PLATO - 5. Planetary atmospheres

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PLATO - 5. Planetary atmospheres"

Transcription

1 PLATO - 5 Planetary atmospheres 1

2 Mercury Smallest planet! 0.38 Earth radii! Earth masses! 0.39 AU orbit (eccentric)! 350K surface temperature (ranges from 100K-700K)! Slow 59 day rotation (2/3 orbital period)! No atmosphere 2

3 Surface Dominated by impact craters Evidence of geological activity:! Some craters are flooded with lava! Scarp cliff: Crustal fracture Large Caloris Basin :! Relatively smooth Plateau! Result of major impact Scarp cuts across craters 3

4 Interior Very high density! Mostly iron core Rotation irregularities:! Interior is partly molten Partly liquid Iron-Nickel core Rock (Silicates)! Suggests presence of some Sulfur (see Mars) 4

5 The Moon Nearest celestial object! 0.27 Earth radii Apollo 11! Earth masses (only 60% density of Mercury)! Phase locked rotation near! 220 K surface temperature (average; from 70K - 390K)! No atmosphere! Water ice in polar craters? far 5

6 Maria Lunar Highlands Lunar Maria light: calcium & aluminum oxide dark: basalt 6

7 Formation of Maria Late massive impacts! Flooded Lunar low-lands! Erased low-lying craters! Left dark basalt surface Few impact craters in Maria! Flood must have happened ~3.5 billion years ago.! Ideal site for lunar landings 7

8 Lunar Geology Rilles:! Cracking of cooling surface! Lava flows No sign of current geological activity! Moon has cooled! Similar to Mercury, moon is geologically dormant 8

9 Internal Structure Determined from seismographs left by Apollo missions! Asymmetric interior! Earth-facing side thinner! Easier to flood Maria only on Earthfacing side! Note the small Iron core Crust ~150 km thick Mantle (poor in iron) Crust ~65 km thick To Earth Maria (on Earth-facing side) 9

10 Lunar Formation Composition:! Surface rock very similar to Earth! Much smaller iron content Impact ejection theory! Earth hit by Mars-size object at ~ 4.5 billion years! Obliterated crust Moon formed from crustal debris in orbit around Earth 10

11 Comparative Planetology 11

12 Why do Earth and Venus show geological activity? Liquid Cores Terrestrial planets formed from colliding solid planetesimals! Lots of kinetic energy! Turned into thermal energy = lots of heat All Planets interiors were initially liquid 12

13 Heat Retention Planets are born hot But all things cool by radiation How long does it take a planet to cool? t cool = E thermal L = 3 4πR3 2kT n 3 4πR 2 σt 4 = nkr σt 3 R! Bigger planets take longer to cool! This explains why Earth and Venus are most active today 13

14 Radioactive Heating Recall:! Rock contains small amounts of radioactive material, such as 238 U Each radioactive decay releases:! Nuclear decay products " fast particles with lots of kinetic energy = thermal energy " photons = electromagnetic energy The energy goes into heat! Planets stay hot longer 14

15 Comparative Planetology Now we understand... 15

16 Atmospheres How can we understand the differences in the atmospheres of terrestrial planets? 16

17 Atmospheres Psurface ~ 90 atm. Psurface = 1 atm. Psurface = 0.01 atm. Why are these atmospheres so different? Where do they come from? 17

18 Earth s Atmosphere Mass:! 10-6 of total Earth mass Composition! 78.8% Nitrogen (N2)! 20.9% Oxygen (O2) Mesosphere! 0.9% Argon! 0.04% Carbon Dioxide! 0.002% Neon! % Helium 18

19 Hydrostatic Equilibrium Stratification:! Denser at lower altitudes! Higher pressure at lower altitudes Why is this?! Gravity pulls down! Pressure pushes in all directions! But: Lower pressure at higher altitudes, so downward force from above weaker than upward force from below! Net pressure force = gravity (equilibrium) 19

20 Evaporation Remember:! Thermal velocity is only an average! Some particles move faster, some slower! Fastest particles can escape!! All planets slowly leak particles into space! Rule of thumb:! You can retain an atmosphere over the age of the solar system if the escape velocity is more than ten times the thermal velocity 20

