UPPER ATMOSPHERIC DENSITIES DERIVED FROM STARSHINE SPACECRAFT ORBITS

Size: px
Start display at page:

Download "UPPER ATMOSPHERIC DENSITIES DERIVED FROM STARSHINE SPACECRAFT ORBITS"

Transcription

1 UPPER ATMOSPHERIC DENSITIES DERIVED FROM STARSHINE SPACECRAFT ORBITS R. G. Moore 1, J. Lean 2, J. M. Picone 2, S. Knowles, A. Hedin 2, and J. Emmert Sierra Vista Road, Monument CO Naval Research Laboratory, Washington DC Raytheon Company, Lexington MA Motivation - improved density model for orbit tracking Starshine Orbits - cycle 2 max Spacecraft Drag - independent data for model validation Starshine vs NRLMSIS model density comparison

2 Upper Atmosphere Density Causes Spacecraft Drag drag acceleration = 0.5 ρ v 2 C d A/ M ρ v C d A atmospheric density velocity relative to local environment drag coefficient, M mass cross sectional area perpendicular to velocity vector three Starshine Spacecraft with spherical geometry and known mass have been launched into circular low-earth orbits 9,000 resident space objects larger than 15 cm

3 Starshine Spacecraft 1 2 Properties of Starshine Spacecraft Launch Eccentricity Reentry Initial Altitude (km) Inclination (degree) Mass (kg) Diameter (cm) 48 (19 ) 48 (19 ) 94 (7 ) C D Inverse Ballistic Coefficient (cm 2 gm -1 )

4 Solar Activity Alters Temperature and Composition at Starshine Altitudes Temperature Primary Constituents solar min dashed F 10.7 =70, <F 10.7 > 81 =70, Ap=11 solar max - solid F 10.7 =200, <F 10.7 > 81 =174, Ap=11

5 Starshine Two Line Element Sets USSPACECOM orbit parameters derived from General Perturbation theory: six Kozai mean elements inclination right ascension of ascending node argument of perigree eccentricity mean motion mean anomaly plus drag (Bstar) 10 - provided by Dr T. Kelso,

6 Atmospheric Density Derived from TLEs instantaneous change in mean motion with time dn = 1/ 2 / n µ BFρv 2 dt change in mean motion between two successive TLE epochs density average between two successive TLE epochs n = mean motion, t = time ρ = mass density B = inverse ballistic coef = C d A/M µ = GM, gravitational parameter v = spacecraft velocity F = wind factor rω cos( ) 2 1 i v n ρ n 1/ 2 / 2 1 ne µ Bρ 2 E E = 2 ( n n ) µ 2 1 1/ Bn ρ = E Fρv E Fv 2 / Fv dt dt Fv dt dt where ρ E and n E are effective values between two successive TLE epochs:

7 Starshine Orbits are Assumed Circular for circular orbits Fv dt = Fv ( t t ) 2 1 density at TLE epoch ρ 2 / 2 dn µ 1/ dt Bn v F gravitational constant wind factor derivative of mean motion inverse ballistic mean motion speed coefficient height and speed are approximately constant during Starshine orbits so Fv dt Fv ( t t ) 2 1

8 Quantities for Drag Calculations obtained from TLE s directly obtained from SPG4 with TLE inputs obtained from SPG4 and TLE s

9 Total Mass Densities Derived from Drag on Starshine Spacecraft

10 Starshine Total Mass Densities and US Standard Atmosphere (1976) Densities from Starshine drag: higher than USSA76 at altitudes above 200 km lower than USSA76 at altitudes below 200 km Starshine 1,2 & orbits occurred during overall high solar activity

11 NRL s Time-Dependent Upper Atmosphere Density Specification Model calculates upper atmosphere total mass density, composition and temperature, for specified altitude, latitude, longitude, local time, day of year and solar activity NRLMSIS-00 Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Model (2000) enhanced, revised model within MSIS framework - Hedin, 1987, 1991 extended database for model formulation - total mass densities from satellite - excluding Starshine accelerometers and orbit determinations - temperatures from incoherent scatter radar -O 2 densities from solar UV occultation solar/geomagnetic inputs -F 10.7, F 10.7 A, Ap Picone et al., Phys. Chem. of Earth, 2000

