Investigation of a Cs137 and Ba133 runs. Michael Dugger and Robert Lee

Size: px
Start display at page:

Download "Investigation of a Cs137 and Ba133 runs. Michael Dugger and Robert Lee"

Transcription

1 Investigation of a Cs137 and Ba133 runs Michael Dugger and Robert Lee 1

2 Cs137 Using run 149 One million triggers Doing a quick analysis with fits: Not using Kei s noise corrections at the moment 2

3 ADC ADC ADC ADC ADC ADC First six fits time (ns) time (ns) time (ns) time (ns) Start time of event pulse time (ns) time (ns) 3

4 max adc baseline (from fit) ADC height versus baseline Baseline adc (from fit) Can t calculate the correct baseline for these events (start time < 0) 4

5 max ADC baseline (from fit) ADC height versus baseline with timing cut Baseline ADC (from fit) Baseline ADC (from fit) No timing cut Required start time of event pulse to be greater than 20 ns 5

6 ADC height versus baseline with timing cut Accidentals below the threshold Baseline ADC (from fit) 6

7 Cs137 spectrum Data Monte Carlo with 10 kev energy smear Accidentals ADC The shapes do not agree Energy (MeV) Need to figure out how to modify Monte Carlo to look like real data 7

8 Lower energy modification to Monte Carlo The Monte Carlo does not take the fluctuating baseline into account Need to find the threshold and baseline parameters 8

9 ADC Threshold time (ns) Threshold looks to be at about

10 max ADC baseline (from fit) Baseline Took x-projection for y > 150 and fit to Gaussian Baseline ADC (from fit) Baseline: Center = σ = 11.3 Baseline ADC (from fit) 10

11 Cs137 spectrum with baseline and threshold Data Monte Carlo Accidentals ADC Energy (MeV) The shapes still do not agree, but low energy is looking a bit better 11

12 Higher energy modification to Monte Carlo Tried putting in thin layers of aluminum between source and detector but the agreement between Monte Carlo and data did not get much better Decided to look at varying the depth of the depletion region 12

13 Depletion region (slide 1) The depletion region is where we can convert energy deposition to voltage. Outside the depletion region the detector is blind (no potential difference to sweep the charges) Applying a reverse bias potential to the detector causes the depletion region to grow We are fully depleted with a bias potential of 165 V (but run the detector at the manufacturer s suggested 200V) 13

14 Depletion region (slide 2) Our detector has a thin highly-doped p-type semi conductor on the ring side with the bulk of the detector being lightly doped n-type The dependence of the voltage to the depletion depth D is D = 0.53 [ρ n V] 1/2 μm, where is the resistivity in Ωcm and V is in volts Assuming that we are fully depleted at V f = 165 (D f = 1000 μm) then D = [V/165] 1/2 mm 14

15 Monte Carlo with different depths of depletion 15

16 Cs137 spectrum with 500 μm depletion Data Monte Carlo Accidentals ADC Energy (MeV) Not a perfect agreement on the shapes but very suggestive It is as though we have only half the depletion depth which would be equivalent to having only about 40 volts of bias applied 16

17 Rates Assume: 1 μci Cs137 source (2.22x10 6 dpm) Source 3.5 cm from detector Rate with baseline fluctuation, threshold and full depletion: 249k/minute Rate with baseline fluctuation, threshold and D = 500 μm : 19.0k/minute Time to one million events T 1M : With baseline fluctuation, threshold and full depletion: T 1M = 4.02 minutes With baseline fluctuation, threshold and D = 500 μm : T 1M = 52.5 minutes 17

18 Ba133 Used run 153 Only total events taken over ~30 hours! 18

19 max adc baseline (from fit) ADC height versus baseline with timing cut for Ba133 Baseline adc (from fit) Baseline adc (from fit) No timing cut Required start time to be greater than 20 ns Threshold too high Timing cut kills too many events of interest Will not use timing cut for the Ba133 source data 19