21 Evaporation The escape & thermal velocities of different planets:! Mercury! vesc=4.3 km/s!! vth=0.7 km/s! Venus!! vesc=10.3 km/s! vth=0.7 km/s! Earth!! vesc=11.2 km/s! vth=0.48 km/s! Mars!! vesc=5.0 km/s!! vth=0.35 km/s! Moon!! vesc=2.4 km/s!! vth=0.5 km/s Explains why Mercury and Moon have no atmosphere But: does it explain the presence of Earth s & Venus atmosphere? 21

22 Secondary Atmospheres Where did Earth s atmosphere came from? A) Volcanism B) Comets C) Plants 22

23 Secondary Atmospheres Terrestrial planets:! Not massive enough to accrete gas from the solar nebula! They only accreted solids Atmosphere on terrestrial planets must have formed from solids! This is called a secondary atmosphere! Material for secondary atmosphere comes from " Volcanism (CO2) " Comets (H2O) 23

24 Atmospheres Psurface ~ 90 atm. Psurface = 1 atm. Psurface = 0.01 atm. Earth: Mostly N2, some O2 Mars & Venus: Mostly CO2 and a bit of N2 24

25 Comparative Planetology Start from the assumption that Earth, Mars, and Venus started out roughly similar! How can we understand their different atmospheres today? Critical ingredient:! Water " CO2 cycle " Fosters life (photosynthesis) " Mild green house gas 25

26 Earth s CO2 cycle Why the difference in CO2 concentration?! Rain washes out CO2! Calcium Carbonate deposits in ocean and on land as rock! Photosynthesis turns residual CO2 to O2 and carbohydrates! Tectonic and volcanic activity returns some CO2 Ozone layer absorbs UV light 26

27 Venus vs. Earth Venus is geologically similar to Earth Why is Venus atmosphere so different from Earth s?! CO2 concentration: " Amount of Carbon locked away on Earth comparable to CO2 in Venus atmosphere! Earth once had as much CO2 as Venus Good job, plants and rain! Thanks!! Why did this not happen on Venus?! No liquid water on Venus - but why? 27

28 Venus vs. Earth Why no liquid water on Venus? Here s a theory: 1. Venus closer to Sun started out hotter 2. Temperature so hot that most water is evaporated 3. Water vapor rises above any Ozone layer 4. Sun s UV radiation breaks apart H2O molecules 5. Hydrogen H2 will escape into space 6. Residual O2 will combine with Carbon to make CO2 But why the high pressure and temperature today?! Before we figure that out, we need to talk about clouds... 28

29 Albedo Planet atmospheres transmit some light, reflect the rest.! Fraction of light reflected by an atmosphere is called its albedo Pincoming A = P reflected P incoming P reflected Ptransmitted 29

30 Albedo Planet atmospheres transmit some light, reflect the rest.! Fraction of light reflected by an atmosphere is called its albedo The higher the albedo of a planet! the less Sun light reaches the ground.! the brighter the planet appears in the sky (Venus is bright!) Material Albedo A Snow 0.8 Ice 0.6 soil 0.2 grass 0.25 ocean 0.1 Planet Albedo A Mercury 0.1 Venus 0.75 Earth 0.3 Mars 0.15 Moon

31 Thermal Equilibrium Before talking about the greenhouse effect, let s discuss thermal equilibrium! Equilibrium: Incoming power = outgoing power Psolar Solar power (1-A) x Psolar Incoming power A x Psolar Reflected power (1-A) x Psolar Outgoing power Clouds/surface Planet 31

32 Thermal Equilibrium Before talking about the greenhouse effect, let s discuss thermal equilibrium! Equilibrium: Incoming power = outgoing power Solve for the average surface temperature: T = 1/4 (1 A) L 16πσD 2 L1/4 (1 A)1/4 D1/2! Planets at larger distances to Sun are colder! Planets around dim stars are colder! Planets with high albedo are colder - but what about Venus? 32

33 Blackbody Radiation Every object with non-zero temperature emits light Blackbodies are special emitters:! They are in equilibrium with the radiation inside them! The radiation they emit is of a certain type - we call it thermal or blackbody radiation.! The hotter a blackbody, the more radiation it emits. 33

34 Blackbody Radiation The blackbody spectrum! Has a peak at λ max = nm T! This is called the Wien Law! So: Hotter things are bluer, colder things redder! max 15,000 K star Intensity (relative) the Sun (5,800 K) 3,000 K star human (310 K) wavelength (nm) 34

35 Blackbody Radiation The blackbody spectrum! Has a peak at λ max = nm T! This is called the Wien Law! So: Hotter things are bluer, colder things redder cool burner hot burner 35

