SAMPLE First Midterm Exam

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SAMPLE First Midterm Exam"

Transcription

1 Astronomy 1000 Dr C. Barnbaum SAMPLE First Midterm Exam Note: This is a sample exam. It is NOT the exam you will take. I give out sample exams so that you will have an understanding of the depth of knowledge I expect you to have. You are on your own to find the answers. Ask for help if you get stuck. Figuring out the answers yourself will force you to think not memorize. 1. In Valdosta, we are at latitude 31 deg North. Where in the sky do you see the north star, Polaris? a) 90 deg below the north horizon b) 90 deg above the north horizon c) 31 deg above the north horizon d) 31 deg above the north horizon, but only at midnight e) Polaris is not visible from Valdosta 2. For someone standing on the equator (say, in Brazil), the celestial equator would be a) overhead b) below the horizon c) 45 deg above the horizon d) not visible from the equator 3. Earth experiences seasons due to the a) tilt of Earth's rotation axis with respect to the ecliptic b) tilt of the moon's orbital axis c) changing distance from the sun over the course of a year d) changing distance from the moon over the course of a year 4. One reason the weather is warmer in July than in January in the northern hemisphere is that a) the Earth is closer to the Sun in July b) the Sun produces more energy in July c) more people use their outdoor grills in July d) the daylight hours are longer in July 5. The Sun, Moon and stars appear to rise in the east and set in the west because: a) the Moon revolves around the Earth b) the Earth rotates upon its axis c) the Earth revolves around the Sun d) the Sun orbits the Galaxy

2 6. The stars that you might see in the evening sky this week are different from those you would see on an evening in early March. This is because a) the lifetime of a typical star is less than six months b) the Sun revolves around the center of the Galaxy c) the Earth revolves around the sun d) the Earth's rotation axis is tilted with respect to the plane of its orbit. e) the Earth rotates on its axis 7. There are different constellations up in the early evening in the late evening. Why? a) the lifetime of a typical star is less than six months b) the Sun revolves around the center of the Galaxy c) the Earth revolves around the sun d) the Earth's rotation axis is tilted with respect to the plane of its orbit. e) the Earth rotates on its axis = a) 10 billion b) 1 million c) 1 billion d) 10 million 9. 2,380,000,000,000 = a) b) c) d) An astronomical unit (AU) is a) a unit of length defined as one wavelength of light from neon gas b) a unit of time equal to 1 billion years c) a unit of mass equal to one solar mass. d) a unit of length defined as the average distance between Sun and Earth 11. One light year is a) the distance between Earth and the Sun b) the time it takes for Earth to orbit the Sun once c) a time interval using the speed of light as a reference d) the distance that light travels in one year 12. Which is farthest? a) one light year b) distance from the sun to the earth c) distance to the nearest star (other than the sun)

3 13. A total solar eclipse can be seen on the Earth because a) the Moon and the Sun always lie precisely along the ecliptic plane b) the physical sizes of the Sun and Moon are almost the same c) sometimes the Moon falls in Earth's shadow d) when viewed from Earth the angular sizes of Sun and Moon are almost the same. 14. A total lunar eclipse can be seen on the Earth because a) the Moon and the Sun always lie precisely along the ecliptic plane b) the physical sizes of the Sun and Moon are almost the same c) sometimes the Moon falls in Earth's shadow d) when viewed from Earth the angular size of Sun and Moon are the same. 15. The image above represents the earth traveling in its orbit around the sun (although the ellipticity is greatly exaggerated). Draw the approximate location of the sun. 16. According to Kepler's laws, an object in orbit around the Sun travels fastest when it is a) farthest from the Sun b) closest to the Sun c) there is no such position since it travels at a constant speed throughout its orbit d) exactly halfway in its orbit 17. Over the course of an evening, the stars appear to rise in the east and set in the west due to a) earth's rotation b) earth's orbit c) the stars' own motion d) the motion of the Milky Way e) the motion of the solar system

