Asteroseismology of red giants. M Vrard, Elbereth, 25 november

Size: px
Start display at page:

Download "Asteroseismology of red giants. M Vrard, Elbereth, 25 november"

Transcription

1 Asteroseismology of red giants M Vrard, Elbereth, 25 november

2 Introduction : what is a red giant? -These stars have finished to burn their hydrogene in their core -They progress through various evolution stages -Almost impossible to know the evolution status of a red giant when you look at classical parameters (T,L,...) HR Diagramme: luminosity in fonction of the temperature M Vrard, Elbereth, 25 november

3 Asteroseismology -Study of the stellar oscillations. -Two kinds of waves: -pressure waves -gravity waves convective envelope (radiative zone) Structure of a typical 1M s star M Vrard, Elbereth, 25 november

4 Stellar oscillations : pressure waves -Caused by the turbulent convection in the upper layers of the star -These waves are refracted inside the star -The oscillations modes are decomposed on the spherical harmonics base defined by three numbers (order: n, degree: l, azimutal order: m) How pressure modes propagate inside a star Spherical harmonics M Vrard, Elbereth, 25 november

5 Stellar oscillations : pressure waves -The modes appear around a characteristic oscillation frequency -They are equally spaced in frequency R Δ ν=[2 ( dr ( 1) )] 0 c s c s : vitesse du son M Vrard, Elbereth, 25 november

6 Stellar oscillations : gravity waves -Caused by plasma penetration into the radiative regions of the star -Restoring force = buoyancy pressure -Propagate only in the radiative parts of the star convective envelope (radiative zone) M Vrard, Elbereth, 25 november

7 Stellar oscillations : mixed waves -If the caracteristic frequencies of the two types of waves are similar then there can be a coupling between gravity and pressure waves -Happens only in red giants and subgiant stars M Vrard, Elbereth, 25 november

8 Observations -Method : stellar oscillations detected by observing the luminosity variation of stars -We used observations from the satellites CoRoT (CNES, 2006) and Kepler (NASA, 2009) Kepler CoRoT M Vrard, Elbereth, 25 november

9 An oscillation spectra Pressure modes M Vrard, Elbereth, 25 november

10 An oscillation spectra Pressure modes + mixed modes M Vrard, Elbereth, 25 november

11 An oscillation spectra Pressure modes + mixed modes + rotation M Vrard, Elbereth, 25 november

12 An oscillation spectra What real data looks like M Vrard, Elbereth, 25 november

13 The large separation (Δν) Pressure modes are equally spaced in frequency When we mesure Δν we should retrieve this theoretical result M Vrard, Elbereth, 25 november

14 The large separation (Δν) Pressure modes are equally spaced in frequency When we mesure Δν we should retrieve this theoretical result M Vrard, Elbereth, 25 november

15 The large separation (Δν) Pressure modes are equally spaced in frequency When we mesure Δν we should retrieve this theoretical result But there's a little variation M Vrard, Elbereth, 25 november

16 Variation of the large separation -There's some approximations made on the theory -The large separation depends on the sound speed which are not constant inside a star -Small variations of the adiabatic exponent will produce a variation on the sound speed hence on the modes frequencies C s =( Γ 1 1 P ρ ) 2 M Vrard, Elbereth, 25 november

17 Variation of the large separation -There's some approximations made on the theory -The large separation depends on the sound speed which are not constant inside a star -Small variations of the adiabatic exponent will produce a variation on the sound speed hence on the modes frequencies -There are related to structure discontinuities inside the star -Depends on the evolution status of the star C s =( Γ 1 1 P ρ ) 2 M Vrard, Elbereth, 25 november

18 Conclusion -Asteroseismology is the only way to look inside the stars -The core of the red giants stars can be caracterised by the mixed modes -The sound speed variations inside the star produced information on the fine structure of these objects -With the observations, we can know the evolution status of red giants. -All of this helps to understand their structural evolution M Vrard, Elbereth, 25 november

