All-Sky Release Readiness Review

Size: px
Start display at page:

Download "All-Sky Release Readiness Review"

Transcription

1 Wide-field Infrared Survey Explorer (WISE) All-Sky Release Readiness Review February 9, 2011

2 Sky Coverage Dominic Benford February 9, 2011

3 The WISE Sky WISE ASRRR - Coverage 3

4 The WISE Sky WISE ASRRR - Coverage 4

5 The WISE Sky WISE ASRRR - Coverage 5

6 Sky Coverage " Refers to the task of determining what WISE pointed towards during the course of the survey. " What is the total sky coverage of the PR? " 41, square degrees uniquely contained in the 18,240 Atlas Tiles = % " More like 44, square degrees non-unique " Valid pixels: Band Square Degrees % of Sky % Valid W1 41, % 99.99% W2 41, % 99.99% W3 41, % 99.95% W4 41, % 99.xx% WISE ASRRR - Coverage 6

7 Sky Coverage " Depth-of-Coverage means number of times and point was recorded as a valid pixel in the image coaddition phase. " Catalog Source Density means the coverage of extracted sources in a given (nominally small) area. WISE ASRRR - Coverage 7

8 Coverage Task 1." Validation of the Level 1 Science Requirement: "!4 coverages over 95% of the sky " (!8 coverages over ~99% of the sky) " (median coverage ~14) 2." Characterization of the All-Sky Data Release sky coverage " Features/Metrics of the dataset " Oddities of coverage " Explanatory Supplement WISE ASRRR - Coverage 8

9 Characterization of the All-Sky Data Release Sky Coverage Features / Metrics of the Dataset

10 WISE By The Numbers 1 All-Sky Data Release 2 Passes of Processing 4 Mid-IR Bands ~14 Observations (Median) Detector Arrays 18,240 Atlas Tiles on the Sky 2,784,184 Framesets during the Mission 16,769,025 Pixels per Tile per Band ~563,896,176 Catalog Sources 3,670,404,192,000 Pixels Total in All-Sky Release WISE ASRRR - Coverage 10

11 Sky Coverage (ab initio) WISE ASRRR - Coverage 11

12 Sky Coverage (post facto) WISE ASRRR - Coverage 12

13 Typical Tile Coverage WISE ASRRR - Coverage 13

14 Typical Tile Coverage 1 W1 Pass WISE ASRRR - Coverage 14

15 Typical Tile Coverage 1 W1 Pass WISE ASRRR - Coverage 15

16 Typical Tile Coverage 2 W2 Pass WISE ASRRR - Coverage 16

17 Typical Tile Coverage 2 W2 Pass WISE ASRRR - Coverage 17

18 Typical Tile Coverage 3 W3 Pass WISE ASRRR - Coverage 18

19 Typical Tile Coverage 3 W3 Pass WISE ASRRR - Coverage 19

20 Typical Tile Coverage 4 W4 Pass WISE ASRRR - Coverage 20

21 Typical Tile Coverage 4 W4 Pass WISE ASRRR - Coverage 21

22 Wavelength Dependence: int! WISE ASRRR - Coverage 22

23 Wavelength Dependence: unc! WISE ASRRR - Coverage 23

24 Wavelength Dependence: cov! WISE ASRRR - Coverage 24

25 Coverage Data Products " MEDCOV Atlas header value for median coverage " MINCOV Atlas header value for min coverage " MAXCOV Atlas header value for max coverage " NOMCOVPC Atlas header value for % nominal cov=8 " LowCovPc Calculated for % coverage <4 requirement " CovMean Robust mean of coverage per frame " CovSigma Robust standard deviation in coverage " CovHist Histogram of pixel coverages (bins=0.125) " CumHist Cumulative histogram of pixel coverages " UncCov Mean uncertainty vs. coverage WISE ASRRR - Coverage 25

26 Coverage Depth vs. ELat Pass 1 Pass 2 WISE ASRRR - Coverage 9 February

27 Coverage vs. Ecliptic Latitude Calculated CovMean±CovSigma! +1" Mean -1" WISE ASRRR - Coverage 27

28 Coverage vs. Ecliptic Latitude Max FITS Header MINCOV/MEDCOV/MAXCOV! Median Min WISE ASRRR - Coverage 28

29 Coverage Depth (Differential) W1 WISE ASRRR - Coverage 9 February

30 Coverage Depth (Differential) W1 WISE ASRRR - Coverage 9 February

31 Coverage Histograms W1 W2 W3 W4 WISE ASRRR - Coverage 31

32 Coverage Depth Integrated WISE ASRRR - Coverage 9 February

33 Cumulative Coverage W1 W2 W3 W4 WISE ASRRR - Coverage 33

34 Sky Coverage (%, W1) W1 WISE ASRRR - Coverage 34

35 Percentage Covered (linear) Pass 1 Pass 2 WISE ASRRR - Coverage 9 February

36 Sky Coverage (%, W1) W1 WISE ASRRR - Coverage 36

37 Percentage Covered (log) Pass 1 Pass 2 WISE ASRRR - Coverage 9 February

38 Sky Coverage (%) W1 Median ±0.003 W2 Median ±0.004 W3 Median ±0.002 W4 Median ±0.003 WISE ASRRR - Coverage 38

39 Sky Coverage Percentiles Band W1 W2 W3 W4 99.9%!3.99!2.77!0.96! %!8.80!6.74!3.61! %!9.74!8.81!4.56! %!10.82!10.75!9.78! %!11.64!11.58!10.81! %!12.78!12.74!12.17! %!15.65!15.55!14.84! %!23.53!23.30!21.88! %!33.40!33.34!31.86! %!42.43!42.55!41.63! %!73.91!74.15!71.80! %!95.99!96.34!93.52! %!160.62!161.41!162.39! Require ~14 WISE ASRRR - Coverage 39