20 Threshold and baseline fluctuations for Ba133 Threshold for run 153 was set at a higher level than for the Cs137 run analyzed thus far (run 149) Did same sort of analysis for run 153 as for run 149 to get the threshold and baseline parameters 20

21 Ba133 spectrum with 500 μm depletion Data? Monte Carlo Accidentals Energy (MeV) Energy (MeV) Used old energy calibrations Plots look similar but the data has much more background 21

22 Rates Assume: 1 μci Ba133 source (2.22x10 6 dpm) Source 3.5 cm from detector Rate with baseline fluctuation, threshold and full depletion: 1.45k/minute Rate with baseline fluctuation, threshold and D = 500 μm : 11.7/minute Time to events T : With baseline fluctuation, threshold and full depletion: T = 26.8 minutes With baseline fluctuation, threshold and D = 500 μm : T = 55.5 hours Longer time than what Kei saw but there was a bunch of unidentified background in the energy spectrum 22

23 A note on rates for the Am241 source When we have D = 500 μm and all α s are incident upon the sector-side face of the detector, there are no events seen. When we have D = 500 μm and α s are generated from 0 to 180 degrees in polar angle, we get a detection efficiency of 6.68x10-4 The few event we see are from α s that hit the inner edge of the detector. Since a μci is very large (2.22*10 6 dpm) the rate of α events detected with D = 500 μm using a 1 μci source is 1480/minute (or [1 million events]/[656 minutes]). 23

24 New or old effect? If this is an old effect, shouldn t we have seen this sort of effect in the Spring run? 24

25 Spring run energy deposition and rates Needed to shift the energy deposition of the data by 6% to get good agreement between data and Monte Carlo The rates between the pair spectrometer and TPOL where consistent to within 1.1 standard deviations 25

26 Monte Carlo of triplets E dep Blue: Full depletion Red: D = 500 μm E dep (MeV) If D = 500 μm I would have had to shift the energy deposition of the data by about a factor of 2 to get the peaks to line up and I would not have been able to get consistency in rates between TPOL and the pair spectrometer The Spring data appears to have TPOL with nearly full depletion 26

27 Diagnostics We need to figure out what is going wrong Potential diagnostics: HV with signal on o-scope Rates The smoking-gun test (source on ring-side) 27

28 HV, capacitance and noise level Our detector acts as a parallel plate capacitor (C = ε area/separation), where the dielectric is the depletion region The separation between the plates is the depth of depletion (D) The preamps noise is highly dependent upon the input capacitance (mostly the capacitance of the detector) As the bias is increased, the depletion depth grows and the capacitance diminishes, which causes the noise level to decrease The noise level can be seen as a proxy for the depletion depth 28

29 Ripple and other noise as function of HV (slide 1) 10 mv/div 10 ms/div HV = 0V Using Po210 source HV = 20V HV = 40V HV = 60V 29

30 Ripple and other noise as function of HV (slide 2) 10 mv/div 10 ms/div HV = 80V HV = 100V HV = 120V HV = 140V 30

31 Ripple and other noise as function of HV (slide 3) 10 mv/div 10 ms/div HV = 160V HV = 180V α HV = 200V HV = 200V 200 mv/div & 1 µs/div 31

32 HV check The noise level at 40 volts is much higher than at the 200 volts we run at Make sure that as you go up in bias voltage that the noise becomes more suppressed (until about 120 volts) 32

33 Rates Check the distance of source to detector and the activity of the source For a 1 μci Ba133 source placed 3.5 cm from the detector, the rate should be something like 1.45 k/minute For a 1 μci Cs137 source placed 3.5 cm from the detector, the rate should be something like 249 k/minute The rates give us information that is valuable. So even if the rates are small, they should be recorded 33

34 The smoking-gun test (source on ring side) The depletion region starts at the interface of the p- and n-type material The p-type material is on the ring side and is highly doped and very thin. The depletion depth extends into the bulk n-type material from the ring side. Thus, the behavior of the detector, when not fully depleted, is very different for particles incident on the ring side than if the incoming particles were incident upon the sector side 34