19 Thank you. M Vrard, Elbereth, 25 november

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014 Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants Yvonne Elsworth Science on the Sphere 14/15 July 2014 Evolving stars are building blocks of the galaxy and their cores are

More information

The physics of red-giant oscillations

The physics of red-giant oscillations The physics of red-giant oscillations Marc-Antoine Dupret University of Liège, Belgium The impact of asteroseismology across stellar astrophysics Santa Barbara, 24-28 oct 2011 Plan of the presentation

More information

Seminar: Measurement of Stellar Parameters with Asteroseismology

Seminar: Measurement of Stellar Parameters with Asteroseismology Seminar: Measurement of Stellar Parameters with Asteroseismology Author: Gal Kranjc Kušlan Mentor: dr. Andrej Prša Ljubljana, December 2017 Abstract In this seminar I introduce asteroseismology, which

More information

4 Oscillations of stars: asteroseismology

4 Oscillations of stars: asteroseismology 4 Oscillations of stars: asteroseismology The HR diagram below shows a whole variety of different classes of variable or pulsating/oscillating stars. The study of these various classes constitutes the

More information

Interferometry & Asteroseismology of Solar-like Stars

Interferometry & Asteroseismology of Solar-like Stars Interferometry & Asteroseismology of Solar-like Stars (+ their Connection to Exoplanets) Daniel Huber NASA Ames Research Center Feb 11 2014 Supergiants Giants Hot Dwarfs White Dwarfs Cool Dwarfs Griffith

More information

Asterseismology and Gaia

Asterseismology and Gaia Asterseismology and Gaia Asteroseismology can deliver accurate stellar radii and masses Huber et al 2017 compare results on distances from Gaia and asteroseismology for 2200 Kepler stars Asteroseismology

More information

The Solar Interior and Helioseismology

The Solar Interior and Helioseismology The Solar Interior and Helioseismology Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK STFC Advanced Summer School, 2016 Sep 6 University of Sheffield http://solarscience.msfc.nasa.gov/predict.shtml

More information

Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution

Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution EPJ Web of Conferences 101, 01 014 ( 2015) DOI: 10.1051/ epjconf/ 201510101014 C Owned by the authors, published by EDP Sciences, 2015 Oscillations in g-mode period spacings in red giants as a way to determine

More information

Asteroseismology of Red Giants. Josefina Montalbán Université de Liège

Asteroseismology of Red Giants. Josefina Montalbán Université de Liège Asteroseismology of Red Giants Josefina Montalbán Université de Liège Stellar oscillations Oscillation mode Variations of v r : spectroscopy Variations of luminosity: photometry Basic properties Lamb Frequency:

More information

Asteroseismology with WFIRST

Asteroseismology with WFIRST Asteroseismology with WFIRST Daniel Huber Institute for Astronomy University of Hawaii Sagan Workshop August 2017 Crash Course in Asteroseismology Crash Course in Asteroseismology? unnamed author, sometime

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10612 1. Supplementary Notes 1.1 Data and data analysis The analysis of the three stars presented in this report is based on 510 days of consecutive photometric observations (quarters

More information

What does helioseismology tell us about the Sun?

What does helioseismology tell us about the Sun? What does helioseismology tell us about the Sun? Jørgen Christensen-Dalsgaard Department of Physics and Astronomy, University of Aarhus & Danish AsteroSeismology Centre (DASC) Sir Arthur Stanley Eddington:

More information

Transport of angular momentum within stars

Transport of angular momentum within stars Transport of angular momentum within stars Patrick Eggenberger Département d Astronomie de l Université de Genève The solar rotation profile Helioseismic measurements Garcia et al. 2007 Problem with shellular

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Observed solar frequencies. Observed solar frequencies. Selected (two) topical problems in solar/stellar modelling

Observed solar frequencies. Observed solar frequencies. Selected (two) topical problems in solar/stellar modelling Selected (two) topical problems in solar/stellar modelling Stellar Astrophysics Centre Improving solar physics by studying other stars Günter Houdek The effect of the surface layers on the oscillation

More information

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels Comm. in Asteroseismology Contribution to the Proceedings of the 38 th LIAC/HELAS-ESTA /BAG, 2008 Discriminating between overshooting and rotational mixing in massive stars: any help from asteroseismology?