40 Sky Coverage Depth Band W1 W2 W3 W4 COV= % 0.013% 0.046% 0.026% ± COV< % 0.210% 0.703% 0.513% COV<5 0.14% 0.32% 1.05% 0.73% COV! % 99.24% 97.12% 97.71% 41, , , ,308 2 COV! % 82.13% 75.51% 77.20% 34, , , ,848 2 Require <5% Require >99% WISE ASRRR - Coverage 40

41 Sky Coverage vs. Position Latitude Ecliptic Galactic Equat. lat " lat " lat " lat " lat " lat " lat " lat " lat " lat " lat " lat " lat " WISE ASRRR - Coverage 41

42 Coverage & Uncertainty WISE ASRRR - Coverage 9 February

43 Coverage vs. Uncertainty W1 W2 W3 W4 WISE ASRRR - Coverage 43

44 WISE Sky in W1 WISE ASRRR - Coverage 9 February

45 National Aeronautics The and WISE All Sky (Galactic) WISE ASRRR - Coverage 45

46 National Aeronautics The and WISE All Sky (Galactic) W1 W2 W3 W4 WISE ASRRR - Coverage 46

47 Characterization of the All-Sky Data Release Sky Coverage Oddities of Coverage

48 Things to Understand " Coverage (and hence sensitivity) varies over sky because of survey strategy " Holes in All-Sky Release Atlas Tile coverage: " Due to torque rod gashes " Where there s severe scattered moonlight " At saturated regions " Atlas and Catalog coverage intentionally attenuated in 41 Tiles near Ecliptic poles (full-depth coadds exist, but source extraction left to the user) " Catalog source density suppressed around very bright stars. WISE ASRRR - Coverage 48

49 Polar Tile Overlaps WISE ASRRR - Coverage 49

50 North Ecliptic Pole Coverage (Left) Pass 2 Atlas tile, depth 0-200; (Right) Full-Depth Pass 2 tile, depth WISE ASRRR - Coverage 9 February

51 North Ecliptic Pole Cutouts (Left) Pass 2 Atlas tile, depth ~160; (Right) Full-Depth Pass 2 tile, depth ~3200 WISE ASRRR - Coverage 9 February

52 North Ecliptic Pole Cutouts (Left) Pass 2 Drizzled Image, depth ~3200 (Right) Full-Depth Pass 2 tile, depth ~3200 WISE ASRRR - Coverage 9 February

53 Confused Regions I Confused regions in Pass 1; below is W234 Pass 1 INT Pass 1 COV WISE ASRRR - Coverage 9 February

54 Confused Regions II Confused regions coverage improved in Pass 2! Pass 2 INT Pass 2 COV WISE ASRRR - Coverage 9 February

55 Heavy Saturation I Heavily saturated images leave extended burned out areas and generally muck things up nearby. This is intrinsic to the raw frames and processing can t help much. Pass 1 INT Pass 1 COV WISE ASRRR - Coverage 55

56 Heavy Saturation II Heavily saturated images leave extended burned out areas and generally muck things up nearby. This is intrinsic to the raw frames and processing can t help much. Pass 2 INT Pass 2 COV WISE ASRRR - Coverage 56

57 Moon Gaps I W4, stretched: Moon glow significant; produces gaps in coverage. WISE ASRRR - Coverage 57

58 Moon Gaps II Moon avoidance regions include far-off-axis removal. WISE ASRRR - Coverage 58

59 Moon Gaps III Moon avoidance regions imprint on coverage up to ~30 off ecliptic, in small areas. Pass 1 INT Pass 1 COV WISE ASRRR - Coverage 59

60 Moon Gaps IV Moon avoidance regions imprint on coverage up to ~30 off ecliptic, in small areas. Pass 1 Pass WISE ASRRR - Coverage 60

61 Moon Gaps V Moon avoidance improved! Pass 1 Pass WISE ASRRR - Coverage 9 February

62 Moon Coverage VI Moon avoidance improved! Pass 1 Pass WISE ASRRR - Coverage 9 February

63 Moon Gaps VII W1 W2 Moon avoidance has improved W3 W WISE ASRRR - Coverage 63

64 Moon Gaps VIII W1 W2 Moon avoidance has improved W3 W4 but there is still degradation in some Atlas tiles in a wavelengthdependent way WISE ASRRR - Coverage 64

65 Moon Gaps IX Moon avoidance results in spurious sources (no outlier detection) and gaps, depending on band. INT COV linear WISE ASRRR - Coverage 65

66 Moon Gaps X Moon avoidance results in spurious sources (no outlier detection) and gaps, depending on band. INT COV sqrt WISE ASRRR - Coverage 66

67 Torque Gashes I Low coverage resulting from minor operational issue; occurs near Ecliptic latitude of ±45. 4-band INT 4-band COV Near 95, +45 Ecl WISE ASRRR - Coverage 9 February

68 Torque Gashes II Low coverage = gaps in W1/W2, some outliers pass through. W1 INT W1 COV Near 95, +45 Ecl WISE ASRRR - Coverage 9 February