4 18. All the planets orbit the Sun in the same plane. This plane is called the a) celestial plane b) celestial sphere c) ecliptic plane d) meridian 19. According to Kepler's law ( P 2 yr = D 3 AU ), if a planet is 4 AU from the Sun, its orbital period is a) about that of Earth's b) longer than Earth's c) shorter than Earth's 20. The orbital period of a planet refers to the time it takes a) to go from the vernal equinox to the autumnal equinox b) to go from summer to winter c) to rotate on its axis d) to orbit the sun 21. The vernal and autumnal equinoxes are the intersection of what two great circles on the celestial sphere? a) the celestial equator and ecliptic b) the celestial equator and lines of longitude c) the ecliptic and the sun d) the ecliptic and the orbit of the moon 22. On the drawing above, draw and label the ecliptic. Then draw and label on the earth the north and south poles for winter in the northern hemisphere, and the equator. 23. Constellations are patterns that stars make on the sky. These patterns are due to a) the stars in a given constellation being all nearby each other and at the same distance b) the stars in a given constellation all having the same temperature c) the motion of the Earth orbiting the Sun d) chance alignments of unrelated stars

5 24. According to Newton, the natural motion of an object, without any forces acting on it, is a) a circle b) an ellipse c) a straight line d) retrograde motion e) epicycles 25. The resistance of an object to a change in its velocity is due to a property of matter called a) acceleration b) speed c) inertia d) friction 26. You are driving down the highway at 65 mph along a straight road. Suddenly you must break to avoid a deer. When you brake, your car a) is being accelerated b) continues at rest velocity c) maintains its velocity 27. You are driving down the highway at 65 mph along a straight road. Gradually the road starts curving to the right. Your car a) is being accelerated b) continues at rest velocity c) maintains its velocity 28. According to Newton's second law, F = ma, where F is force, m is mass, and a is acceleration. And Newton's third law states that for every action there is an equal and opposite reaction (it takes two to tango). Therefore, do you and the Earth apply the same force on each other? YES / NO 29. Is the Earth accelerating you by the same amount that you are accelerating the Earth? YES/ NO

6 30. The observations above were taken 6 months apart. Which star is closer to us? a) star 1 b) star 2 c) both are at the same distance 31. Objects that are closer to us appear to shift with respect to the background stars as the Earth travels around the Sun. This effect, that closer things shift more than farther things as we change our viewing perspective is called a) doppler shift b) radar imaging c) perspective d) parallax 32. We are located in a galaxy called a) the Milky Way b) Orion c) Sagittarius d) Scorpius 33. In our Galaxy, we are located approximately a) 2 3 from the center in the plane of the galaxy b) in the galactic center c) on the very outer edge of the plane of the galaxy d) above the galactic plane

7 34. Our Galaxy has a shape that is best described as a a) round ball b) football c) flat pancake d) spherical shell 35. Looking down on the solar system so that the Earth's north pole is facing you, the direction of the Earth's rotation and the direction of its orbit around the Sun a) are both counterclockwise b) are both clockwise c) are in opposite directions, the Earth's rotation being clockwise and orbit being counterclockwise. d) are in opposite directions, the Earth's rotation being counterclockwise and orbit being clockwise. 36. The celestial equator is a) the Earth's equator viewed from above b) an imaginary projection of Earth's equator on the sky c) the plane of the solar system d) out of sight (nowhere to be seen) 37. About how many stars are there in our galaxy? a) b) 100,000 c) 40 d) What is the speed of light? a) 300,000 km/s b) 300,000 m/s c) 50 km/s d) 5 years e) infinite

8 Note that you may use this diagram if you wish. On a real exam, it will not be graded.

9 39. If the Moon is at new phase today, and two days later you will see the Moon a) in the eastern sky at dusk; the Moon will then appear full b) as a narrow crescent in the western sky just after sunset c) crossing the meridian (due south) at sunset in the first quarter phase d) as a narrow crescent in the eastern sky juts before sunrise. 40. When the Moon is full, it sets in the west at about the time of a) sunrise b) noon c) sunset d) midnight 41. Often in the movies, the director puts the moon in the wrong place at the wrong time (something you would never do after having this course in astronomy!). Which TWO below are CORRECT? : a) full moon over head at midnight b) 3rd quarter moon rising at 3pm c) 1st quarter moon setting in the west at midnight d) full moon on the horizon at midnight e) 3rd quarter moon overhead at noon 42. At noon the moon is on the eastern horizon. What phase is the moon a) (3rd quarter) b) (1st quarter) c) (full) d) (new) 43. At dawn the moon is setting in the west. What phase is the moon? a) (3rd quarter) b) (1st quarter) c) (full) d) (new) 44. If the moon is in new phase now, two days later you will see the Moon a) as a full moon in the eastern sky at dusk b) as a narrow crescent in the western sky at sunset c) due south at sunset in the first quarter phase d) as a narrow crescent in the eastern sky before sunrise