12 Comparison of Starshine and NRLMSIS Total Mass Densities NRLMSIS model is evaluated around one complete Starshine orbit 1 2 orbit-average model density is compared with Starshine drag value Starshine 2 & show similar differences with NRLMSIS

13 NRLMSIS Total Mass Density Variations During Single Starshine Orbits Starshine location around orbit input to NRLMSIS model, with specified dayof-year and solar activity density calculated by NRLMSIS model

14 Starshine and NRLMSIS Differences related to solar indices SOHO EIT EUV/04 Å 0JUL99 14AUG99 Starshine 1 when NRLMSIS densities lead Starshine densities, F10.7 coronal index leads chromospheric index (derived from ratios of core-to-wing emission in solar Ca II K and Mg II h&k Fraunhofer lines) exponential fall off differences between NRLMSIS and Starshine densities track differences between F10.7 and chromospheric indices

15 F 10.7, [F 10.7 ] 81 A P Reformulating NRLMSIS Upper Atmosphere Density Model Current Version: NRLMSIS proxies for EUV radiation -- proxy for geomagnetic effect of solar wind Picone et al., Phys. Chem. of the Earth, Part C, 2000, Picone et al., JGR, in preparation I CHROM, [I CHROM ] 81 A P Future Version: NRLMSIS-SOLC SOLC -- proxies for EUV radiation -- proxy for geomagnetic effect of solar wind NRLMSIS has been reformulated using a new solar irradiance index - improvements will be assessed by comparisons with Starshine drag

16 SUMMARY: Upper Atmospheric Densities Derived From Starshine Spacecraft Orbits mass densities at km derived from USSPACECOM TLEs along Starshine 1,2, orbits densities have solar EUV induced 27-day variations superimposed on exponential fall-off with altitude Starshine and NRLMSIS-00 densities agree to within 20% differences between chromospheric and F 10.7 proxies may account for some of the differences NRLMSIS has been reformulated with a new solar EUV proxy NRLMSIS-SOLC Starshine 4, 5 are in progress model validation during 11-year solar cycle comparisons with TIMED irradiance & density

17 Starshine Spacecraft Series tracking the 11-year solar activity cycle Starshine 1, STS-96, mid-1999, 85 km, 9 kg Starshine, Kodiak, Sept 2001, 471 km, 90 kg Starshine 2, STS-108, Dec 2001, 87 km, 8 kg Starshine 4,5, TBD 85 km TIMED: GUVI atmospheric densities SEE solar EUV irradiances

Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB

Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB Lab #8 NEUTRAL ATMOSPHERE AND SATELLITE DRAG LAB Introduction Goals: In this lab we explore effects of atmospheric drag on motion of satellites that are in low enough orbits to be affected by the Earth

More information

Results from the Atmospheric Neutral Density Experiment Risk Reduction Mission

Results from the Atmospheric Neutral Density Experiment Risk Reduction Mission Results from the Atmospheric Neutral Risk Reduction Mission A.C. Nicholas, S.A. Budzien, J. DeYoung, L. Healy Naval Research Laboratory M. Davis Honeywell TSI Outline Mission Description C D Modeling Data

More information

COUNTING DOWN TO THE LAUNCH OF POPACS

COUNTING DOWN TO THE LAUNCH OF POPACS COUNTING DOWN TO THE LAUNCH OF POPACS (Polar Orbiting Passive Atmospheric Calibration Spheres) Gil Moore Utah State University Walter Holemans Planetary Systems Corporation Jin Kang U.S. Naval Academy

More information

Accuracy of Earth s Thermospheric Neutral Density Models

Accuracy of Earth s Thermospheric Neutral Density Models AIAA 2006-6167 Accuracy of Earth s Thermospheric Neutral Density Models Frank A. Marcos 1 Air Force Research Laboratory Hanscom AFB, MA 01731-3010 Bruce R. Bowman 2 Air Force Space Command Colorado Springs,

More information

Atmospheric Drag. Modeling the Space Environment. Manuel Ruiz Delgado. European Masters in Aeronautics and Space

Atmospheric Drag. Modeling the Space Environment. Manuel Ruiz Delgado. European Masters in Aeronautics and Space Atmospheric Drag p. 1/29 Atmospheric Drag Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid April 2008

More information

Propagation of Forecast Errors from the Sun to LEO Trajectories: How Does Drag Uncertainty Affect Conjunction Frequency?