69 Torque Gashes III Low coverage = more unpleasant effects on background in W3/W4. W3 INT W3 COV Near 95, +45 Ecl WISE ASRRR - Coverage 9 February

70 Bright Stars! I Areas around Bright Stars WISE ASRRR - Coverage 70

71 Areas around Bright Stars Bright Stars II 4-band INT 4-band COV WISE ASRRR - Coverage 9 February

72 Areas around Bright Stars Bright Stars III 4-band INT w/ spatial filter 4-band COV WISE ASRRR - Coverage 9 February

73 Bright Stars IV Area around Betelgeuse W1: catalog sources suppressed within ~1 (less under most lenient selection criteria; more under most draconian); diameter is magnitude-dependent. W1; ccflags=???? W1; ccflags= WISE ASRRR - Coverage 9 February

74 Bright Stars V Area around Betelgeuse W3: catalog sources suppressed within ~1 (less under most lenient selection criteria; more under most draconian); diameter is magnitude-dependent. W3; ccflags=???? W3; ccflags= WISE ASRRR - Coverage 9 February

75 Bright Stars VIII! Area around Betelgeuse, from W2 Pass 1 and W1 Pass 2 showing a clear change in the effect of refined flagging parameters. W2 Pass 1; ccflags=0000 W1 Pass 2; ccflags= WISE ASRRR - Coverage 75

76 Bright Stars VI Done for Pass 1; still to be completed for Pass 2. W1 W2 W3 W4 WISE ASRRR - Coverage 9 February

77 Coverage & Deblending Work Deblending by Nick of sources: Bond, Ken threshold Marsh, set such et al. that <10 separation typically yields 1 source in catalog. Pass 1 Pass 2 WISE ASRRR - Coverage 9 February

78 Explanatory Supplement Very Similar to What You See Here.

79 Sky Coverage Backups on Requirements Verification

80 Sky Coverage (%, W1) W1 WISE ASRRR - Coverage 80

81 Verification of Requirement WISE ASRRR - Coverage 81

82 Verification of Requirement Yes! ~50x margin at W1 WISE ASRRR - Coverage 82

83 Verification of Requirement Yes! ~50x margin at W1 WISE ASRRR - Coverage 83

SAA and Moon Proximity Effects on NEOWISE Single-exposure Source Detection Reliability

SAA and Moon Proximity Effects on NEOWISE Single-exposure Source Detection Reliability SAA and Moon Proximity Effects on NEOWISE Single-exposure Source Detection Reliability WSDC D-T046 I. Introduction The fractional reliability of NEOWISE Single-exposure source detections as a function

More information

Improving the Absolute Astrometry of HST Data with GSC-II

Improving the Absolute Astrometry of HST Data with GSC-II The 2005 HST Calibration Workshop Space Telescope Science Institute, 2005 A. M. Koekemoer, P. Goudfrooij, and L. L. Dressel, eds. Improving the Absolute Astrometry of HST Data with GSC-II A. M. Koekemoer,

More information

Wide-field Infrared Survey Explorer (WISE) Subsystem Design Specification: Multiband DETector (MDET)

Wide-field Infrared Survey Explorer (WISE) Subsystem Design Specification: Multiband DETector (MDET) Wide-field Infrared Survey Explorer (WISE) Subsystem Design Specification: Multiband DETector (MDET) Version 2.0 January 12, 2009 Prepared by: Ken Marsh Infrared Processing and Analysis Center California

More information

CONFUSION NOISE AND BACKGROUND

CONFUSION NOISE AND BACKGROUND Konkoly Infrared & Space Astronomy Group CONFUSION NOISE AND BACKGROUND Csaba Kiss Introduction Confusion noise was very important for the recent infrared space instruments (e.g. those of IRAS, ISO and

More information

Monte Carlo Quality Assessment (MC-QA)

Monte Carlo Quality Assessment (MC-QA) Monte Carlo Quality Assessment (MC-QA) For the Planck ERCSC Team Planck Early Results VII, 2011, A&A & Chary et al. 2004, ApJ Motivation Any data product needs to go through quality assessment At the image

More information

Astronomical image reduction using the Tractor

Astronomical image reduction using the Tractor the Tractor DECaLS Fin Astronomical image reduction using the Tractor Dustin Lang McWilliams Postdoc Fellow Carnegie Mellon University visiting University of Waterloo UW / 2015-03-31 1 Astronomical image

More information

THE COBE DIRBE POINT SOURCE CATALOG

THE COBE DIRBE POINT SOURCE CATALOG The Astrophysical Journal Supplement Series, 154:673 704, 2004 October # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THE COBE DIRBE POINT SOURCE CATALOG Beverly J.

More information

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting 467 PHOTOMETRIC ARIABILITY IN THE HR-DIAGRAM L. Eyer, M. Grenon Geneva Observatory, CH-129 Sauverny, Switzerland ABSTRACT The Hipparcos satellite has detected systematically variable stars when the amplitudes

More information

WPHOT Solution for Flux, Position, and Proper Motion

WPHOT Solution for Flux, Position, and Proper Motion WPHOT Solution for Flux, Position, and Proper Motion Document number: WSDC-D-T04. Overview of Previous WPHOT Versions The v- versions of the WPHOT module solved for point-source fluxes and positions by

More information

A Catalog Pipeline for Sources in the CTA Galactic Plane Survey

A Catalog Pipeline for Sources in the CTA Galactic Plane Survey A Catalog Pipeline for Sources in the CTA Galactic Plane Survey Treasures hidden in high energy catalogues Toulouse, Josh Cardenzana for the CTA Consortium with help from: Jürgen Knödlseder, Luigi Tibaldo