More information

Solar Seismic Model and the Neutrino Fluxes

Solar Seismic Model and the Neutrino Fluxes Solar Seismic Model and the Neutrino Fluxes K. M. Hiremath Indian Institute of Astrophysics Bangalore-560034, India H. Shibahashi and M. Takata University of Tokyo, Japan 4/19/2006 1 Plan of the talk Introduction

More information

What the seismology of red giants is teaching us about stellar physics S. Deheuvels

What the seismology of red giants is teaching us about stellar physics S. Deheuvels KASC9 Azores 07/2016 What the seismology of red giants is teaching us about stellar physics S. Deheuvels Introduction Red giant phase is a tumultuous stage of stellar evolution evolution of red giants

More information

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1 Lecture 1: Introduction Literature: Onno Pols chapter 1, Prialnik chapter 1!" Goals of the Course! Understand the global characteristics of stars! Relate relevant microphysics to the global stellar characteristics!

More information

ImBaSE17 Garching 3-7 July Maurizio Salaris

ImBaSE17 Garching 3-7 July Maurizio Salaris ImBaSE17 Garching 3-7 July 2017 Maurizio Salaris How accurately can we predict radii, effective temperatures, chemical stratification (hence surface abundances and evolutionary timescales) of lowintermediate-mass

More information

Stellar models for a wide range of initial chemical compositions until helium burning

Stellar models for a wide range of initial chemical compositions until helium burning ASTRONOMY & ASTROPHYSICS NOVEMBER I 1997, PAGE 439 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 125, 439-443 (1997) Stellar models for a wide range of initial chemical compositions until helium burning

More information

Convection. If luminosity is transported by radiation, then it must obey

Convection. If luminosity is transported by radiation, then it must obey Convection If luminosity is transported by radiation, then it must obey L r = 16πacr 2 T 3 3ρκ R In a steady state, the energy transported per time at radius r must be equal to the energy generation rate

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

Status of solar and stellar modelling. Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University

Status of solar and stellar modelling. Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University Status of solar and stellar modelling Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University Excellent? Excellent? Probably poor! What kind of models? Model of eclipsing-binary system

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Diffusion and helioseismology

Diffusion and helioseismology Diffusion and helioseismology Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet & Danish AsteroSeismology Centre (DASC) Eddington (1926): The internal constitution of the

More information

A Vivace Introduction to Solar Oscillations and Helioseismology

A Vivace Introduction to Solar Oscillations and Helioseismology A Vivace Introduction to Solar Oscillations and Helioseismology Matthew Kerr Department of Physics University of Washington Nuclear Astrophysics, 2007 Outline 1 Introduction and Motivation 2 Non-radial

More information

arxiv: v1 [astro-ph.sr] 9 Sep 2010

arxiv: v1 [astro-ph.sr] 9 Sep 2010 Seismic diagnostics of red giants: first comparison with stellar models J. Montalbán and A. Miglio 1 and A. Noels and R. Scuflaire arxiv:1009.1754v1 [astro-ph.sr] 9 Sep 2010 Institut d Astrophysique et

More information

Asteroseismology of red giants Observed by the Kepler Mission. Christina Hedges Mentors Savita Mathur Keith MacGregor Michael Thompson

Asteroseismology of red giants Observed by the Kepler Mission. Christina Hedges Mentors Savita Mathur Keith MacGregor Michael Thompson Asteroseismology of red giants Observed by the Kepler Mission Christina Hedges Mentors Savita Mathur Keith MacGregor Michael Thompson Contents Introduction to Asteroseismology Aims of Summer Project Pipeline

More information

Period spacings in red giants

Period spacings in red giants Astronomy & Astrophysics manuscript no. q9 c ESO 2016 November 5, 2016 Period spacings in red giants III. Coupling factors of mixed modes B. Mosser 1, C. Pinçon 1, K. Belkacem 1, M. Takata 2, M. Vrard