Propagation of Forecast Errors from the Sun to LEO Trajectories: How Does Drag Uncertainty Affect Conjunction Frequency? Propagation of Forecast Errors from the Sun to LEO Trajectories: How Does Drag Uncertainty Affect Conjunction Frequency? John Emmert, Jeff Byers, Harry Warren, and Alan Segerman Naval Research Laboratory

More information

How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres

How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres 13th Annual Summer CubeSat Developers' Workshop Logan, UT 5/26/2016 Marcin

More information

Aerodynamic Lift and Drag Effects on the Orbital Lifetime Low Earth Orbit (LEO) Satellites

Aerodynamic Lift and Drag Effects on the Orbital Lifetime Low Earth Orbit (LEO) Satellites Aerodynamic Lift and Drag Effects on the Orbital Lifetime Low Earth Orbit (LEO) Satellites I. Introduction Carlos L. Pulido Department of Aerospace Engineering Sciences University of Colorado Boulder Abstract

More information

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES Journal of Science and Arts Year 16, No. 1(34), pp. 67-76, 2016 ORIGINAL PAPER ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES MOHAMMED CHESSAB MAHDI 1 Manuscript received: 22.02.2016;

More information

Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24

Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L23705, doi:10.1029/2006gl027185, 2006 Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24

More information

HYPER Industrial Feasibility Study Final Presentation Orbit Selection

HYPER Industrial Feasibility Study Final Presentation Orbit Selection Industrial Feasibility Study Final Presentation Orbit Selection Steve Kemble Astrium Ltd. 6 March 2003 Mission Analysis Lense Thiring effect and orbit requirements Orbital environment Gravity Atmospheric

More information

Atmospheric density calibration using satellite drag observations

Atmospheric density calibration using satellite drag observations Atmospheric density calibration using satellite drag observations Eelco Doornbos (TU Delft) Heiner Klinkrad (ESA/ESOC) Second European Space Weather Week Tuesday, 15 November, 2005 Outline Applications

More information

Comparison Of Atmospheric Density Models in the Thermospheric Region: MSIS-86 and DTM-78

Comparison Of Atmospheric Density Models in the Thermospheric Region: MSIS-86 and DTM-78 Comparison Of Atmospheric Density Models in the Thermospheric Region: MSIS-86 and DTM-78 Eric Sutton April 25, 2003 Abstract: The German Satellite CHAMP (Challenging Minisatellite Payload) has the unique

More information

Lecture 2c: Satellite Orbits

Lecture 2c: Satellite Orbits Lecture 2c: Satellite Orbits Outline 1. Newton s Laws of Mo3on 2. Newton s Law of Universal Gravita3on 3. Kepler s Laws 4. Pu>ng Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences

Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences Thermosphere energy balance Thermosphere climate from satellite drag Attribution of 2008 solar minimum behavior Scenarios

More information

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime Section 13 Orbit Perturbation Orbit Perturbation A satellite s orbit around the Earth is affected by o Asphericity of the Earth s gravitational potential : Most significant o Atmospheric drag : Orbital

More information

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS ARTIFICIAL SATELLITES, Vol. 51, No. 2 2016 DOI: 10.1515/arsa-2016-0005 ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS Lihua Ma, Xiaojun Xu, Feng Pang National Astronomical

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423 Chapter 5 - Part 1 Orbit Perturbations D.Mortari - AERO-43 Orbital Elements Orbit normal i North Orbit plane Equatorial plane ϕ P O ω Ω i Vernal equinox Ascending node D. Mortari - AERO-43 Introduction

More information

A long-term data set of globally averaged thermospheric total mass density

A long-term data set of globally averaged thermospheric total mass density JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 4, doi:.9/9ja4, 9, IN PRESS A long-term data set of globally averaged thermospheric total mass density J. T. Emmert Space Science Division, U.S. Naval Research Laboratory,

More information

Recurrent Geomagnetic Activity Driving a Multi-Day Response in the Thermosphere and Ionosphere

Recurrent Geomagnetic Activity Driving a Multi-Day Response in the Thermosphere and Ionosphere Recurrent Geomagnetic Activity Driving a Multi-Day Response in the Thermosphere and Ionosphere Jeff Thayer Associate Professor Aerospace Engineering Sciences Department University of Colorado Collaborators:

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details

More information

Orbits in Geographic Context. Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements

Orbits in Geographic Context. Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements Orbits in Geographic Context Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements Instantaneous Time Solutions Solution of central force motion, described through two

More information

PRELIMINARY RESULTS TO SUPPORT EVIDENCE OF THERMOSPHERIC CONTRACTION

PRELIMINARY RESULTS TO SUPPORT EVIDENCE OF THERMOSPHERIC CONTRACTION PRELIMINARY RESULTS TO SUPPORT EVIDENCE OF THERMOSPHERIC CONTRACTION Arrun Saunders, Graham G. Swinerd, Hugh G. Lewis School of Engineering Sciences University of Southampton, Highfield, Southampton, SO17

More information

Ionosphere-Thermosphere Basics - I Neutral Atmosphere Vertical Structure

Ionosphere-Thermosphere Basics - I Neutral Atmosphere Vertical Structure 310/1749-19 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 Ionosphere-Thermosphere Basics - I Neutral Atmosphere Vertical Structure Jeffrey M. FORBES Department

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E S 8-9 Part B, Lectures 8-9 23 March, 2017 C O N T E N T S In this lecture, we will look at factors that cause an orbit to change over time orbital

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

ORBIT PERTURBATION ANALYSIS OF WEST FORD NEEDLES CLUSTERS

ORBIT PERTURBATION ANALYSIS OF WEST FORD NEEDLES CLUSTERS AIAA-2000-4236 ORBIT PERTURBATION ANALYI OF WET FORD NEEDLE CLUTER Bruce R. Bowman pace Warfare Center, Analysis and Engineering Division chriever AFB, Colorado William N. Barker, and William G. chick

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

New Satellite Drag Modeling Capabilities

New Satellite Drag Modeling Capabilities 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-47 New Satellite Drag Modeling Capabilities Frank A. Marcos * Air Force Research Laboratory, Hanscom AFB, MA 1731-31

More information

EFFECTS OF DIRECT AND INDIRECT SOLAR RADIATION PRESSURE IN ORBITAL PARAMETERS OF GPS SATELITTES

EFFECTS OF DIRECT AND INDIRECT SOLAR RADIATION PRESSURE IN ORBITAL PARAMETERS OF GPS SATELITTES DOI: 10.2478/auom-2014-0039 An. Şt. Univ. Ovidius Constanţa Vol. 22(2),2014, 141 150 EFFECTS OF DIRECT AND INDIRECT SOLAR RADIATION PRESSURE IN ORBITAL PARAMETERS OF GPS SATELITTES Sergiu Lupu and Eugen

More information

Chapter 2 Empirical Modelling of the Thermosphere

Chapter 2 Empirical Modelling of the Thermosphere Chapter 2 Empirical Modelling of the Thermosphere This chapter will describe the history, context, application and limitations of empirical thermosphere models. Section 2.1 will give an introduction to

More information

Estimating the Error in Statistical HAMR Object Populations Resulting from Simplified Radiation Pressure Modeling

Estimating the Error in Statistical HAMR Object Populations Resulting from Simplified Radiation Pressure Modeling Estimating the Error in Statistical HAMR Object Populations Resulting from Simplified Radiation Pressure Modeling Sven K. Flegel Institute for Aerospace Systems, Technische Universität Braunschweig Hermann-Blenk-Str.

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

SPCE 5065 Spacecraft Interactions Project 28 August Douglas Hine

SPCE 5065 Spacecraft Interactions Project 28 August Douglas Hine SPCE 5065 Spacecraft Interactions Project 28 August 2013 Douglas Hine 1. Briefly describe the MSISE-00 and IRI-2001 models. Describe in terms of the following parameters: data used to develop the model,

More information

PHYSICS 1030 Homework #9

PHYSICS 1030 Homework #9 PHYSICS 1030 Homework #9 (Due Dec. 5, 2018, 6:00 pm) Find the position of the planet Mars at time t D December 5, 2018, 7:50 pm EST. You will do this by following the steps shown below. (a) Convert the