More information

WISE Science Data System Single Frame Position Reconstruction Peer Review: Introduction and Overview

WISE Science Data System Single Frame Position Reconstruction Peer Review: Introduction and Overview WISE Science Data System Single Frame Position Reconstruction Peer Review: Introduction and Overview R. Cutri and the WSDC Team @ IPAC 1 Review Panel Rachel Akeson (IPAC/MSC) Gene Kopan (IPAC retired)

More information

WISE Science Data System Frame Co-addition Peer Review: Introduction and Overview

WISE Science Data System Frame Co-addition Peer Review: Introduction and Overview WISE Science Data System Frame Co-addition Peer Review: Introduction and Overview R. Cutri and the WSDC Team @ IPAC 1 Review Panel Sean Carey (IPAC/SSC) Nick Gautier (JPL/WISE Science Team) John Good (IPAC/IRSA)

More information

WISE - the Wide-field Infrared Survey Explorer

WISE - the Wide-field Infrared Survey Explorer WISE - the Wide-field Infrared Survey Explorer Ned Wright (UCLA) ELW - 1 Project Overview Science Sensitive all sky survey with 8X redundancy Find the most luminous galaxies in the universe Find the closest

More information

Position Reconstruction (PRex)

Position Reconstruction (PRex) Position Reconstruction () Howard McCallon & John Fowler (IPAC/Caltech) 1 Position of SF in Frame Pipeline 2 Position of MF in Pipeline 2MASS Ref. list Level-1b Source Lists Frame Index Frame list Metadata

More information

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Xavier Koenig Yale University WISE @ 5 Conference Feb 11 2015 Collaborators: David Leisawitz Debbie Padgett Luisa Rebull

More information

Analyzing Spiral Galaxies Observed in Near-Infrared

Analyzing Spiral Galaxies Observed in Near-Infrared Analyzing Spiral Galaxies Observed in Near-Infrared Preben Grosbøl European Southern Observatory Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany Abstract A sample of 54 spiral galaxies was observed

More information

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Reliability and Completeness for the GLIMPSE Survey C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Abstract This document examines the GLIMPSE observing strategy and criteria

More information

The SKYGRID Project A Calibration Star Catalog for New Sensors. Stephen A. Gregory Boeing LTS. Tamara E. Payne Boeing LTS. John L. Africano Boeing LTS

The SKYGRID Project A Calibration Star Catalog for New Sensors. Stephen A. Gregory Boeing LTS. Tamara E. Payne Boeing LTS. John L. Africano Boeing LTS The SKYGRID Project A Calibration Star Catalog for New Sensors Stephen A. Gregory Boeing LTS Tamara E. Payne Boeing LTS John L. Africano Boeing LTS Paul Kervin Air Force Research Laboratory POSTER SESSION

More information

Field Selection Criteria for the ACS Ultra Deep Field

Field Selection Criteria for the ACS Ultra Deep Field Field Selection Criteria for the ACS Ultra Deep Field Massimo Stiavelli, Nino Panagia, and Harry Ferguson 1. Selection Criteria The basic criteria for selecting a field suitable for deep observations are:

More information

Validation of GOMOS version 6.01 ozone profiles using ground-based lidar observations. October 2012

Validation of GOMOS version 6.01 ozone profiles using ground-based lidar observations. October 2012 Validation of GOMOS version 6.01 ozone profiles using ground-based lidar observations October 2012 Anne.van.Gijsel@knmi.nl Introduction In this study we have compared GOMOS IPF version 6.01 ozone profiles

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11096 Spectroscopic redshifts of CDF-N X-ray sources We have taken a recent compilation 13 as our main source of spectroscopic redshifts. These redshifts are given to two decimal places,

More information

Addendum: GLIMPSE Validation Report

Addendum: GLIMPSE Validation Report August 18, 2004 Addendum: GLIMPSE Validation Report The GLIMPSE Team 1. Motivation In our Validation Report of Jan. 30, 2004, we produced reliability calculations and discussed photometric accuracy estimates

More information

The WFIRST High La/tude Survey. Christopher Hirata, for the SDT November 18, 2014

The WFIRST High La/tude Survey. Christopher Hirata, for the SDT November 18, 2014 The WFIRST High La/tude Survey Christopher Hirata, for the SDT November 18, 2014 1 Outline Recap of HLS parameters Examples of currently open trades & issues 2 High La/tude Survey Overview 3 Summary ü

More information

Large Area Imaging Survey of Near-Infrared Sky with Korean Compact Space Telescopes

Large Area Imaging Survey of Near-Infrared Sky with Korean Compact Space Telescopes Large Area Imaging Survey of Near-Infrared Sky with Korean Compact Space Telescopes Science & Technology Satellite Series (KARI) (2000 ~ 2013. 02) 1 st Satellite: FIMS (Far-ultraviolet IMaging Spectrograph)

More information

Data Reduction - Optical / NIR Imaging. Chian-Chou Chen Ph319

Data Reduction - Optical / NIR Imaging. Chian-Chou Chen Ph319 Data Reduction - Optical / NIR Imaging Chian-Chou Chen (T.C.) @ Ph319 Images at different wavelengths... Images at different wavelengths... However, the raw data are always not as pretty Why? The total