10 45. When the Moon is full and it is sunrise, where it is? a) overhead b) eastern horizon c) western horizon d) out of sight (nowhere to be seen) 46. When the Moon is 3rd quarter and you see it on the western horizon, the time is a) sunrise b) noon c) sunset d) midnight 47. To escape the gravitational force of the planet Earth, you must achieve a a) certain minimum acceleration b) certain minimum velocity c) certain minimum orbit d) certain minimum angle e) nothing--you can never escape from the Earth 48. To launch a feather and a rocket to the planet Mars successfully, what must be true? a) the feather must have a larger escape velocity than the rocket b) the rocket must have a larger escape velocity than the feather c) the feather and the rocket must each have reached the same escape velocity d) the same force must be used on both the feather and the rocket to achieve the escape velocity needed 49. When you attach a rock to a rope and swing it over your head in a circle, the rock is being accelerated toward your hand. If the rope suddenly breaks, the rock will a) travel in a straight line away from you and eventually land on the floor b) continue to go in a circle around your hand c) will drop straight down on the floor 50. What provides the acceleration of the space shuttle so that it orbits the Earth? a) the force of gravity between the astronauts and the space shuttle b) the electromagnetic force between the Earth and the space shuttle c) the force of gravity between the Earth and the space shuttle d) the shuttle accelerates itself by burning fuel to remain in orbit e) the shuttle has a constant orbital speed, so it is not being accelerated 51. Is there a gravitational force between the Earth and an astronaut in the space shuttle as it orbits the Earth? a) no, she is weightless b) yes, but she doesn't feel it because she is in free-fall c) yes, and to compensate, the shuttle must pull up on her against gravity d) no, but she exerts a gravitational force on the Earth

11 The following equations are useful for answering the next few questions 2GM v esc = R F g = m M G R If the Earth's mass were 9 times larger than it really is (same radius as now), what would the escape velocity be? The escape velocity would a) be 2 times larger. b) be 3 times larger c) be 9 times larger d) be smaller than it is now e) be infinite and nothing would escape f) not change 53. What would be the escape velocity for a planet with the same mass as Earth but 4 times the radius of Earth? a) 2 times the escape velocity of Earth b) 4 times the escape velocity of Earth c) one half the escape velocity of Earth d) same as escape velocity of normal Earth e) escape would not be possible 54. What would you weigh on planet P whose mass is 2 5 of Earth's mass and 2 5 (radius) of Earth? a) 5 2 my weight on Earth b) 2 5 times my weight on Earth my weight on Earth c) 25 4 the size d) 4 25 e) none of the above 55. If you weigh 120 lbs on Earth, what would your MASS be on the moon where the force of gravity is about 1 6 the force of gravity on Earth? a) 20 lbs b) 120 lbs c) 720 lbs d) same as on Earth

12 56. What is the difference between a planet and a star? a) stars have fusion, planets do not b) planets have fusion, stars do not c) stars radiate light, planets do not d) there is no essential difference 57. The mass of Mars is M mars = 10 1 M e (M e is the mass of Earth) and its radius is about R mars = 1 2 R e (R e is the radius of Earth). If you weigh 100 lbs on Earth, how much would you weigh on Mars? a) 20 lbs b) 40 lbs c) 50 lbs d) same as on Earth 58. Using the values in the question above, what velocity would you need to escape Mars? a) 5 faster than the escape velocity of Earth b) 5 slower than the escape velocity of Earth c) twice as fast than the escape velocity of Earth d) 10 slower than the escape velocity of Earth d) same as on Earth 59. You weigh 120 lbs and you are standing on a weight scale inside an elevator on the 50th floor of a skyscraper. If the elevator cable snaps and the brakes fail so that the elevator drops freely, what would the scale say your weight is? a) 120 lbs b) 1200 lbs c) 20 lbs d) zero lbs 60. In general terms, a tide is best described as a a) gravitational distortion b) rise in the level of the ocean once a day c) synchronous rotation d) range of the force of gravity

13 61. The Moon and the Earth exert tidal forces on each other. In the picture above, draw arrows at points a, b, and c that represent the force of gravity that the moon exerts on the Earth. The stronger the force of gravity at a given point, the longer the arrow should be. 62. The moon is in tidal lock with the Earth. That means that the a) moon orbits around us but it doesn't rotate b) moon's rotation is such that we see all sides of the moon during the month of its orbit c) moon's rotation period is equal to its orbital period around the Earth d) moon's rotation period is equal to its orbital period around the Sun 63..In the picture on the left, draw a position of the moon that would cause a spring tide on Earth. 64..In the picture on the left, draw a position of the moon that would cause a neap tide on Earth.