More information

PERFORMANCES OF ATMOSPHERIC DENSITY MODELS DURING SATELLITE REENTRY PREDICTION CAMPAIGNS AT SUNSPOT MINIMUM

PERFORMANCES OF ATMOSPHERIC DENSITY MODELS DURING SATELLITE REENTRY PREDICTION CAMPAIGNS AT SUNSPOT MINIMUM PERFORMANCES OF ATMOSPHERIC DENSITY MODELS DURING SATELLITE REENTRY PREDICTION CAMPAIGNS AT SUNSPOT MINIMUM Carmen Pardini (1), Luciano Anselmo (2) Space Flight Dynamics Laboratory, ISTI/CNR, Via G. Moruzzi

More information

NAVIGATION & MISSION DESIGN BRANCH

NAVIGATION & MISSION DESIGN BRANCH c o d e 5 9 5 National Aeronautics and Space Administration Michael Mesarch Michael.A.Mesarch@nasa.gov NAVIGATION & MISSION DESIGN BRANCH www.nasa.gov Outline Orbital Elements Orbital Precession Differential

More information

Stephen H. Knowles Integrity Applications, Inc. Chantilly, VA apps.com

Stephen H. Knowles Integrity Applications, Inc. Chantilly, VA apps.com Long Term Behavior of the Thermosphere Determined from Satellite Drag Measurements Stephen H. Knowles Integrity Applications, Inc. Chantilly, VA sknowles@integrity- apps.com Abstract Archived satellite

More information

COUNTING DOWN TO THE LAUNCH OF POPACS (POLAR ORBITING PASSIVE ATMOSPHERIC CALIBRATION SPHERES)

COUNTING DOWN TO THE LAUNCH OF POPACS (POLAR ORBITING PASSIVE ATMOSPHERIC CALIBRATION SPHERES) SSC12-X-3 COUNTING DOWN TO THE LAUNCH OF POPACS (POLAR ORBITING PASSIVE ATMOSPHERIC CALIBRATION SPHERES) Walter Holemans Planetary Systems Corporation 2303 Kansas Ave., Silver Spring, MD; 301-495-0737;

More information

Seminar 3! Precursors to Space Flight! Orbital Motion!

Seminar 3! Precursors to Space Flight! Orbital Motion! Seminar 3! Precursors to Space Flight! Orbital Motion! FRS 112, Princeton University! Robert Stengel" Prophets with Some Honor" The Human Seed and Social Soil: Rocketry and Revolution" Orbital Motion"

More information

Spacecraft De-Orbit Point Targeting using Aerodynamic Drag

Spacecraft De-Orbit Point Targeting using Aerodynamic Drag AIAA SciTech Forum 9-13 January 2017, Grapevine, Texas AIAA Guidance, Navigation, and Control Conference AIAA 2017-1268 Spacecraft De-Orbit Point Targeting using Aerodynamic Drag Sanny R. Omar 1 and Riccardo

More information

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute FORMATION FLYING WITH SHEPHERD SATELLITES 2001 NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute WHAT IS FORMATION FLYING? Two or more satellites flying in prescribed orbits at a fixed separation

More information

INTERNAL THALES ALENIA SPACE

INTERNAL THALES ALENIA SPACE Workshop Galileo Galilei (GG) and GGG lab prototype: state of the art and new possibilities Template reference : 100181670S-EN GG error budget from the end-to-end simulator developed at TAS-I Giuseppe

More information

13 th AAS/AIAA Space Flight Mechanics Meeting

13 th AAS/AIAA Space Flight Mechanics Meeting Paper AAS 03-165 COMPARISON OF MSIS AND JACCHIA ATMOSPHERIC DENSITY MODELS FOR ORBIT DETERMINATION AND PROPAGATION Keith Akins, Liam Healy, Shannon Coffey, Mike Picone Naval Research Laboratory 13 th AAS/AIAA

More information

Joule heating and nitric oxide in the thermosphere, 2

Joule heating and nitric oxide in the thermosphere, 2 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015565, 2010 Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth 1 Received 14 April 2010; revised 24 June 2010; accepted

More information

AN INVESTIGATION INTO SATELLITE DRAG MODELING PERFORMANCE. Stephen Russell Mance

AN INVESTIGATION INTO SATELLITE DRAG MODELING PERFORMANCE. Stephen Russell Mance AN INVESTIGATION INTO SATELLITE DRAG MODELING PERFORMANCE BY Stephen Russell Mance Submitted to the graduate degree program in Aerospace Engineering and the Graduate Faculty of the University of Kansas