More information

Monitoring The HRC-S UV Rate: Observations of Vega

Monitoring The HRC-S UV Rate: Observations of Vega Monitoring The HRC-S UV Rate: Observations of Vega Deron Pease, Vinay Kashyap, Jeremy Drake and Michael Juda 10 May 2005 Abstract We present an interim report on Chandra HRC-S calibration observations

More information

Exoplanet False Positive Detection with Sub-meter Telescopes

Exoplanet False Positive Detection with Sub-meter Telescopes Exoplanet False Positive Detection with Sub-meter Telescopes Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Topics What are typical

More information

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA. ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre SPIRE Observing Strategies Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA Outline SPIRE quick overview Observing with SPIRE Astronomical Observation Templates (AOT)

More information

The in-orbit wavelength calibration of the WFC G800L grism

The in-orbit wavelength calibration of the WFC G800L grism The in-orbit wavelength calibration of the WFC G800L grism A. Pasquali, N. Pirzkal, J.R. Walsh March 5, 2003 ABSTRACT We present the G800L grism spectra of the Wolf-Rayet stars WR45 and WR96 acquired with

More information

RLW paper titles:

RLW paper titles: RLW paper titles: http://www.wordle.net Astronomical Surveys and Data Archives Richard L. White Space Telescope Science Institute HiPACC Summer School, July 2012 Overview Surveys & catalogs: Fundamental

More information

Introduction to the Sloan Survey

Introduction to the Sloan Survey Introduction to the Sloan Survey Title Rita Sinha IUCAA SDSS The SDSS uses a dedicated, 2.5-meter telescope on Apache Point, NM, equipped with two powerful special-purpose instruments. The 120-megapixel

More information

Relative Astrometry Within ACS Visits

Relative Astrometry Within ACS Visits Instrument Science Report ACS 2006-005 Relative Astrometry Within ACS Visits Richard L. White August 07, 2006 ABSTRACT The log files from APSIS, the ACS science team s image processing pipeline, have been

More information

Announcement of Opportunity AKARI (ASTRO-F)

Announcement of Opportunity AKARI (ASTRO-F) Announcement of Opportunity AKARI (ASTRO-F) CALL FOR OBSERVING PROPOSALS for the AKARI Post-Helium (phase 3) mission 2 nd year of Operations (October 2009 October 2010) Policies and procedures 27 May 2009

More information

Keck Adaptive Optics Note 1069

Keck Adaptive Optics Note 1069 Keck Adaptive Optics Note 1069 Tip-Tilt Sensing with Keck I Laser Guide Star Adaptive Optics: Sensor Selection and Performance Predictions DRAFT to be updated as more performance data becomes available

More information

GLIMPSE Quality Assurance v1.0

GLIMPSE Quality Assurance v1.0 GLIMPSE Quality Assurance v1.0 Ed Churchwell, Brian Babler, Steve Bracker, Martin Cohen, Remy Indebetouw, Marilyn Meade, Christer Watson, Barbara Whitney Jan. 24, 2006 Contents I. Introduction 2 II. GLIMPSE

More information

Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a

Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a Optimal resolutions for optical and NIR spectroscopy S. Villanueva Jr.* a, D.L. DePoy a, J. L. Marshall a a Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX, USA

More information

WISE IOC Distortion Calibration

WISE IOC Distortion Calibration WISE IOC Distortion Calibration Document number: WSDC D-T033 1. Overview The WISE optical distortion model is a 4 th -order polynomial for each axis, X and Y, plus a skew factor applied to Y. Currently

More information

Selection of stars to calibrate Gaia

Selection of stars to calibrate Gaia Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-

More information

Global Flash Flood Forecasting from the ECMWF Ensemble

Global Flash Flood Forecasting from the ECMWF Ensemble Global Flash Flood Forecasting from the ECMWF Ensemble Calumn Baugh, Toni Jurlina, Christel Prudhomme, Florian Pappenberger calum.baugh@ecmwf.int ECMWF February 14, 2018 Building a Global FF System 1.

More information

On the calibration of WFCAM data from 2MASS

On the calibration of WFCAM data from 2MASS On the calibration of WFCAM data from 2MASS Authors: Simon Hodgkin, Mike Irwin Draft: September 28 th 2006 Modifications: ID: VDF-TRE-IOA-00011-0000* 1 Introduction The requirement on VDFS is to photometrically

More information

WFC3 IR Blobs, IR Sky Flats and the measured IR background levels

WFC3 IR Blobs, IR Sky Flats and the measured IR background levels The 2010 STScI Calibration Workshop Space Telescope Science Institute, 2010 Susana Deustua and Cristina Oliveira, eds. WFC3 IR Blobs, IR Sky Flats and the measured IR background levels N. Pirzkal 1 Space

More information

You, too, can make useful and beautiful astronomical images at Mees: Lesson 3

You, too, can make useful and beautiful astronomical images at Mees: Lesson 3 You, too, can make useful and beautiful astronomical images at Mees: Lesson 3 Calibration and data reduction Useful references, besides Lessons 1 and 2: The AST 142 Projects manual: http://www.pas.rochester.edu/~dmw/ast142/projects/project.pdf

More information

Signal Model vs. Observed γ-ray Sky

Signal Model vs. Observed γ-ray Sky Signal Model vs. Observed γ-ray Sky Springel+, Nature (2008) Two main dark matter signal components: 1. galactocentric diffuse 2. small structures Observed sky modeled with bremsstrahlung π 0 decay up-scattered

More information

Continuous Quality Monitoring of Copernicus Global Land Albedo products based on SPOT/VGT observations

Continuous Quality Monitoring of Copernicus Global Land Albedo products based on SPOT/VGT observations Continuous Quality Monitoring of Copernicus Global Land Albedo products based on SPOT/VGT observations (1) (2) (3) Jorge Sánchez (1) Fernando Camacho (1) Roselyne Lacaze (2) Bruno Smets (3) Introduction:

More information

GALAXIES 626 Spring Introduction: What do we want to learn?