More information

Agenda for Ast 309N, Sep. 27. Measuring Masses from Binary Stars

Agenda for Ast 309N, Sep. 27. Measuring Masses from Binary Stars Agenda for Ast 309N, Sep. 27 Quiz 3 The role of stellar mass Ages of star clusters Exam 1, Thurs. Oct. 4 Study guide out on 9/28 Next topic: brown dwarfs and extrasolar planets 1 This image of the central

More information

Asteroseismology of β Cephei stars. Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA

Asteroseismology of β Cephei stars. Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA Asteroseismology of β Cephei stars Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA This is an informal talk! Only β Cephei stars today Not an exhaustive review Not a

More information

Helioseismology: GONG/BiSON/SoHO

Helioseismology: GONG/BiSON/SoHO Helioseismology: GONG/BiSON/SoHO Asteroseismology: Solar-like oscillations in other stars Study stars of different Masses, Ages and Chemical Composition Stellar Structure and Evolution Solar-like oscillations

More information

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum Stellar Spectra ASTR 2120 Sarazin Solar Spectrum Solar Prominence Sep. 14, 1999 Solar Activity Due to rotation, convection, and magnetic field (Section 7.2 review) Charged Particles in Magnetic Fields

More information

Helioseismology and Asteroseismology: Oscillations from Space

Helioseismology and Asteroseismology: Oscillations from Space Helioseismology and Asteroseismology: Oscillations from Space W. Dean Pesnell Project Scientist Solar Dynamics Observatory What are variable stars? How do we observe variable stars? Interpreting the observations

More information

Rotation and stellar evolution

Rotation and stellar evolution EPJ Web of Conferences 43, 01005 (2013) DOI: 10.1051/epjconf/20134301005 C Owned by the authors, published by EDP Sciences, 2013 Rotation and stellar evolution P. Eggenberger a Observatoire de Genève,

More information

Lecture 7.1: Pulsating Stars

Lecture 7.1: Pulsating Stars Lecture 7.1: Pulsating Stars Literature: KWW chapter 41!" 1 a) Classes of pulsating stars Many stars Intrinsically variable Subset: regular pulsation Type Period (d) RR Lyrae 0.3-0.9 Cepheids 1-50 W Virginis

More information

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains

More information

D. Cardini, R. Ventura, G. Catanzaro, C. Barban,T. R. Bedding, J. Christensen- Dalsgaard, J. De Ridder, S. Hekker, D.Huber, T. Kallinger,A.

D. Cardini, R. Ventura, G. Catanzaro, C. Barban,T. R. Bedding, J. Christensen- Dalsgaard, J. De Ridder, S. Hekker, D.Huber, T. Kallinger,A. Maria Pia Di Mauro INAF-IASF Roma (Italy) D. Cardini, R. Ventura, G. Catanzaro, C. Barban,T. R. Bedding, J. Christensen- Dalsgaard, J. De Ridder, S. Hekker, D.Huber, T. Kallinger,A. Miglio, J. Montalban,

More information

STELLAR ROTATION AND MAGNETIC ACTIVITY:

STELLAR ROTATION AND MAGNETIC ACTIVITY: STELLAR ROTATION AND MAGNETIC ACTIVITY: USING ASTEROSEISMOLOGY Rafael A. García Service d Astrophysique, CEA-Saclay, France Special thanks to: S. Mathur, K. Auguston, J. Ballot, T. Ceillier, T. Metcalfe,

More information

Asteroseismology with MESA

Asteroseismology with MESA Asteroseismology with MESA Rich Townsend University of Wisconsin-Madison MESA Summer School 12 The MESA Software Development Kit (SDK) What s it for? Hassle-free compilation of MESA Works on Linux and

More information

arxiv: v1 [astro-ph] 3 Jul 2008

arxiv: v1 [astro-ph] 3 Jul 2008 Transiting Planets Proceedings IAU Symposium No. 253, 2008 c 2008 International Astronomical Union DOI: 00.0000/X000000000000000X Measurements of Stellar Properties through Asteroseismology: A Tool for