14 65. The terms "neap" and "spring" tides refer to the effect of the relative positions of a) the Earth, Sun and moon b) the oceans and the continents c) the Earth and Sun 66. Right now, the Moon takes about 28 days to complete a full orbit around the Earth. If you stood at one location on the Moon, how long would a moon-day take? (that is, how long would it take from sunrise to sunrise?) a) 365 earth-days b) 28 hours c) 28 earth-days d) 24 hours 67. The ocean tides on Earth occur primarily due to the a) sun's gravitational pull b) moon's albedo c) moon's gravitational pull d) sun's albedo e) moon's electromagnetic radiation

AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, Name and Student ID Section Day/Time

AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, Name and Student ID Section Day/Time AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, 2017 Name and Student ID Section Day/Time Write your name and student ID number on this printed exam, and fill them in on your Scantron form.

More information

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Exam 1 Astronomy 114. Part 1

Exam 1 Astronomy 114. Part 1 Exam 1 Astronomy 114 Part 1 [1-40] Select the most appropriate answer among the choices given. 1. If the Moon is setting at 6AM, the phase of the Moon must be (A) first quarter. (B) third quarter. (C)

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up Jason Reed/Photodisc/Getty Images What natural phenomena do the motions of Earth and the Moon

More information

Astronomy 201 Review 1 Answers

Astronomy 201 Review 1 Answers Astronomy 201 Review 1 Answers What is temperature? What happens to the temperature of a box of gas if you compress it? What happens to the temperature of the gas if you open the box and let the gas expand?

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase.

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase. 1. Which event is a direct result of Earth's revolution? A) the apparent deflection of winds B) the changing of the Moon phases C) the seasonal changes in constellations viewed in the night sky D) the

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Effective August 2007 All indicators in Standard / 14

Effective August 2007 All indicators in Standard / 14 8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Name Regents Review Packet #2 Date

Name Regents Review Packet #2 Date Name Regents Review Packet #2 Date Base your answers to questions 1 through 5 on diagram below, which represents the Sun s apparent paths and the solar noon positions for an observer at 42 N latitude on

More information

UNIT 3: EARTH S MOTIONS

UNIT 3: EARTH S MOTIONS UNIT 3: EARTH S MOTIONS After Unit 3 you should be able to: o Differentiate between rotation and revolution of the Earth o Apply the rates of rotation and revolution to basic problems o Recall the evidence

More information

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are concept questions, some involve working with equations,

More information

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 BROCK UNIVERSITY Page 1 of 9 Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 Examination date: 3 October 2013 Time limit: 50 min Time of Examination: 20:00

More information

Day, Night & the Seasons. Lecture 2 1/21/2014

Day, Night & the Seasons. Lecture 2 1/21/2014 Day, Night & the Seasons Lecture 2 1/21/2014 Logistics The following students see me after class: A. Gonzalez, Chen Anyone who was not here on first day see me after class Pin Numbers - if you have not

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Earth rotates on a tilted axis and orbits the Sun.

Earth rotates on a tilted axis and orbits the Sun. Page of 7 KY CONCPT arth rotates on a tilted axis and orbits the Sun. BFOR, you learned Stars seem to rise, cross the sky, and set because arth turns The Sun is very large and far from arth arth orbits

More information

AST 103 Midterm 1 Review Exam is 3/3/08 in class

AST 103 Midterm 1 Review Exam is 3/3/08 in class AST 103 Midterm 1 Review Exam is 3/3/08 in class Exam is closed book/closed notes. Formulas will be provided. Bring a No. 2 pencil for the exam and a photo ID. Calculators are OK, but will not be needed.

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side

More information

1. The Moon appears larger when it rises than when it is high in the sky because

1. The Moon appears larger when it rises than when it is high in the sky because 2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are

More information

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) REVIEW CH #0 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) 2) Latitude and right ascension

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky?