GALAXIES 626 Spring Introduction: What do we want to learn? GALAXIES 626 Spring 2007 Introduction: What do we want to learn? The light of the universe is in discrete chunks: Why? How did we get from the tiny density fluctuations at recombination to the beautifully

More information

FLAT FIELDS FROM THE MOONLIT EARTH

FLAT FIELDS FROM THE MOONLIT EARTH Instrument Science Report WFPC2 2008-01 FLAT FIELDS FROM THE MOONLIT EARTH R. C. Bohlin, J. Mack, and J. Biretta 2008 February 4 ABSTRACT The Earth illuminated by light from the full Moon was observed

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Copyright Dennis

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature149 1 Observation information This study examines 2 hours of data obtained between :33:42 and 12:46:28 Universal Time (UT) on April 17 11 using the -metre Keck telescope. This dataset was

More information

D4.2. First release of on-line science-oriented tutorials

D4.2. First release of on-line science-oriented tutorials EuroVO-AIDA Euro-VO Astronomical Infrastructure for Data Access D4.2 First release of on-line science-oriented tutorials Final version Grant agreement no: 212104 Combination of Collaborative Projects &

More information

Wide-field Infrared Survey Explorer (WISE)

Wide-field Infrared Survey Explorer (WISE) Wide-field Infrared Survey Explorer (WISE) Project Data Management Plan Version 2.1 8-September-2010 Prepared by: Roc M. Cutri Infrared Processing and Analysis Center California Institute of Technology

More information

VISTA HEMISPHERE SURVEY DATA RELEASE 1

VISTA HEMISPHERE SURVEY DATA RELEASE 1 Release date (will be set by ESO) VISTA HEMISPHERE SURVEY DATA RELEASE 1 PROPOSAL ESO No.: 179.A-2010 PRINCIPAL INVESTIGATOR: Richard McMahon Authors: R. McMahon, M. Banerji, N. Lodieu for the VHS Collaboration

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 The Big Picture Is

More information

NEWFIRM Quick Guide for Proposal Preparation

NEWFIRM Quick Guide for Proposal Preparation NEWFIRM Quick Guide for Proposal Preparation Ron Probst NEWFIRM Instrument Scientist September 2008 NEWFIRM is a 1-2.4 micron IR camera for the NOAO 4-m telescopes. It has a flexible complement of broad

More information

70µm Warm Campaign 10K Sensitivity Tests D. Frayer, A. Noriega-Crespo, S. Wachter, & D. Fadda (MIPS-IST) 2005-Jun-16, Version 1.

70µm Warm Campaign 10K Sensitivity Tests D. Frayer, A. Noriega-Crespo, S. Wachter, & D. Fadda (MIPS-IST) 2005-Jun-16, Version 1. 1 70µm Warm Campaign 10K Sensitivity Tests D. Frayer, A. Noriega-Crespo, S. Wachter, & D. Fadda (MIPS-IST) 2005-Jun-16, Version 1. Abstract Data were recently taken to quantify the 70µm sensitivity and

More information

AKARI/IRC All-Sky Survey Point Source Catalogue Version 1.0 Release Note (Rev.1)

AKARI/IRC All-Sky Survey Point Source Catalogue Version 1.0 Release Note (Rev.1) AKARI/IRC All-Sky Survey Point Source Catalogue Version 1.0 Release Note (Rev.1) AKARI/IRC Team Prepared by H. Kataza 1, C. Alfageme 2, A. Cassatella 2, N. Cox 2, H. Fujiwara 3, D. Ishihara 4, S. Oyabu

More information

VERITAS Performance Gernot Maier

VERITAS Performance Gernot Maier VERITAS Performance Gernot Maier Alliance for Astroparticle Physics What scientific impact will VERITAS have in the next 3-5 years? Galactic long-term plan Performance Operations LTP & Performance May

More information

Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial

Notes: Reference: Merline, W. J. and S. B. Howell (1995). A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial Notes: Notes: Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial Results." Experimental Astronomy 6: 163-210.

More information

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010!

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! The Galaxy and the Zodi Light are the dominant sources of diffuse light in the night sky! Both are much brighter

More information

ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS

ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS Instrument Science Report ACS 2009-03 ACS after SM4: RELATIVE GAIN VALUES AMONG THE FOUR WFC AMPLIFIERS R. C. Bohlin, A. Maybhate, & J. Mack 2009 October 8 ABSTRACT For the default setting of gain=2, the

More information

Atmospheric Extinction

Atmospheric Extinction Atmospheric Extinction Calibrating stellar photometry requires correction for loss of light passing through the atmosphere. Atmospheric Rayleigh and aerosol scattering preferentially redirects blue light

More information

SPIRE/PACS Parallel Mode

SPIRE/PACS Parallel Mode SPIRE/PACS Parallel Mode Herschel Observation Planning Workshop ESAC, 20 21 September 2007, Sarah Leeks Herschel Science Centre European Space Astronomy Centre Research and Scientific Support Department