35 Comparison of results on source placement Source on sector side Source on ring side For this study I changed the smearing to be 12 kev A problem of having only a partial depletion will show up clearly when comparing results of sector/ring side placement of source 35

36 Title 36

Triplet polarimeter study

Triplet polarimeter study Triplet polarimeter study Michael Dugger* Arizona State University *Work at ASU is supported by the U.S. National Science Foundation M. Dugger, February 2012 1 Outline Triplet production Potential detector

More information

The Hermes Recoil Silicon Detector

The Hermes Recoil Silicon Detector The Hermes Recoil Silicon Detector Introduction Detector design considerations Silicon detector overview TIGRE microstrip sensors Readout electronics Test beam results Vertex 2002 J. Stewart DESY Zeuthen

More information

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d)

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d) Homework 2 Due Monday, 14 June 1. There is a small number of simple conductor/dielectric configurations for which we can relatively easily find the capacitance. Students of electromagnetics should be sure

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

Capacitance of the GLAST Prototype Detectors

Capacitance of the GLAST Prototype Detectors SCIPP 96/75 July 1996 Capacitance of the GLAST Prototype Detectors Chastity Bedonie, Zach Dick, Robert Johnson U.C. Santa Cruz 9 July, 1996 About 40 single-sided silicon microstrip detectors of 500 µm

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options

Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options Introduction The analog HCAL group of the Calice collaboration built a small scintillator

More information

Preliminary Results From The First Flight of Atic: The Silicon Matrix

Preliminary Results From The First Flight of Atic: The Silicon Matrix Preliminary Results From The First Flight of Atic: The Silicon Matrix J. H. Adams, Jr. (1) for the ATIC Collaboration (1) NASA Marshall Space Flight Center, Huntsville, AL 35812, USA james.h.adams@msfc.nasa.gov,

More information

PMT Charge Response and Reconstruction of Position and Energy for a Reactor θ 13 Experiment

PMT Charge Response and Reconstruction of Position and Energy for a Reactor θ 13 Experiment PMT Charge Response and Reconstruction of Position and Energy for a Reactor θ 13 Experiment Josh Klein April 11, 2004 1 Introduction I have taken a first look at the effects of the PMT charge response

More information

Status Report: Charge Cloud Explosion

Status Report: Charge Cloud Explosion Status Report: Charge Cloud Explosion J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg Detector laboratory 1. Introduction and Motivation. Set-up available for measurement 3. Measurements

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

Impact of high photon densities on AGIPD requirements

Impact of high photon densities on AGIPD requirements Impact of high photon densities on AGIPD requirements Julian Becker University of Hamburg Detector Laboratory new data 1. Heating estimations 2. Confined breakdown 3. Range switching in adjacent pixels

More information

Development of Radiation Hard Si Detectors

Development of Radiation Hard Si Detectors Development of Radiation Hard Si Detectors Dr. Ajay K. Srivastava On behalf of Detector Laboratory of the Institute for Experimental Physics University of Hamburg, D-22761, Germany. Ajay K. Srivastava

More information

High Purity Germanium Detector Calibration at ISOLDE

High Purity Germanium Detector Calibration at ISOLDE High Purity Germanium Detector Calibration at ISOLDE Guðmundur Kári Stefánsson Summer Student of Maria Borge September 5, 2013 Abstract: This Summer Student Project involved the test and calibration of

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Impact of high photon densities on AGIPD requirements

Impact of high photon densities on AGIPD requirements Impact of high photon densities on AGIPD requirements Julian Becker University of Hamburg Detector Laboratory 1. Si-type influence on charge collection time 2. Measurements on charge collection time 3.