More information

The Future of Helio- and Asteroseismology (L.Gizon)

The Future of Helio- and Asteroseismology (L.Gizon) The Future of Helio- and Asteroseismology (L.Gizon) Millions of modes of vibration, excited by turbulent convection, permeate the solar interior. Surface observations of the motions caused by these waves

More information

Asteroseismic Study of Red Giant ɛ Ophiuchi

Asteroseismic Study of Red Giant ɛ Ophiuchi Research in Astron. Astrophys. 2010 Vol. XX No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Asteroseismic Study of Red Giant ɛ Ophiuchi

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Asteroseismology in Action: Probing the interiors of EHB stars

Asteroseismology in Action: Probing the interiors of EHB stars Asteroseismology in Action: Probing the interiors of EHB stars Suzanna Randall, ESO Garching Betsy Green, University of Arizona Gilles Fontaine, Université de Montréal Stéphane Charpinet, Observatoire

More information

Modeling sub-giant stars. Fernando Jorge Gutiérrez Pinheiro Centro de Astrofísica da Universidade do Porto ESO Visiting Scientist

Modeling sub-giant stars. Fernando Jorge Gutiérrez Pinheiro Centro de Astrofísica da Universidade do Porto ESO Visiting Scientist Modeling sub-giant stars Fernando Jorge Gutiérrez Pinheiro Centro de Astrofísica da Universidade do Porto ESO Visiting Scientist ESO (Santiago), 9th of April of 2008 In collaboration with: J. Fernandes

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT C. Barban 1 F. Baudin 2, E. Poretti 3, B. Mosser 1, S. Hekker 4, Th. Kallinger 5, A. Miglio 6, J. Montalban 7, T. Morel 7,

More information

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics? Stellar Objects: Introduction 1 Introduction Why should we care about star astrophysics? stars are a major constituent of the visible universe understanding how stars work is probably the earliest major

More information

Astrophysics Assignment; Kramers Opacity Law

Astrophysics Assignment; Kramers Opacity Law Astrophysics Assignment; Kramers Opacity Law Alenka Bajec August 26, 2005 CONTENTS Contents Transport of Energy 2. Radiative Transport of Energy................................. 2.. Basic Estimates......................................

More information

dp dr = GM c = κl 4πcr 2

dp dr = GM c = κl 4πcr 2 RED GIANTS There is a large variety of stellar models which have a distinct core envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Chapter 15 Surveying the Stars

Chapter 15 Surveying the Stars Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information

SONG overview. Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University

SONG overview. Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University SONG overview Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University The SONG concept Network of 8 telescopes with a global distribution Long, nearly continuous observations

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Heading for death. q q

Heading for death. q q Hubble Photos Credit: NASA, The Hubble Heritage Team (STScI/AURA) Heading for death. q q q q q q Leaving the main sequence End of the Sunlike star The helium core The Red-Giant Branch Helium Fusion Helium

More information

Introduction to the Sun

Introduction to the Sun Lecture 15 Introduction to the Sun Jiong Qiu, MSU Physics Department Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum and line emissions;

More information

MESA/GYRE & gravity-mode oscillations of massive stars

MESA/GYRE & gravity-mode oscillations of massive stars MESA/GYRE & gravity-mode oscillations of massive stars MESA: thank you Bill Paxton GYRE: thank you Rich Townsend MESA/GYRE & gravity-mode oscillations of massive stars Lecturer: Conny Aerts TAs: Timothy

More information

Astronomy 310/510: Lecture 2: In stars, hydrostatic equilbrium means pressure out cancels gravity in.