More information

Survey on Population Mean

Survey on Population Mean MATH 203 Survey on Population Mean Dr. Neal, Spring 2009 The first part of this project is on the analysis of a population mean. You will obtain data on a specific measurement X by performing a random

More information

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Samuel Clemens York University Regina Lee York University Paul Harrison Magellan Aerospace Warren Soh Magellan

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

Time-Series Photometric Surveys: Some Musings

Time-Series Photometric Surveys: Some Musings Steve B. Howell NASA Ames Research Center 1 Introduction Time-Series surveys are designed to detect variable, transient, rare, and new astronomical sources. They aim at discovery with a goal to provide

More information

Read-me-first note for the release of the SMOS Level 3 ice thickness data products

Read-me-first note for the release of the SMOS Level 3 ice thickness data products Read-me-first note for the release of the SMOS Level 3 ice thickness data products Processor version Level 3 sea ice thickness v3.1 Release date by ESA Released in December 2016 Authors Xiangshan Tian-Kunze

More information

Analysis of Hubble Legacy Archive Astrometric Header Information

Analysis of Hubble Legacy Archive Astrometric Header Information Analysis of Hubble Legacy Archive Astrometric Header Information Michael A. Wolfe and Stefano Casertano ABSTRACT Astrometric information is put into the headers of the final drizzled images produced by

More information

High accuracy imaging polarimetry with NICMOS

High accuracy imaging polarimetry with NICMOS Rochester Institute of Technology RIT Scholar Works Articles 11-6-28 High accuracy imaging polarimetry with NICMOS Daniel Batcheldor G. Schneider D.C. Hines Follow this and additional works at: http://scholarworks.rit.edu/article

More information

The Dark Energy Survey Public Data Release 1

The Dark Energy Survey Public Data Release 1 The Dark Energy Survey Public Data Release 1 Matias Carrasco Kind (NCSA/UIUC) and the DR1 Release Team https://des.ncsa.illinois.edu/ Near-Field Cosmology with DES DR1 and Beyond Workshop, June 27-29th,

More information

AGILE AGN Working Group S.Mereghetti - on behalf of the AGILE Team

AGILE AGN Working Group S.Mereghetti - on behalf of the AGILE Team AGILE Scientific Program and S. Mereghetti on behalf of the AGILE team Data Rights AGILE Science Management Plan High level document issued in February 2004 Defines: Scientific Management of the mission

More information

Sky Background Calculations for the Optical Monitor (Version 6)

Sky Background Calculations for the Optical Monitor (Version 6) Sky Background Calculations for the Optical Monitor (Version 6) T. S. Poole August 3, 2005 Abstract Instructions on how to calculate the sky background flux for the Optical Monitor on XMM-Newton, by considering

More information

Variability Analysis. Chapter 5

Variability Analysis. Chapter 5 Chapter Variability Analysis With the light curve data from the monitoring program in hand, we now turn to analyzing the GHz variability of each source. In this thesis, we will focus on the amplitude of

More information

What do we do with the image?

What do we do with the image? Astro 150 Spring 2018: Lecture 7 page 1 Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 website Homework: questions on special reading - answers due in lecture Thursday Exam

More information

Wide-field Infrared Survey Explorer (WISE)

Wide-field Infrared Survey Explorer (WISE) Wide-field Infrared Survey Explorer (WISE) Position Reconstruction Peer Review Report 6-February-2008 Prepared by: R. Cutri, H. McCallon, J. Fowler Infrared Processing and Analysis Center California Institute

More information

Data Processing in DES

Data Processing in DES Data Processing in DES Brian Yanny Oct 28, 2016 http://data.darkenergysurvey.org/fnalmisc/talk/detrend.p Basic Signal-to-Noise calculation in astronomy: Assuming a perfect atmosphere (fixed PSF of p arcsec

More information

WFC3 TV2 Testing: IR Channel Read Noise

WFC3 TV2 Testing: IR Channel Read Noise Instrument Science Report WFC3 2008-04 WFC3 TV2 Testing: IR Channel Read B. Hilbert 12 Feb 2008 ABSTRACT Using data taken during WFC3's Thermal Vacuum 2 (TV2) testing campaign, we have characterized the

More information

Near Infrared Background Spectrum Obtained by AKARI

Near Infrared Background Spectrum Obtained by AKARI Near Infrared Background Spectrum Obtained by AKARI Tsumura et al. 2013, PASJ 65, 119: Zodiacal Light, Data Reduction PASJ 65, 120: Diffuse Galactic Light PASJ 65, 121: Extragalactic Background Light Tsumura

More information

Guidelines. H.1 Introduction

Guidelines. H.1 Introduction Appendix H: Guidelines H.1 Introduction Data Cleaning This appendix describes guidelines for a process for cleaning data sets to be used in the AE9/AP9/SPM radiation belt climatology models. This process

More information

Lab 4 Radial Velocity Determination of Membership in Open Clusters

Lab 4 Radial Velocity Determination of Membership in Open Clusters Lab 4 Radial Velocity Determination of Membership in Open Clusters Sean Lockwood 1, Dipesh Bhattarai 2, Neil Lender 3 December 2, 2007 Abstract We used the Doppler velocity of 29 stars in the open clusters

More information

The FAME Mission: An Adventure in Celestial Astrometric Precision

The FAME Mission: An Adventure in Celestial Astrometric Precision The FAME Mission: An Adventure in Celestial Astrometric Precision Kenneth J. Johnston Scientific Director United States Naval Observatory Washington, DC 20390 Abstract-The Full-sky Astrometric Mapping

More information

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters Sobel Filters Note that smoothing the image before applying a Sobel filter typically gives better results. Even thresholding the Sobel filtered image cannot usually create precise, i.e., -pixel wide, edges.