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg Pulse-shape shape analysis with a Broad-energy Ge-detector Marik Barnabé é Heider Dušan Budjáš Oleg Chkvorets Stefan Schönert MPI für f r Kernphysik Heidelberg Outline 1. Motivation and goals 2. BEGe detector

More information

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications

Application Note. The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Application Note The Continuous Air Monitoring (CAM) PIPS Detector Properties and Applications Introduction The increasing demand for safety in nuclear installations calls for continuous survey of airborne

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Digital Gamma-ray Spectroscopy & Imaging with Semiconductor detectors Frontiers of gamma-ray spectroscopy

Digital Gamma-ray Spectroscopy & Imaging with Semiconductor detectors Frontiers of gamma-ray spectroscopy Digital Gamma-ray Spectroscopy & Imaging with Semiconductor detectors Frontiers of gamma-ray spectroscopy AGATA GRETA Dr Andy Boston ajboston@liv.ac.uk And its applications The AGATA Concept Without Compton

More information

Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker. Anna Macchiolo. CMS Collaboration

Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker. Anna Macchiolo. CMS Collaboration Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker Anna Macchiolo Universita di Firenze- INFN Firenze on behalf of the CMS Collaboration 6 th International Conference on

More information

The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope The RC Circuit INTRODUCTION The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

COMPTON SCATTERING OF GAMMA RAYS

COMPTON SCATTERING OF GAMMA RAYS COMPTON SCATTERING OF GAMMA RAYS v2.7 Last revised: R. A. Schumacher, January 2017 I. INTRODUCTION Compton scattering is the name given to the scattering of high-energy gamma rays from electrons. The gamma

More information

The GERDA Phase II detector assembly

The GERDA Phase II detector assembly The GERDA Phase II detector assembly Tobias Bode 1, Carla Cattadori 2, Konstantin Gusev 1, Stefano Riboldi 2, Stefan Schönert 1, Bernhard Schwingenheuer 3 und Viktoria Wagner 3 for the GERDA collaboration

More information

Commissioning of the ATLAS LAr Calorimeter

Commissioning of the ATLAS LAr Calorimeter Commissioning of the ATLAS LAr Calorimeter S. Laplace (CNRS/LAPP) on behalf of the ATLAS Liquid Argon Calorimeter Group Outline: ATLAS in-situ commissioning steps Introduction to the ATLAS LAr Calorimeter

More information

arxiv: v2 [physics.ins-det] 8 Feb 2013

arxiv: v2 [physics.ins-det] 8 Feb 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:1302.0278v2 [physics.ins-det] 8 Feb 2013 Investigation of gamma ray detection performance of thin LFS scintillator with MAPD readout E.Guliyev a, F.Ahmadov

More information

Calorimeter test-beam results with APDs

Calorimeter test-beam results with APDs LCWS 05 Calorimeter test-beam results with APDs J.Cvach Institute of Physics AS CR, Prague Test set-up, APD, preamplifiers Calibration Results Future options with APDs Analog HCAL MiniCal test calorimeter

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Gas-filled Detectors

Gas-filled Detectors Gas-filled Detectors Radiation Gas-filled Detectors In a gas-filled detector, the io9nization provides electrons and positive ions. The acceleration of these charged particles obeys the simple equation

More information

Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information

BEGe Detector studies update

BEGe Detector studies update BEGe Detector studies update Performance and analysis Dušan Budjáš Stefan Schönert Mikael Hult* MPI für Kernphysik Heidelberg * IRMM Geel MAX-PLANCK-INSTITUTNSTITUT FÜR KERNPHYSIK Outline 1. BEGe publication

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

Development of a Radiation Hard CMOS Monolithic Pixel Sensor

Development of a Radiation Hard CMOS Monolithic Pixel Sensor Development of a Radiation Hard CMOS Monolithic Pixel Sensor M. Battaglia 1,2, D. Bisello 3, D. Contarato 2, P. Denes 2, D. Doering 2, P. Giubilato 2,3, T.S. Kim 2, Z. Lee 2, S. Mattiazzo 3, V. Radmilovic