36 Blackbody Radiation The higher the temperature, the more radiation A blackbody of temperature T, the flux F at the surface of the object (say, a star) is F BB = σ SB T 4! Stefan-Boltzmann constant: " SB =5.67x10-8 Wm -2 K -4 If the surface area of the object is A, the power is L BB = A σ SB T 4 36

37 The Greenhouse Effect 37

38 Intensity The Greenhouse Effect How does a greenhouse work?! Glass is a filter: Transmits visible light but blocks infrared light " Radiation from the Sun is in the visible " Radiation from the ground up is in the infrared! Heat is trapped! Energy gets in, but can t get out. incoming Sun light high enough Temp. glass ground higher Temp. Blackbody spectrum with greenhouse greenhouse gas filter low Temperature Wavelength Blackbody spectrum without greenhouse 38

39 The Greenhouse Effect How does a greenhouse work?! Glass is a filter: Transmits visible light but blocks infrared light " Radiation from the Sun is in the visible " Radiation from the ground up is in the infrared! Heat is trapped! Energy gets in, but can t get out.! Temperature rises until as much energy escapes as is transmitted from the Sun (equilibrium: in = out) " Higher temperature means more flux (Wien law) " Higher temperature means shorter wavelength (Stephan- Boltzman law), less filtering 39

40 The Greenhouse Effect Some gases act like glass:! They are transparent to visible light but block infrared light! Examples: Visible radiation " CO2 (comletely transparent in visible) " Water vapor " Methane " Ozone! The concentration of any of these gases in Earth s atmosphere is small, so Earth is not a good greenhouse. 40

41 Venus Venus is perfect illustration of the greenhouse effect! Very large CO2 concentration due to lack of liquid water! Temperature now so high that liquid water evaporates " Exacerbates greenhouse effect " H2O destroyed by Sun s UV radiation " Thus, no water, no O2 41

42 Runaway Greenhouse Effect If CO2 content of Earth s atmosphere rises drastically 1. Temperature goes up because of greenhouse effect 2. Ocean water evaporates more rapidly 3. Water is a greenhouse gas, so temperature rises more 4. Once water vapor reaches upper atmosphere: " UV light dissociates (destroys) water into H2 and O2 " H2 escapes into space and is lost " No H2O, so CO2 can no longer be washed out of atmosphere! This runaway greenhouse effect is irreversible 42

43 Comparative Planetology Comparison: Planets Semi major axis (AU) Albedo Surface temp. without greenhouse Actual surface temp. Greenhouse warming Venus K 750K 523K Earth K 287K 33K Mars K 221K 5K Why does Mars have such a weak greenhouse effect?! Mars had liquid water in the past Must have had moderate green house effect, like Earth! But: Tectonic activity is over, so no more CO2 release 43

44 Planets: Greenhouse Effect Comparison: Solar wind Why does Mars have such a weak greenhouse effect?! Mars had liquid water in the past Must have had moderate green house effect, like Earth! But: Tectonic activity is over, so no more CO2 release " Ice-house: Freeze-out of Carbon, Mars lost atmosphere 44

45 Planets: Greenhouse Effect Comparison: Solar wind So Mars might have been more habitable if it were big enough:! Bigger planets stay hotter! Hotter planets maintain tectonics/geological activity! That replenishes CO2 in the atmosphere 45

46 The Jovian Planets Cassini image of Jupiter, Io, and Io s shadow (NASA/JPL) 46

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 27, 2017 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Earth Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Semi-major Axis 1 A.U. Inclination 0 Orbital period 1.000 tropical year Orbital eccentricity 0.017 Rotational period 23 h 56 min 4.1 s Tilt

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field? Mercury and Venus Learning Objectives! Contrast the Earth, the Moon, Venus and Mercury. Do they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?!

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth Fun Facts 1. Only body with liquid water on the surface. 2. Most massive terrestrial body in solar system 3. Only

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

ASTRONOMY 1010 Exam 2 October 19, 2007

ASTRONOMY 1010 Exam 2 October 19, 2007 ASTRONOMY 1010 Exam 2 October 19, 2007 Name Please write and mark your name and student number in the Scantron answer sheet. FILL THE BUBBLE IN THE "TEST FORM" BOX CORRESPONDING TO YOUR TEST VERSION (listed

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

Mars & Venus: Just Down the Street

Mars & Venus: Just Down the Street Mars & Venus: Just Down the Street Of course, Mars & Venus are our nearest planetary neighbors and are more similar to Earth than any other bodies in the Solar System. Your author does an excellent job

More information

see disks around new stars in Orion nebula where planets are probably being formed 3

see disks around new stars in Orion nebula where planets are probably being formed 3 Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life?