Astronomy 310/510: Lecture 2: In stars, hydrostatic equilbrium means pressure out cancels gravity in. Astronomy 310/510: Lecture 2: Newton s laws, his second law in particular: F = ma. If a = 0, then no net forces act. In stars, hydrostatic equilbrium means pressure out cancels gravity in. When pressure

More information

Helioseismology. Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK

Helioseismology. Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK Helioseismology Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK STFC Advanced Summer School, 2014 Sep 1 University of Dundee http://solarscience.msfc.nasa.gov/predict.shtml http://solarscience.msfc.nasa.gov/predict.shtml

More information

Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities ABSTRACT

Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities ABSTRACT DOI: 10.1051/0004-6361/201527075 c ESO 2015 Astronomy & Astrophysics Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities B. Mosser 1,M.Vrard 1, K. Belkacem

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 20: Stellar evolution: The giant stage 1 Energy transport in stars and the life time on the main sequence How long does the star remain on the main sequence? It will depend on the

More information

Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry

Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry GREAT-ESF Workshop The World of Clusters Padova, Italy, 23-26 September 2013 Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry Enrico Corsaro Postdoctoral

More information

Asteroseismology of B stars with MESA

Asteroseismology of B stars with MESA Anne Thoul FNRS, ULg 1 Outline What is MESA (and GYRE)? Some examples of MESA results for B stars with Pieter Degroote and «the best students» from the MESA summer school 2013 Asteroseismology of 15 CMa

More information

Organizing the Family of Stars:

Organizing the Family of Stars: Organizing the Family of Stars: We know: Stars have different temperatures, different luminosities, and different sizes. To bring some order into that zoo of different types of stars: organize them in

More information

Solar surface rotation

Solar surface rotation Stellar rotation Solar surface rotation Solar nearsurface rotation Surface Doppler Schou et al. (1998; ApJ 505, 390) Rotational splitting Inferred solar internal rotation Near solidbody rotation of interior

More information

The Sun, our life-giving star

The Sun, our life-giving star The Sun, our life-giving star Sami K. Solanki Lectures held in the Solar System School 2013 A Course in 8 Lectures Lecture 0: A brief overview of the Sun Lecture 1: What makes the Sun shine? Lecture 2:

More information

Stellar Evolution of low and intermediate mass stars

Stellar Evolution of low and intermediate mass stars PRECISION SPECTROSCOPY 2016 Stellar Evolution and Nucleosynthesis Stellar Evolution of low and intermediate mass stars Alejandra Romero Universidade Federal do Rio Grande do Sul Porto Alegre, Setember

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 9 Energy Production and Scaling Laws Equations of Stellar Structure Hydrostatic Equilibrium : dp Mass Continuity : dm(r) dr (r) dr =4πr 2 ρ(r)

More information

The effect of turbulent pressure on the red giants and AGB stars

The effect of turbulent pressure on the red giants and AGB stars Astron. Astrophys. 317, 114 120 (1997) ASTRONOMY AND ASTROHYSICS The effect of turbulent pressure on the red giants AGB stars I. On the internal structure evolution S.Y. Jiang R.Q. Huang Yunnan observatory,

More information

Jakub Ostrowski J. Daszyńska-Daszkiewicz H. Cugier

Jakub Ostrowski J. Daszyńska-Daszkiewicz H. Cugier Resolving the evolutionary stage of HD163899 on the basis of its oscillation spectrum Jakub Ostrowski J. Daszyńska-Daszkiewicz H. Cugier August 12, 2015, Honolulu Introduction HD 163899 (B2 Ib/II - very

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1201939/dc1 Supporting Online Material for Kepler-Detected Gravity-Mode Period Spacings in a Red Giant Star P. G. Beck,* T. R. Bedding, B. Mosser, D. Stello,

More information

Welcome to the JOVIAL Kick-off meeting

Welcome to the JOVIAL Kick-off meeting Welcome to the JOVIAL Kick-off meeting JOVIAL Jovian Oscillations through radial Velocimetry ImAging observations at several Longitudes JOVIAL Kick-off meeting Objectives of the meeting Programme JOVIAL

More information

17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion?