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

RTPC Simulation Studies for Tagged Deep Inelastic Experiment. Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16

RTPC Simulation Studies for Tagged Deep Inelastic Experiment. Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16 RTPC Simulation Studies for Tagged Deep Inelastic Experiment Rachel Montgomery SBS Collaboration Meeting, Jefferson Lab, 22/07/16 1 Tagged DIS Measurement with RTPC and SBS Measure DIS cross section, detecting

More information

Search for heavy neutrinos in kaon decays

Search for heavy neutrinos in kaon decays Search for heavy neutrinos in kaon decays L. Littenberg (work mainly done by A.T.Shaikhiev INR RAS) HQL-2016 Outline Motivation Previous heavy neutrino searches Experiment BNL-E949 Selection criteria Efficiency

More information

Performance of a Si PIN photodiode at low temperatures and in high magnetic fields

Performance of a Si PIN photodiode at low temperatures and in high magnetic fields Performance of a Si PIN photodiode at low temperatures and in high magnetic fields Frederik Wauters *, Ilya Kraev *, Nathal Severijns *, Sam Coeck *, Michael Tandecki *, Valentin Kozlov *, Dalibor Zákoucký

More information

Cavern background measurement with the ATLAS RPC system

Cavern background measurement with the ATLAS RPC system Cavern background measurement with the ATLAS RPC system INFN and University of Roma Tor Vergata E-mail: aielli@roma2.infn.it On behalf of the ATLAS collaboration The measurement of cavern background has

More information

CHAPTER 18 ELECTRIC POTENTIAL

CHAPTER 18 ELECTRIC POTENTIAL CHAPTER 18 ELECTRIC POTENTIAL BASIC CONCEPTS: ELECTRIC POTENTIAL ENERGY ELECTRIC POTENTIAL ELECTRIC POTENTIAL GRADIENT POTENTIAL DIFFERENCE POTENTIAL ENERGY 1 h PE = U = mgh Or PE U KE K And U + K = total

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Latest Results from the OPERA Experiment (and new Charge Reconstruction) Latest Results from the OPERA Experiment (and new Charge Reconstruction) on behalf of the OPERA Collaboration University of Hamburg Institute for Experimental Physics Overview The OPERA Experiment Oscillation

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs 1 V. Semiconductor Detectors V.1. Principles Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited positive and negative charge pairs Charges move in field

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) e - e - dot C g V g A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. 2) the dot is separated from

More information

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Phys316 Exploration 2: Verifying Stefan-Boltzmann Relationship Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Where A is the effective radiating area,

More information

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 Your Name: ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 1. Review questions a) Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. Indicate

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

No prep assignment to do, but here are four questions anyway.

No prep assignment to do, but here are four questions anyway. Preparation Assignments for Homework #3 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3,4 February Lesson 2.5 No prep assignment to

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

STATUS OF THE CALIBRATION

STATUS OF THE CALIBRATION STATUS OF THE CALIBRATION R.Santorelli (on the behalf of the WG) Content of the talk Introduction Calibration system Estimation of the optimal source position Strength of the source Background from the

More information

CMS Pixel Simulations

CMS Pixel Simulations CMS Pixel Simulations Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University morris@jhu.edu 5 November 2002 Motivation for Detailed Sensor Simulation The Official CMS Monte Carlo uses an

More information

4) A 3.0 pf capacitor consists of two parallel plates that have surface charge densities of 1.0

4) A 3.0 pf capacitor consists of two parallel plates that have surface charge densities of 1.0 Quantitative 3) Two parallel plates are separated by 1.0 mm. If the potential difference between them is 2.0 V, what is the magnitude of their surface charge densities? A) 18 nc/m2 4) A 3.0 pf capacitor

More information

Chapter 20 Electric Potential and Electric Potential Energy

Chapter 20 Electric Potential and Electric Potential Energy Chapter 20 Electric Potential and Electric Potential Energy 1 Overview of Chapter 20 Electric Potential Energy and the Electric Potential! Energy Conservation! The Electric Potential of Point Charges!