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? The Habitability of Worlds Lecture 31 NASA: The Visible Earth In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? a) 1 (yes, definitely)

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 9 Lecture The Cosmic Perspective Seventh Edition Planetary Geology: Earth and the Other Terrestrial Worlds Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2.

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2. TopHat quizzes for astro 111 Lecture week 1 1. If you multiply 2 x 10 4 by itself, what do you get? A. 4 x 10 4 B. 4 x 10 8 C. 2 x 10 4 D. 4 x 10 16 2. Jupiter's maximum distance from the sun is approximately

More information

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration 1. Light and other forms of electromagnetic radiation are given off by stars using energy released during A) nuclear fusion B) conduction C) convection D) radioactive decay 2. At which temperature would

More information

OCN 201: Earth Structure

OCN 201: Earth Structure OCN 201: Earth Structure Eric Heinen Eric H. De Carlo, Carlo: OCN 201, OCN Sp2010 201, Fall 2004 Early History of the Earth Rapid accretion of Earth and attendant dissipation of kinetic energy caused tremendous

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1)

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1) Chapter 5 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Our Earth is about four times larger than the Moon in diameter. 1) 2) The Earth's hotter, inner

More information

Lecture 2: The Solar System

Lecture 2: The Solar System Lecture 2: The Solar System 1) WileyPLUS (online) registration? homework? 2) Final Exam scheduled Tuesday, December 15 (12-2) 3) iclickers assigned on Tuesday 4) Big Island Field Trip Fall 2015 Big Island

More information

Lecture 11 Earth s Moon January 6d, 2014

Lecture 11 Earth s Moon January 6d, 2014 1 Lecture 11 Earth s Moon January 6d, 2014 2 Moon and Earth to Scale Distance: a = 385,000 km ~ 60R Eccentricity: e = 0.055 Galileo Spacecraft Dec. 1992 3 [Review question] Eclipses do not occur each month

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

Greenhouse Effect. Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose

Greenhouse Effect. Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose Greenhouse Effect Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose What is the Greenhouse Effect? The greenhouse effect is a natural occurrence caused by Earth's atmosphere

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Lecture 37. The Solar System

Lecture 37. The Solar System Lecture 37 The Formation of the Solar System How did the solar system come about? Condensation sequence Are there others? Apr 24, 2006 Astro 100 Lecture 37 1 The Solar System Brief History of Time (assumes

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

Chap 10 - The Atmospheres of the Inner Planets

Chap 10 - The Atmospheres of the Inner Planets Chap 10 - The Atmospheres of the Inner Planets Atmosphere gas in the form of individual atoms or more typically, of molecules. Common molecules and their atomic weight: --carbon dioxide CO 2 -> 12+2x16=

More information

Astronomy Study Guide Answer Key

Astronomy Study Guide Answer Key Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

Clouds and Rain Unit (3 pts)

Clouds and Rain Unit (3 pts) Name: Section: Clouds and Rain Unit (Topic 8A-2) page 1 Clouds and Rain Unit (3 pts) As air rises, it cools due to the reduction in atmospheric pressure Air mainly consists of oxygen molecules and nitrogen

More information

The Universe and Galaxies

The Universe and Galaxies The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus

More information

The Earth. Overall Structure of Earth

The Earth. Overall Structure of Earth The Earth Why Study The Earth??? It s our home! Where did life come from, where is it going. To understand the other planets. Study of other planets will, in turn, help us understand the Earth. Overall

More information

AST Section 2: Test 2

AST Section 2: Test 2 AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Jovian (Jupiter like) Planets

Jovian (Jupiter like) Planets Jovian (Jupiter like) Planets Jupiter Internal structure Heat source Moons & rings Terrestrial vs. Jovian - Size & Density Density (g/cm 3 ) Density (g/cm^3) 6 5 4 3 2 1 0 Mercury Venus Earth Mars Jupiter

More information

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Developed in Consultation with Georgia Educators

Developed in Consultation with Georgia Educators Developed in Consultation with Georgia Educators Table of Contents Georgia Performance Standards Correlation Chart........... 7 Performance Standards Chapter 1 Earth and Space.............................