More information

COE CST Fifth Annual Technical Meeting. Space Environment MMOD Modeling and Prediction. Sigrid Close and Alan Li Stanford University

COE CST Fifth Annual Technical Meeting. Space Environment MMOD Modeling and Prediction. Sigrid Close and Alan Li Stanford University COE CST Fifth Annual Technical Meeting Space Environment MMOD Modeling and Prediction Sigrid Close and Alan Li Stanford University October 27-28, 2015 Arlington, VA October 27-28, 2015 1 Outline Team Members

More information

Fundamentals of Astrodynamics and Applications

Fundamentals of Astrodynamics and Applications Fundamentals of Astrodynamics and Applications Third Edition David A. Vallado with technical contributions by Wayne D. McClain Space Technology Library Published Jointly by Microcosm Press Hawthorne, CA

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Relative Orbital Elements: Theory and Applications

Relative Orbital Elements: Theory and Applications aa.stanford.edu stanford.edu Relative Orbital Elements: Theory and Applications Simone D Amico, PhD Assist. Prof. of Aeronautics and Astronautics Director, Space Rendezvous Laboratory (SLAB) Slide 1 Table

More information

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING Orbit selection and sensor characteristics are closely related to the strategy required to achieve the desired results. Different types

More information

Earth-Centered, Earth-Fixed Coordinate System

Earth-Centered, Earth-Fixed Coordinate System Fundamentals of Global Positioning System Receivers: A Software Approach James Bao-Yen Tsui Copyright 2000 John Wiley & Sons, Inc. Print ISBN 0-471-38154-3 Electronic ISBN 0-471-20054-9 CHAPTER FOUR Earth-Centered,

More information

Where Space Begins: Revisiting the Karman Line. Jonathan McDowell

Where Space Begins: Revisiting the Karman Line. Jonathan McDowell Where Space Begins: Revisiting the Karman Line Jonathan McDowell Some questions one might ask: - Where should the legal boundary of space be? - Should there be a defined legal boundary at all? Some questions

More information

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators by L. Anselmo and C. Pardini (Luciano.Anselmo@isti.cnr.it & Carmen.Pardini@isti.cnr.it)

More information

Dilution of Disposal Orbit Collision Risk for the Medium Earth Orbit Constellations

Dilution of Disposal Orbit Collision Risk for the Medium Earth Orbit Constellations SMC-TR-19 AEROSPACE REPORT NO. TR-2005(8506)-2 Dilution of Disposal Orbit Collision Risk for the Medium Earth Orbit Constellations 13 May 2005 Prepared by A. B. JENKIN Astrodynamics Department Systems

More information

PHYSICS 1030 Homework #9

PHYSICS 1030 Homework #9 PHYSICS 1030 Homework #9 (Due Dec. 6, 2017) Find the position of the planet Mars at time t D December 6, 2017, 5:00 am EST. You will do this by following the steps shown below. (a) Convert the time t to

More information

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming IEPC-2015-299 /ISTS-2015-b-299 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Statistical methods to address the compliance of GTO with the French Space Operations Act

Statistical methods to address the compliance of GTO with the French Space Operations Act Statistical methods to address the compliance of GTO with the French Space Operations Act 64 th IAC, 23-27 September 2013, BEIJING, China H.Fraysse and al. Context Space Debris Mitigation is one objective

More information

Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle

Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053563, 2012 Sensitivity of equatorial mesopause temperatures to the 27-day solar cycle C. von Savigny, 1 K.-U. Eichmann, 2 C. E. Robert, 3 J.

More information

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Makoto TAGAWA Kyushu University Toshiya HANADA Kyushu University Kozue HASHIMOTO, Yukihito KITAZAWA, Aritsune KAWABE IHI

More information

THERMOSPHERE DENSITY CALIBRATION IN THE ORBIT DETERMINATION OF ERS-2 AND ENVISAT

THERMOSPHERE DENSITY CALIBRATION IN THE ORBIT DETERMINATION OF ERS-2 AND ENVISAT THERMOSPHERE DENSITY CALIBRATION IN THE ORBIT DETERMINATION OF ERS-2 AND ENVISAT Eelco Doornbos 1, Heiner Klinkrad 2, Remko Scharroo 3, and Pieter Visser 4 1 DEOS, TU Delft, Delft, The Netherlands 2 ESA/ESOC,

More information

Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities

Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities Earth Planets Space, 60, 601 606, 2008 Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities J. Park 1,2, Y.-J. Moon 3, K.-H.