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky? What motion is responsible for the apparent motion of the constellations (east to west) across the sky? Question 1 1) the motion of Earth around the Sun 2) the motion of the Moon around Earth 3) the motion

More information

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation. Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

Practice Exam #3. Part 1: The Circumpolar Constellations

Practice Exam #3. Part 1: The Circumpolar Constellations Practice Exam #3 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Some Comments on the Real Exam This exam covers all material related to astronomy.

More information

SC.8.E.5.9. Summer and Winter Gizmo

SC.8.E.5.9. Summer and Winter Gizmo 8 th Grade Science Quarter 1 Recovery Packet SC.8.E.5.9 DAYS/YEARS/SEASONS Go to www.explorelearning.com and search for the Summer and Winter Gizmo. Answer the following questions: Gizmo Warm-up Summer

More information

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener Observing the Sky Lecture 8 Chapter 2 Opener 1 Figure 2.1 Figure 2.2 2 Figure 2.6 Figure 2.4 Annotated 3 The Celestial Sphere The celestial sphere is the vast hollow sphere on which the stars appear fixed.

More information

Astronomy 101 Lab: Seasons

Astronomy 101 Lab: Seasons Name: Astronomy 101 Lab: Seasons Pre-Lab Assignment: In class, we've talked about the cause of the seasons. In this lab, you will use globes to study the relative positions of Earth and the Sun during

More information

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.

More information

Physical Science. Chapter 22 The Earth in Space

Physical Science. Chapter 22 The Earth in Space Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis

More information

Earth in Space. Guide for Reading How does Earth move in space? What causes the cycle of seasons on Earth?

Earth in Space. Guide for Reading How does Earth move in space? What causes the cycle of seasons on Earth? Earth in Space How does Earth move in space? What causes the cycle of seasons on Earth? The study of the moon, stars, and other objects in space is called astronomy. Ancient astronomers studied the movements

More information

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past?

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past? Skills Worksheet Directed Reading Section: Viewing the Universe 1. How did observations of the sky help farmers in the past? 2. How did observations of the sky help sailors in the past? 3. What is the

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

Astronomy Section 2 Solar System Test

Astronomy Section 2 Solar System Test is really cool! 1. The diagram below shows one model of a portion of the universe. Astronomy Section 2 Solar System Test 4. Which arrangement of the Sun, the Moon, and Earth results in the highest high

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) AST326, 2010 Winter Semester Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) Practical Assignment: analyses of Keck spectroscopic data from the instructor (can

More information

A) M D) The Moon s distance from Earth varies in a cyclic manner.

A) M D) The Moon s distance from Earth varies in a cyclic manner. Base your answers to questions 1 and 2 on the diagram below, which shows Earth in orbit around the Sun, and the Moon in orbit around Earth. M 1, M 2, M 3, and M 4 indicate positions of the Moon in its

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe. Astronomy, PART 2 Vocabulary Aphelion Asteroid Astronomical Unit Comet Constellation Crater Eccentricity Eclipse Equinox Geocentric model Gravitation Heliocentric model Inertia Jovian Perihelion Revolution

More information

D. most intense and of longest duration C. D.

D. most intense and of longest duration C. D. Astronomy Take Home Test Answer on a separate sheet of paper In complete sentences justify your answer Name: 1. The Moon s cycle of phases can be observed from Earth because the Moon 4. The accompanying

More information

Physics Mechanics Lecture 30 Gravitational Energy

Physics Mechanics Lecture 30 Gravitational Energy Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.!

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.! The Earth rotates around once in 24 hours The time it takes for the Earth to rotate completely around once is what we call a day. It's Earth's rotation that gives us night and day. Viewed from Earth's

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

Astronomy 101 Lab: Lunar Phases and Eclipses

Astronomy 101 Lab: Lunar Phases and Eclipses Name: Astronomy 101 Lab: Lunar Phases and Eclipses Pre-Lab Assignment: In this week's lab, you will be using a lamp, a globe, and a ball to simulate the Sun, Earth, and the Moon. You will be able to see

More information

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe Name: Period: Chapter 26 Section 1 pages 659-666 Directed Reading Section: Viewing the Universe 1. How did observations of the sky help sailors in the past? 2. What is the main reason people study the

More information

EXAM #2. ANSWERS ASTR , Spring 2008

EXAM #2. ANSWERS ASTR , Spring 2008 EXAM #2. ANSWERS ASTR 1101-001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his

More information

Q25: Record the wavelength of each colored line according to the scale given.