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Origin of the Solar System

Origin of the Solar System Solar nebula Formation of planetismals Formation of terrestrial planets Origin of the Solar System Announcements There will be another preceptor-led study group Wednesday at 10:30AM in room 330 of Kuiper

More information

GARP 0102 Earth Radiation Balance (Part 1)

GARP 0102 Earth Radiation Balance (Part 1) Class 8: Earth s Radiation Balance I (Chapter 4) 1. Earth s Radiation Balance: Sun, Atmosphere, and Earth s Surface as a System 2. Electromagnetic Radiation: Shortwave vs. longwave radiation (Page 69-71)

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

General Introduction. The Earth as an evolving geologic body

General Introduction. The Earth as an evolving geologic body General Introduction The Earth as an evolving geologic body Unique/important attributes of Planet Earth 1. Rocky planet w/ strong magnetic field Mercury has a weak field, Mars has a dead field 1 Unique/important

More information

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like? 9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

More information

Carbon Cycling Internal

Carbon Cycling Internal Carbon Cycling Internal The 4 subcycles Atmosphere The Earth s Atmosphere The Earth has a radius of some 6400 km. Ninety-nine percent of the earth's atmosphere is contained within a layer approximately

More information

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process. Galaxies and Stars 1. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is A) hotter than Rigel B) more luminous than Rigel C) closer than Rigel D) larger than Rigel

More information

Astronomy I Exam 2 Sample

Astronomy I Exam 2 Sample NAME: Part I: Multiple Choice (2 points. ea.) Read carefully, choose the best answer 1. Which of the following occurs because of the orbital motion of the Earth about the Sun and cannot be accounted for

More information

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B.

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B. Part II: Solar System Planetology 2 A. Structure of Solar System B. Planetology Lecture: Planetology C. The Planets and Moons Updated: 2012Feb10 A. Components of Solar System 3 Orbits of Planets 4 1. Planets

More information

Astronomy Part 1 Regents Questions

Astronomy Part 1 Regents Questions Regents Questions 1. The Sun revolves around the center of A) Polaris B) Aldebaran C) Earth D) the Milky Way Galaxy 4. In which sequence are the items listed from least total mass to greatest total mass?

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m. If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

More information

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Greenhouse effect Learning goals Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Wavelength (color) and temperature related: Wein s displacement law Sun/Hot:

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Class 38: Review for Test 2 [4/23/07]

Class 38: Review for Test 2 [4/23/07] ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 38: Review for Test 2 [4/23/07] Announcements Test Chapters 7-14

More information

Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 8 The Moon and Mercury MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The best way to find the exact distance

More information

THE GAS GIANTS JUPITER VENUS MARS EARTH

THE GAS GIANTS JUPITER VENUS MARS EARTH THE GAS GIANTS JUPITER SATURN URANUS NEPTUNE VENUS The temperature at the cloud tops is 200 C while the interior temperatures reach tens of thousands of degrees. The churning of the atmosphere causes temperatures

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Solar System Formation/The Sun

Solar System Formation/The Sun Solar System Formation/The Sun Objective 4 Examine the orbital paths of planets and other astronomical bodies (comets and asteroids). Examine the theories of geocentric and heliocentric models and Kepler

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

More information

K20: Temperature, Heat, and How Heat Moves

K20: Temperature, Heat, and How Heat Moves K20: Temperature, Heat, and How Heat Moves Definition of Temperature Definition of Heat How heat flows (Note: For all discussions here, particle means a particle of mass which moves as a unit. It could

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

The Earth in the Universe

The Earth in the Universe The Earth in the Universe (OCR) Evidence for the age of the Earth Scientists once thought that the Earth was only 6000 years old. Rocks have provided lots of evidence for the world being older. 1) Erosion

More information

Image of the Moon from the Galileo Space Craft

Image of the Moon from the Galileo Space Craft Image of the Moon from the Galileo Space Craft Moon: Overview Due to its size (diameter 3476 km, Mercury s diameter is 4880 km) and composition, the moon is sometimes considered as a terrestrial planet

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

Astronomy 101 The Solar System Tuesday, Thursday 2:30-3:45 pm Hasbrouck 20. Tom Burbine

Astronomy 101 The Solar System Tuesday, Thursday 2:30-3:45 pm Hasbrouck 20. Tom Burbine Astronomy 101 The Solar System Tuesday, Thursday 2:30-3:45 pm Hasbrouck 20 Tom Burbine tomburbine@astro.umass.edu Course Course Website: http://blogs.umass.edu/astron101-tburbine/ Textbook: Pathways to

More information