More information

RANGE OF ALPHAS. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

RANGE OF ALPHAS. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 10/20/10) RANGE OF ALPHAS Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A silicon solid state detector is used to measure the energy of alphas which

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct. M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti Laboratori Nazionali del Sud (LNS) INFN University of Catania IPRD08 1-4 Oct. Siena Silicon carbide (SiC) is expected to be applied to high-power

More information

Solid State Detectors

Solid State Detectors Solid State Detectors Most material is taken from lectures by Michael Moll/CERN and Daniela Bortoletto/Purdue and the book Semiconductor Radiation Detectors by Gerhard Lutz. In gaseous detectors, a charged

More information

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Lecture 15 OUTLINE MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor Electrostatics Charge vs. voltage characteristic Reading: Chapter 6.1 6.2.1 EE15 Spring 28 Lecture

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process

Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process Monte Carlo simulation and experimental study of stopping power of lithography resist and its application in development of a CMOS/EE process Predrag Habaš, Roman Stapor, Alexandre Acovic and Maurice Lobet

More information

Modeling radon daughter deposition rates for low background detectors

Modeling radon daughter deposition rates for low background detectors Modeling radon daughter deposition rates for low background detectors Shawn Westerdale LANL, MIT Student Symposium 2009 0 LA-UR : 09-04881 Shawn Westerdale (LANL, MIT) P-23 Weak Interactions Team Student

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B EECS 16A Spring 2018 Designing Information Devices and Systems I Discussion 8B 1. Bio-Molecule Detector We ve already seen how to build a bio-molecule detector where bio-molecules change the resistance

More information

Aspects of radiation hardness for silicon microstrip detectors

Aspects of radiation hardness for silicon microstrip detectors Aspects of radiation hardness for silicon microstrip detectors Richard Wheadon, INFN Pisa, Via Livornese 1291, S. Piero a Grado, Pisa, Italy Abstract The ways in which radiation damage affects the properties

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Midterm I - Solutions

Midterm I - Solutions UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I - Solutions Name: SID: Grad/Undergrad: Closed

More information

The Mössbauer Effect

The Mössbauer Effect Experimental Physics V85.0112/G85.2075 The Mössbauer Effect Spring, 2005 Tycho Sleator, David Windt, and Burton Budick Goals The main goal of this experiment is to exploit the Mössbauer effect to measure

More information

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

The Basic Capacitor. Water Tower / Capacitor Analogy. Partnering With Our Clients for Combined Success CAPACITOR BASICS I How s Work The Basic A capacitor is an electrical device which serves to store up electrical energy for release at a predetermined time. In its most basic form, it is comprised of three

More information

Precision neutron flux measurement with a neutron beam monitor

Precision neutron flux measurement with a neutron beam monitor Journal of Physics: Conference Series OPEN ACCESS Precision neutron flux measurement with a neutron beam monitor To cite this article: T Ino et al 2014 J. Phys.: Conf. Ser. 528 012039 View the article

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information

Chapter 24: Capacitance and dielectrics

Chapter 24: Capacitance and dielectrics Chapter 24: Capacitance and dielectrics Capacitor: a device store electric energy How to define capacitance In parallel and/or in series Electric energy stored in a capacitor Dielectric materials Capacitor:

More information

Radioactivity APPARATUS INTRODUCTION PROCEDURE

Radioactivity APPARATUS INTRODUCTION PROCEDURE Radioactivity APPARATUS. Geiger Counter / Scaler. Cesium-7 sealed radioactive source. 0 pieces of paper. 8 aluminum plates. 0 lead plates 6. Graph paper - log-log and semi-log 7. Survey Meter ( unit for

More information

Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System

Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System Comparison of Partial Discharge Characteristics for Different Defect Types in SF 6 Gas Insulation System D.A. Mansour, T. Okusu, K. Nishizawa, H. Kojima, N. Hayakawa, F. Endo and H. Okubo Nagoya University