More information

Satellite meteorology

Satellite meteorology GPHS 422 Satellite meteorology GPHS 422 Satellite meteorology Lecture 1 6 July 2012 Course outline 2012 2 Course outline 2012 - continued 10:00 to 12:00 3 Course outline 2012 - continued 4 Some reading

More information

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration Mats Rosengren European Space Operations Centre Robert Bosch Str 5 D64293 Darmstadt Germany Email: mrosengr@esoc.esa.de Abstract

More information

Experiment Design and Performance. G. Catastini TAS-I (BUOOS)

Experiment Design and Performance. G. Catastini TAS-I (BUOOS) Experiment Design and Performance G. Catastini TAS-I (BUOOS) 10 EP and the GRT Einstein s General Relativity Theory Weak Equivalence Principle: all test particles at the same space-time point in a given

More information

Creating Satellite Orbits

Creating Satellite Orbits Exercises using Satellite ToolKit (STK) vivarad@ait.ac.th Creating Satellite Orbits 1. What You Will Do Create a low-earth orbit (LEO) satellite Create a medium-earth orbit (MEO) satellite Create a highly

More information

The solar and geomagnetic inputs into the JB2008 thermospheric density model for use by CIRA08 and ISO 14222!

The solar and geomagnetic inputs into the JB2008 thermospheric density model for use by CIRA08 and ISO 14222! The solar and geomagnetic inputs into the JB2008 thermospheric density model for use by CIRA08 and ISO 14222! COSPAR 2010 Session C0.1 Paper July 20, 2010 W. Kent Tobiska, Space Environment Technologies!

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

PW-Sat two years on orbit.

PW-Sat two years on orbit. 13th of February 2014 is the second anniversary of launch of the first polish student-made satellite PW-Sat. Currently Students' Space Association on Warsaw University of Technology is working on another

More information

REVIEW OF RESULTS ON ATMOSPHERIC DENSITY CORRECTIONS 1

REVIEW OF RESULTS ON ATMOSPHERIC DENSITY CORRECTIONS 1 REVIEW OF RESULTS ON ATMOSPHERIC DENSITY CORRECTIONS 1 Vasiliy S. YURASOV 2, Andrey I. NAZARENKO 3, Kyle T. ALFRIEND 4, Paul J. CEFOLA 5 2 Space Informatics Analytical Systems (KIA Systems), 20 Gjelsky

More information

Celestial Mechanics and Satellite Orbits

Celestial Mechanics and Satellite Orbits Celestial Mechanics and Satellite Orbits Introduction to Space 2017 Slides: Jaan Praks, Hannu Koskinen, Zainab Saleem Lecture: Jaan Praks Assignment Draw Earth, and a satellite orbiting the Earth. Draw

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations.

Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations. W.K.

More information

Orbit Definition. Reference Vector. Vernal (March) Equinox Vector. Sun Vector

Orbit Definition. Reference Vector. Vernal (March) Equinox Vector. Sun Vector Simulation: TMG Thermal Analysis User's Guide Orbit Definition TMG can model three types of orbits: Beta Angle, Geostationary and Classical. For Earth, three special classical orbits are already partially

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

FORECASTING OF SPACE ENVIRONMENT PARAMETERS FOR SATELLITE AND GROUND SYSTEM OPERATIONS. W. Kent Tobiska a

FORECASTING OF SPACE ENVIRONMENT PARAMETERS FOR SATELLITE AND GROUND SYSTEM OPERATIONS. W. Kent Tobiska a AIAA 2003-1224 FORECASTING OF SPACE ENVIRONMENT PARAMETERS FOR SATELLITE AND GROUND SYSTEM OPERATIONS W. Kent Tobiska a ABSTRACT The E10.7 solar proxy has been developed to characterize the energy input

More information

Lecture 1d: Satellite Orbits

Lecture 1d: Satellite Orbits Lecture 1d: Satellite Orbits Outline 1. Newton s Laws of Motion 2. Newton s Law of Universal Gravitation 3. Kepler s Laws 4. Putting Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

Analytical Method for Space Debris propagation under perturbations in the geostationary ring

Analytical Method for Space Debris propagation under perturbations in the geostationary ring Analytical Method for Space Debris propagation under perturbations in the geostationary ring July 21-23, 2016 Berlin, Germany 2nd International Conference and Exhibition on Satellite & Space Missions Daniel

More information

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO

EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR ALBEDO ISSN 76-58 nd International Congress of Mechanical Engineering (COBEM 3) November 3-7, 3, Ribeirão Preto, SP, Brazil Copyright 3 by ABCM EVALUATION OF A SPACECRAFT TRAJECTORY DEVIATION DUE TO THE LUNAR

More information

AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION.

AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION. AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION Emmanuel GOGIBUS (1), Hervé CHARBONNEL (2), Patrick DELPY (3) (1) Astrium Space Transportation, 66 route de Verneuil,

More information

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation. Interplanetary Path Early Design Tools at Space Transportation Nathalie DELATTRE Space Transportation Page 1 Interplanetary missions Prime approach: -ST has developed tools for all phases Launch from Earth

More information

Atmospheric escape. Volatile species on the terrestrial planets

Atmospheric escape. Volatile species on the terrestrial planets Atmospheric escape MAVEN s Ultraviolet Views of Hydrogen s Escape from Mars Atomic hydrogen scattering sunlight in the upper atmosphere of Mars, as seen by the Imaging Ultraviolet Spectrograph on NASA's

More information

Trends in the middle atmosphere from ground based sensors at mid and high latitudes

Trends in the middle atmosphere from ground based sensors at mid and high latitudes Trends in the middle atmosphere from ground based sensors at mid and high latitudes Gunter Stober 1,2, F-J Lübken 1, U. Berger 1, P. Brown 2,, J. Fiedler 1, G. Baumgarten 1, R. Latteck 1, J.L. Chau 1 1

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

A.I. Nazarenko 1

A.I. Nazarenko 1 Model Study of the Possibilities of Space Debris Cataloging A.I. Nazarenko 1 anazarenko32@mail.ru The objective of this paper is the estimation of the characteristics of the measuring means and the software,

More information

SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY

SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY --~'- SECTION 9 LAUNCH TRAJECTORY 9.1 MISSION PROFILE IUE was launched by a three-stage Delta 2914 launch vehicle from Cape Kennedy on January 26, 1978 at l7 h

More information

A non-linear simulator written in C for orbital spacecraft rendezvous applications.

A non-linear simulator written in C for orbital spacecraft rendezvous applications. A non-linear simulator written in C for orbital spacecraft rendezvous applications. Paulo Ricardo Arantes Gilz To cite this version: Paulo Ricardo Arantes Gilz. A non-linear simulator written in C for

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation

Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013081, 2008 Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation Yue Deng, 1 Aaron J. Ridley,

More information

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: ,

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: , RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION Daniel X. Junker (1) (1) LSE Space GmbH, Argelsrieder Feld 22, 82234 Wessling, Germany, Phone: +49 160 9111 6696, daniel.junker@lsespace.com Abstract:

More information

arxiv: v1 [astro-ph.ep] 23 May 2018

arxiv: v1 [astro-ph.ep] 23 May 2018 Radar-based Re-Entry Predictions with very limited tracking capabilities: the GOCE case study arxiv:1805.09171v1 [astro-ph.ep] 23 May 2018 S. Cicalò Space Dynamics Services S.r.l., via Mario Giuntini 63,

More information

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA Felipe Jiménez (1), Francisco Javier Atapuerca (2), José María de Juana (3) (1) GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain, e-mail: fjimenez@gmv.com

More information

An Optical Survey for Space Debris on Highly Eccentric MEO Orbits

An Optical Survey for Space Debris on Highly Eccentric MEO Orbits An Optical Survey for Space Debris on Highly Eccentric MEO Orbits T. Schildknecht 1), A. Hinze 1), A. Vananti 1), T. Flohrer ) 1) Astronomical Institute, University of Bern, Sidlerstr. 5, CH-31 Bern, Switzerland

More information

North Korea Satellite Launch

North Korea Satellite Launch North Korea Satellite Launch Let us apply ASTE-520 North Korea Satellite Launch Mike Gruntman 2013 Mike Gruntman, Spacecraft Design, 2013. Special Section: Let us apply ASTE 520 Spacecraft Design North

More information