Q25: Record the wavelength of each colored line according to the scale given. C. Measurement Errors and Uncertainties The term "error" signifies a deviation of the result from some "true" value. Often in science, we cannot know what the true value is, and we can only determine estimates

More information

Rotation and Revolution

Rotation and Revolution On Earth, each day begins at sunrise and ends at sunset. You see the Sun come up or rise in the morning and go down or set at night. When we use these phrases, what do you think they imply about the way

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 0 Charting the Heavens Lecture Presentation 0.0 Astronmy a why is that subject! Q. What rare astronomical event happened in late summer

More information

ì<(sk$m)=beacee< +^-Ä-U-Ä-U

ì<(sk$m)=beacee< +^-Ä-U-Ä-U Space and Technology Genre Comprehension Skill Text Features Science Content by Carol Levine Nonfiction Main Idea and Details Captions Labels Diagrams Glossary Earth and Space Scott Foresman Science 6.19

More information

This clementine orange is an oblate spheroid. Earth is more rounded than this clementine, but it is still an oblate spheroid.

This clementine orange is an oblate spheroid. Earth is more rounded than this clementine, but it is still an oblate spheroid. On Earth, each day begins at sunrise and ends at sunset. You see the Sun come up or rise in the morning and go down or set at night. When we use these phrases, what do you think they imply about the way

More information

Practice Seasons Moon Quiz

Practice Seasons Moon Quiz 1. Which diagram represents the tilt of Earth's axis relative to the Sun's rays on December 15? A) B) C) D) 2. The diagram below represents Earth in space on the first day of a season. 5. Base your answer

More information

Chapter 19 Exploring Space. I. Fill in the blank

Chapter 19 Exploring Space. I. Fill in the blank Chapter 19 Exploring Space 1. All radiation is classified by wavelength in the electromagnetic spectrum. 2. Two types of telescopes that collect visible light are refractors and reflectors. 3. An uncrewed

More information

01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December 22.

01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December 22. Package Title: Testbank Course Title: Introducing Physical Geography 6e Chapter Number: 01 Question Type: Multiple Choice 01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

More information

Ch. 2 Discovering the Universe for Yourself

Ch. 2 Discovering the Universe for Yourself Ch. 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? 2 What does the universe look

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

More information

The ecliptic and the sidereal motion of the sun Moon and the planets on it.

The ecliptic and the sidereal motion of the sun Moon and the planets on it. The ecliptic and the sidereal motion of the sun Moon and the planets on it. The following picture is a picture of the sky as it looks about noon on May 18 2012. The light of the Sun has been erased artificially

More information

Planets in the Sky ASTR 101 2/16/2018

Planets in the Sky ASTR 101 2/16/2018 Planets in the Sky ASTR 101 2/16/2018 1 Planets in the Sky 2018 paths of Jupiter among stars (2017/2018) Unlike stars which have fixed positions in the sky (celestial sphere), planets seem to move with

More information

ASTRONOMY. Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow

ASTRONOMY. Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow ASTRONOMY Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow FIGURE 4.1 Southern Summer. As captured with a fish-eye lens aboard the Atlantis Space Shuttle on December 9, 1993, Earth hangs above

More information

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We

More information

Question 8.1: the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Sundials and the Celestial Sphere. Katie Hausknecht

Sundials and the Celestial Sphere. Katie Hausknecht Sundials and the Celestial Sphere Katie Hausknecht What is a sundial? A sundial is a device that uses the shadow cast by the sun to indicate what time of day it is, often by hours. The Celestial Sphere

More information

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Name: Teacher: Test Date: 4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Vocabulary: Solar System: A group of objects that revolve around a single star. Sun: The central (and only) star in

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars. Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System chapter 311 section 1 Earth The Sun-Earth-Moon System Before You Read What do you already know about Earth s shape, its size, and how it moves? Write what you know on the lines below. What You ll Learn

More information

Lecture #03. January 20, 2010, Wednesday

Lecture #03. January 20, 2010, Wednesday Lecture #03 January 20, 2010, Wednesday Causes of Earth s Seasons Earth-Sun geometry Day length Solar angle (beam spread) Atmospheric beam depletion Shape and Size of the Earth North Pole E Geoid: not