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

Physics Exam II

Physics Exam II Physics 208 - Exam II Spring 2018 (all sections) - March 5, 2018. Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You

More information

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M. Summary of readout test of DSG prototype with IPA4 cold preamp C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M. Schircenko Outline Summary of IPA4 circuit (see Nov06 Gerda meeting) The GERDA

More information

Lecture #27. The Short Channel Effect (SCE)

Lecture #27. The Short Channel Effect (SCE) Lecture #27 ANNOUNCEMENTS Design Project: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K. ( β dc > 45, f T > 18 GHz, V A > 9 V and V punchthrough > 9 V )

More information

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter Lab NUC Determination of Half-Life with a Geiger-Müller Counter Object: Apparatus: To understand the concept of half-life; to become familiar with the use of a Geiger-Müller counter; to determine the half-lives

More information

Pixel Capacitance Planar and DNW-Sensors. Hans Krüger, Bonn University

Pixel Capacitance Planar and DNW-Sensors. Hans Krüger, Bonn University Pixel Capacitance Planar and D-Sensors Hans Krüger, Bonn University Planar Pixel Sensor Capacitance Total sensor capacitance C d = C a + C a + C p A Capacitance to backplane C a ε r d (parallel plate capacitor)

More information

The KATRIN experiment: calibration & monitoring

The KATRIN experiment: calibration & monitoring The KATRIN experiment: calibration & monitoring NPI Rez near Prague content KATRIN overview < Am/Co measurements at Mainz < first Rb/Kr measurements at Mainz < multiple background events < the KATRIN experiment

More information

Chap. 1 (Introduction), Chap. 2 (Components and Circuits)

Chap. 1 (Introduction), Chap. 2 (Components and Circuits) CHEM 455 The class describes the principles and applications of modern analytical instruments. Emphasis is placed upon the theoretical basis of each type of instrument, its optimal area of application,

More information

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Module No. #05 Lecture No. #02 FETS and MOSFETS (contd.) In the previous lecture, we studied the working

More information

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction 4- P-N Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

Dead Layer and Active Volume Determination for GERDA Phase II

Dead Layer and Active Volume Determination for GERDA Phase II Dead Layer and Active Volume Determination for GERDA Phase II Björn Lehnert on behalf of the GERDA Collaboration DPG Spring Meeting 05/02/2013 Dresden Institut für Kern- und Teilchenphysik Dead Layer (DL)

More information

SiPM cryogenic operation down to 77 K

SiPM cryogenic operation down to 77 K SiPM cryogenic operation down to 77 K D. Prêle 1, D. Franco 1, D. Ginhac 2, K. Jradi 2,F.Lebrun 1, S. Perasso 1, D. Pellion 2, A. Tonazzo 1, F. Voisin 1, 1 APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu,

More information

Time-dependent Monte Carlo Simulation

Time-dependent Monte Carlo Simulation Computational Electronics Group University of Illinois Time-dependent Monte Carlo Simulation Umberto Ravaioli Beckman Institute and Department of Electrical and Computer Engineering University of Illinois

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Harold Rothfuss a,b, Larry Byars c, Michael E. Casey a, Maurizio

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Chapter 24: Capacitance and Dielectrics

Chapter 24: Capacitance and Dielectrics Chapter 24: Capacitance and Dielectrics When you compress/stretch a spring, we are storing potential energy This is the mechanical method to store energy It is also possible to store electric energy as

More information

Mid Term Exam. Electricity and Magnetism PHY204

Mid Term Exam. Electricity and Magnetism PHY204 Attempt all Question Time Allowed: 2h 15 minutes Mid Term Exam Electricity and Magnetism PHY204 Instructor: Dr. Anzar Khaliq You are provided with a formula sheet. No other formulas outside of that sheet

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION Joel Ennis, Xiao Hui Yang, Fred MacDougall, Ken Seal General Atomics Energy Products General Atomics

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information