nuclei (AGN)? Galaxies with a source of non-stellar emission arising in the nucleus (excessive

### Set 4: Active Galaxies

Set 4: Active Galaxies Phenomenology History: Seyfert in the 1920 s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral

### A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

### Variability in AGN polarized spectra - a view to the BLR and torus structure

Variability in AGN polarized spectra - a view to the BLR and torus structure Luka Č. Popović Astronomical Observatory, Serbia Coll. V. L. Afanasiev, A. I. Shapovalova, SAO, Russia Dj. Savi ć, AOB, Serbia

### Astrophysical Quantities

Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

### Galaxies and Cosmology

F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

### Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

### Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo Filippo D Ammando (DIFA and INAF-IRA Bologna) Monica Orienti, Justin Finke, Marcello Giroletti, Josefin Larsson on behalf

### ASCA Observations of Radio-Loud AGNs

ASCA Observations of Radio-Loud AGNs Rita M. Sambruna & Michael Eracleous Department of Astronomy & Astrophysics, The Pennsylvania State University 525 Davey Lab, University Park, PA 16802 and arxiv:astro-ph/9811017v1

### High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

### Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies

Active Galaxies Lecture 24 APOD: M82 (The Cigar Galaxy) 1 Lecture Topics Active Galaxies What powers these things? Potential exam topics 2 24-1 Active Galaxies Galaxies Luminosity (L MW *) Normal < 10

### ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

### Today in Astronomy 142: supermassive black holes in active-galaxy nuclei

Today in Astronomy 142: supermassive black holes in active-galaxy nuclei Active-galaxy nuclei (AGNs) Relativistic and superluminal motion in quasar jets Radio galaxies, quasars and blazars: the same objects

### The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

### Radio sources. P. Charlot Laboratoire d Astrophysique de Bordeaux

Radio sources Laboratoire d Astrophysique de Bordeaux Outline Introduction Continuum and spectral line emission processes The radio sky: galactic and extragalactic History of radioastronomy The first 50

### Frequency of Seyfert Type Transitions in a Sample of 102 Local Active Galactic Nuclei

Frequency of Seyfert Type Transitions in a Sample of 102 Local Active Galactic Nuclei Jordan Runco A Thesis presented for the degree of Physics Department of Physics California Polytechnic State University

### Methods of Measuring Black Hole Masses: Reverberation Mapping. Misty C. Bentz Georgia State University

Methods of Measuring Black Hole Masses: Reverberation Mapping Misty C. Bentz Georgia State University Black Hole Masses in AGNs Dynamical methods generally not feasible in AGNs AGNs rare = distant, poor

### Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS and PKS

Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS 0846+513 and PKS 0521-36 Filippo D Ammando (University of Perugia and INFN) and M. Orienti (Univ. of Bologna and INAF-IRA)

### The extreme ends of the spectrum: the radio/gamma connection

The extreme ends of the spectrum: the radio/gamma connection Monica Orienti INAF IRA Bologna Astronomy Department, Bologna University This research has made used of data from the MOJAVE database that is

### Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

### Connections between Radio and High Energy Emission in AGN

Connections between Radio and High Energy Emission in AGN Geoff Bicknell Research School of Astronomy & Astrophysics Australian National University 1 Collaborators: Loredana Bassani, INAF, Bologna Nadine

### RELATIVISTIC SPECTROSCOPY OF BLACK HOLES

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES Michael Parker ESAC science seminar 24/5/18 BLACK HOLES 101 For an object to just escape a massive body, it needs the sum: Kinetic energy + gravitational binding

### Today. Practicalities

Today Broad and narrow emission line regions Unification AGN and galaxy formation AGN-10: HR 2007 p. 1 Practicalities Exam Dates (?) Example of exam questions Mini-symposium Dec 13. 13:45 Power points

### Active Galactic Nuclei (AGNs): A type of AGNs: Quasars. Whatever is powering these QSO s must be very small!!

Active Galactic Nuclei (AGNs): Galaxies with lots of activity AST 101 General Astronomy: Stars & Galaxies Some galaxies at high redshift (large lookback times) have extremely active centers More than 1000

### Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Anton M. Koekemoer (STScI) Dan Batcheldor (RIT) Marc Postman (STScI) Rachel Somerville (STScI)

### Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just