More information

2.2 The Reason for Seasons

2.2 The Reason for Seasons 2.2 The Reason for Seasons Our goals for learning: What causes the seasons? How does the orientation of Earth's axis change with time? Thought Question TRUE OR FALSE? Earth is closer to the Sun in summer

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric model,

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

Eclipses September 12th, 2013

Eclipses September 12th, 2013 Eclipses September 12th, 2013 Who was the favorite Star Wars character of the class? A) Obi-Wan B) Jar Jar C) Luke Skywalker D) Yoda News! Dark matter http://mcdonaldobservatory.org/news/releases/2013/09/10

More information

Astronomy AST-1002 Section 0459 Discover the Universe Fall 2017

Astronomy AST-1002 Section 0459 Discover the Universe Fall 2017 Astronomy AST-1002 Section 0459 Discover the Universe Fall 2017 Instructor: Dr. Francisco Reyes Web Page: http://www.astro.ufl.edu/~freyes/classes/ast1002/index.htm Textbook: Astronomy: A Beginners Guide

More information

The Reasons for the Seasons. By Allegra Dickson

The Reasons for the Seasons. By Allegra Dickson The Reasons for the Seasons By Allegra Dickson Vocabulary of the Seasons: 1. Axis- a line from the North Pole to the South Pole which is the fxed point around which the Earth rotates. The axis of the Earth

More information

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes

What's Up, Earth? Header Insert Image 1 here, right justified to wrap. Grade Level. 3rd. Time Required: 60 minutes What's Up, Earth? Header Insert Image 1 here, right justified to wrap Image 1 ADA Description:? Caption:? Image file path:? Source/Rights: Copyright? Grade Level 3rd Time Required: 60 minutes Group Size:

More information

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means? Question 8.1: the following: You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it

More information

Local Coordinates. These are centered upon you, the observer.

Local Coordinates. These are centered upon you, the observer. Astronomy 30, Observing #3 Name: Lab Partners: Date: Materials: This lab, with the star chart completed from the pre-lab. Some sheets of paper for sketches. A pencil with eraser. A small flashlight, ideally

More information

core temperature: more than surface Definition of revolution How long it takes Earth to make one revolution around the Sun

core temperature: more than surface Definition of revolution How long it takes Earth to make one revolution around the Sun Lesson 1 Earth s Motion kim Lesson 1 in your book. Read the headings and look at the photos and illustrations. Write three things you want to learn more about as you read the lesson. Write your ideas in

More information

ME 476 Solar Energy UNIT THREE SOLAR RADIATION

ME 476 Solar Energy UNIT THREE SOLAR RADIATION ME 476 Solar Energy UNIT THREE SOLAR RADIATION Unit Outline 2 What is the sun? Radiation from the sun Factors affecting solar radiation Atmospheric effects Solar radiation intensity Air mass Seasonal variations

More information

Chapter 02 The Rise of Astronomy

Chapter 02 The Rise of Astronomy Chapter 02 The Rise of Astronomy Multiple Choice Questions 1. The moon appears larger when it rises than when it is high in the sky because A. You are closer to it when it rises (angular-size relation).

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do Name EMS Study Guide Fill in the blank. 1. A is a star and the objects that travel around it. 2. A star is a huge of hydrogen and helium gas that give off its own. 3. Think about our own solar system.

More information

PHYS103 Hour Exam No. 1 Page: 1

PHYS103 Hour Exam No. 1 Page: 1 PHYS103 Hour Exam No. 1 Page: 1 1 The Ptolemaic model of the Solar system accounted for the daily rising and setting of the Sun by assuming that a. The Sun drops below the surface of the Earth when it

More information

Go to Click on the first animation: The north pole, observed from space

Go to  Click on the first animation: The north pole, observed from space IDS 102 The Seasons on a Planet like Earth As the Earth travels around the Sun, it moves in a giant circle 300 million kilometers across. (Well, it is actually a giant ellipse but the shape is so close

More information

C) D) 2. The diagram below shows a large pendulum in motion over an 8-hour period.

C) D) 2. The diagram below shows a large pendulum in motion over an 8-hour period. 1. An observer on Earth measured the apparent diameter of the Sun over a period of 2 years. Which graph best represents the Sun's apparent diameter during the 2 years? A) B) C) D) 2. The diagram below

More information