More information

NICMOS Status and Plans

NICMOS Status and Plans 1997 HST Calibration Workshop Space Telescope Science Institute, 1997 S. Casertano, et al., eds. NICMOS Status and Plans Rodger I. Thompson Steward Observatory, University of Arizona, Tucson, AZ 85721

More information

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Name: Partner(s): Boxes contain questions that you are expected to answer (in the box). You will also be asked to put

More information

Large Area Surveys of the Near-Infrared Sky with MIRIS

Large Area Surveys of the Near-Infrared Sky with MIRIS Large Area Surveys of the Near-Infrared Sky with MIRIS Jeonghyun Pyo 1 MIRIS Team 1 Korean Astronomy and Space Science Institute (KASI), KOREA The 2nd Survey Science Group Workshop 2013 Feb. 13 16 @ High1

More information

Observing with the Infrared Spectrograph

Observing with the Infrared Spectrograph Observing with the Infrared Spectrograph C. Grillmair, L. Armus GO Workshop 21-22 November 2002 Outline 1) Meet the IRS IST 2) Basic IRS capabilities 3) Observing and readout modes 4) Data products and

More information

The SDSS Data. Processing the Data

The SDSS Data. Processing the Data The SDSS Data Processing the Data On a clear, dark night, light that has traveled through space for a billion years touches a mountaintop in southern New Mexico and enters the sophisticated instrumentation

More information

Current Status of MIRIS

Current Status of MIRIS Current Status of MIRIS Jeonghyun Pyo, MIRIS Team (KASI) Survey Science Group Workshop High 1 Resort 2015 January 26 Members of MIRIS Team Development Team 한원용 (PI), 이대희 (PM), 가능현, 김일중, 남욱원, 문봉곤, 박성준,

More information

Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9)

Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9) 1 Tyler James Metivier Professor Whitaker Undergrad. Research February 26, 2017 Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9) Abstract:

More information

Gemini Integration Time Calculators

Gemini Integration Time Calculators Gemini Integration Time Calculators Phil Puxley SPE-C-G0076 Version 1.1; June 1998 Version History: 1.0 June 1998; first draft. 1.1 June 1998; following comments from Ted von Hippel and Joe Jensen. 1.

More information

Mattia Di Mauro Eric Charles, Matthew Wood

Mattia Di Mauro Eric Charles, Matthew Wood Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope ArXiv:1705.00009 Submitted to ApJ Mattia Di Mauro Eric Charles, Matthew Wood On behalf of the Fermi-LAT

More information

Lab 4: Differential Photometry of an Extrasolar Planetary Transit

Lab 4: Differential Photometry of an Extrasolar Planetary Transit Lab 4: Differential Photometry of an Extrasolar Planetary Transit Neil Lender 1, Dipesh Bhattarai 2, Sean Lockwood 3 December 3, 2007 Abstract An upward change in brightness of 3.97 ± 0.29 millimags in

More information

Deep fields around bright stars ( Galaxies around Stars )

Deep fields around bright stars ( Galaxies around Stars ) Deep fields around bright stars ( Galaxies around Stars ) Scientific context: the morphological evolution of faint field galaxies Near-IR observations ground-based observations with AO: PUEO/CFHT deep

More information

Machine Learning Applications in Astronomy

Machine Learning Applications in Astronomy Machine Learning Applications in Astronomy Umaa Rebbapragada, Ph.D. Machine Learning and Instrument Autonomy Group Big Data Task Force November 1, 2017 Research described in this presentation was carried

More information

Deep GLIMPSE Data Description

Deep GLIMPSE Data Description Deep GLIMPSE Data Description Deep GLIMPSE: Exploring the Far Side of the Galaxy by Marilyn R. Meade, Brian L. Babler, Barbara A. Whitney, Robert Benjamin, Ed Churchwell, Remy Indebetouw, Tom Robitaille,

More information

OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018

OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018 OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018 The moon, as our nearest neighbor, sometimes blocks the light coming from a planet, a star, or the sun. Occultations are listed below

More information

Point-wise Wind Retrieval and Ambiguity Removal Improvements for the

Point-wise Wind Retrieval and Ambiguity Removal Improvements for the Point-wise Wind Retrieval and Ambiguity Removal Improvements for the May 9th 2011 IOVWST Meeting QuikSCAT Climatological Data Alexander Fore, SetBryan Stiles, R. Scott Dunbar, Brent Williams, Alexandra

More information

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy (The Astrophysical Journal Supplement Series, 231:21 (16pp), 2017 August) November 14, 2017 Young-Soo Jo Young-Soo

More information

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo SSC17-VIII-6 Automatic Star-tracker Optimization Framework Andrew Tennenbaum The State University of New York at Buffalo aztennen@buffalo.edu Faculty Advisor: John Crassidis The State University of New

More information

Flagging Bad Data in Imaging

Flagging Bad Data in Imaging Flagging Bad Data Flagging Bad Data in Imaging Observations are never perfect, due to observing conditions e.g., bad seeing, moonlight, the solar wind, clouds, airplanes, cosmic rays, telescope malfunctions

More information

2. The Astronomical Context. Fig. 2-1

2. The Astronomical Context. Fig. 2-1 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions * θ * Fig. 2-1 Position usually means angle. Measurement accuracy

More information