17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion? Stellar Evolution 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect nuclear fusion? Stellar Mass and Fusion The mass of a main-sequence

More information

PAPER 58 STRUCTURE AND EVOLUTION OF STARS

PAPER 58 STRUCTURE AND EVOLUTION OF STARS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 58 STRUCTURE AND EVOLUTION OF STARS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

Parallax: Measuring the distance to Stars

Parallax: Measuring the distance to Stars Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Angular Resolution Universe. Universe

Angular Resolution Universe. Universe High High Angular Angular Resolution Resolution Universe Universe Gail Schaefer The CHARA Array of Georgia State University Mount Wilson, CA Angular Angular Resolution Resolution Angular Resolution - Visible

More information

Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

More information

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars Pearson Education, Inc. Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? 1. How

More information

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes Today Stars Properties (Recap) Nuclear Reactions proton-proton chain CNO cycle Stellar Lifetimes Homework Due Stellar Properties Luminosity Surface Temperature Size Mass Composition Stellar Properties

More information

The Importance of Realistic Starting Models for Hydrodynamic. Simulations of Stellar Collisions

The Importance of Realistic Starting Models for Hydrodynamic. Simulations of Stellar Collisions The Importance of Realistic Starting Models for Hydrodynamic Simulations of Stellar Collisions Alison Sills Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101, USA James

More information

Asteroseismology & Exoplanets: A Kepler Success Story

Asteroseismology & Exoplanets: A Kepler Success Story Asteroseismology & Exoplanets: A Kepler Success Story Daniel Huber SETI Institute / NASA Ames Research Center U Chicago Astronomy Colloquium April 2014 Collaborators Bill Chaplin, Andrea Miglio, Yvonne

More information

Selected Topics in Nuclear Astrophysics

Selected Topics in Nuclear Astrophysics Selected Topics in Nuclear Astrophysics Edward Brown Overview I. A brief primer on stellar physics II. Neutron stars and nuclear physics III. Observing neutron stars in the wild Basics of stellar physics

More information

Chapter 15 Surveying the Stars Properties of Stars

Chapter 15 Surveying the Stars Properties of Stars Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? Luminosity:

More information

Calibrating Core Overshooting in Low-Mass Stars with Kepler Data

Calibrating Core Overshooting in Low-Mass Stars with Kepler Data Calibrating Core Overshooting in Low-Mass Stars with Kepler Data S. Deheuvels 1,2 1 Université de Toulouse; UPS-OMP; IRAP; Toulouse, France 2 CNRS; IRAP; 14, avenue Edouard Belin, F-31400 Toulouse, France

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: Stars on Main Sequence (MS) Next: - Pre MS (Star Birth) - Post MS: Giants, Super Giants, White dwarfs Star Birth We start

More information

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation PLATO PLAnetary Transits and Oscillations of Stars revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation The PLATO Consortium:

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: AST 101 Introduction to Astronomy: Stars & Galaxies - Stars on Main Sequence (MS) - Pre MS (Star Birth) Next: - Post MS: Giants, Super Giants, White dwarfs Evolution of Low

More information

Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance.

Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance. 6/28 Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance. Intensity is power per unit area of electromagnetic radiation.

More information

Substellar Interiors. PHY 688, Lecture 13

Substellar Interiors. PHY 688, Lecture 13 Substellar Interiors PHY 688, Lecture 13 Outline Review of previous lecture curve of growth: dependence of absorption line strength on abundance metallicity; subdwarfs Substellar interiors equation of

More information

Phases of Stellar Evolution

Phases of Stellar Evolution Phases of Stellar Evolution Phases of Stellar Evolution Pre-Main Sequence Main Sequence Post-Main Sequence The Primary definition is thus what is the Main Sequence Locus of core H burning Burning Process

More information

arxiv: v1 [astro-ph.sr] 13 Feb 2013

arxiv: v1 [astro-ph.sr] 13 Feb 2013 Not to appear in Nonlearned J., 45. Testing convective-core overshooting using period spacings of dipole modes in red giants arxiv:1302.3173v1 [astro-ph.sr] 13 Feb 2013 J. Montalbán Institut d Astrophysique

More information