2. The site mentions that a potential asteroid impact can change its Torino scale value. Give two reasons why such a change may occur.

Size: px
Start display at page:

Download "2. The site mentions that a potential asteroid impact can change its Torino scale value. Give two reasons why such a change may occur."

Transcription

1 Astronomy 101 Name(s): Lab 7: Impacts! On June 30, 1908, a low-density 80-meter diameter asteroid entered the atmosphere above Tunguska, Siberia and generated a shock wave that flattened millions of trees and heat that scorched millions more, yet did not leave an impact crater. Forty-nine thousand years ago, near Holbrook, Arizona, the impact of a 50-meter diameter iron asteroid did stay intact and did generate a large crater, called Barringer Crater (formerly Meteor Crater ). Recently, asteroid 1950 DA made the news because, due to some fortuitous observations, its orbit was calculated to an unusually high degree of precision. The calculations showed that the 1.1 km diameter body has a small, but nonzero, chance of striking Earth in the year What would the effects of such an asteroid be? The following problems are designed to gain an overview of impact research. NASA maintains some very nice web pages on impacts. At for instance, you get the diagram on the next page (called the Torino scale of impacts for the site of the conference at which it was adopted). Below is how to place the numbers in context of their range and probability.

2 1. a. From the graph on the previous page, estimate the kinetic energy (in megatonnes of a 5 km diameter asteroidal impactor (a cometary impactor would have to be larger for the same kinetic energy release). By way of comparison, the largest nuclear weapon ever designed by humans was a Soviet Tsar Bomba at 100 megatonnes. b. Draw a horizontal line across the graph at that energy (equivalent to the 5 km diameter impactor). How can any part of that graph be considered 0 hazard? In other words, what s the saving grace of this type of impact?

3 2. The site mentions that a potential asteroid impact can change its Torino scale value. Give two reasons why such a change may occur. Go to another part of the NASA site at Examine the table of NEAs (near-earth asteroids)). 3. a. List the names of the asteroids have a non-zero Torino scale value. b. Why was asteroid 1950 DA removed from the list? 4. There seems to be a different scale by which you can assess the danger of impact the Palermo scale (apparently, Italian cities are popular sites of impact hazard conferences). What s the difference between the Palermo scale and the Torino scale? 5. a. At this point, cometary impacts should be distinguished from asteroid impacts. Fill in the table below: Asteroid impact Comet impact Initial speed (high/low) Likelihood of significant vaporization (high/low) Size of impactor (small/large) Size of shock wave due to speed and vapor generation (small/large) b. Go to the University of Illinois at Champaign-Urbana s press release site and read What did the researchers there discover were the two major differences in what was left after the impact that you could distinguish comet impacts from asteroid impacts?

4 Of course, these exciting doomsday scenarios have attracted many researchers to develop programs to predict the effects of various types of impacts. One of the best I ve seen is by Marcus, Melosh and Collins at the Lunar and Planetary Institute at the University of Arizona. Go to Notice that there is a huge array of parameters you can enter about the proposed impact. For fun, you ll simulate the effects of a direct impact centered on the Pike Place Market in downtown Seattle. The distance to the impact (for us) therefore will be 10 km (6 miles). We ll deal with the projectile diameter in a moment. Under projectile density, note that you can either enter a value or else choose a material for the impactor from the pull down menu on the right. 6. What are the numerical values (including units) of the density of impactors made of iron versus those made of ice? Which material is associated with comets? Which with asteroids? Note that the typical impact velocity depends on what the impactor is. We ll deal with the impact angle issue later. The target density can be chosen by choosing a button (and entering a water depth in meters, if needed). Okay, now you re ready to go. Play with the projectile diameter as the variable first. Scenario: an n-meter wide (n given in the table below) asteroid strikes Pike Place Market, which is built on glacial till (a sedimentary rock). 7. Write out the parameters that you will use (where possible, use typical values): density (kg/m 3 ) = Impact velocity (km/s) = Impact angle (degrees) = Target parameter = Having set those parameters, now fill in the table below as you vary only the projectile diameter:

5 Interval between impacts of this type (years) (yes/no); if yes, crater size (km) (1 km) (10 km) (100 km) 8. Did any of the impacts make any global changes? 9. Now suppose the same impactor hit 10 km (6 miles away) in Puget Sound, in 100 m deep water. Fill in the table again, just making this one change. Interval between impacts of this type (years) (yes/no); if yes, crater size (km) (1 km) (10 km) (100 km)

6 10. What are the general trends you notice with having a water impact versus a land impact? Are the effects in general worse for life, or better, or about the same? 11. Now suppose the same impactor hit 10 km (6 miles away) on Beacon Hill (where Amazon, Inc., headquarters is). Beacon Hill is made of basalt, a crystalline rock. Fill in the table again, just making this one change. 10 Interval between impacts of this type (years) (yes/no); if yes, crater size (km) (1 km) (10 km) (100 km) 12. What are the general trends you notice with having an impact on sedimentary rock versus an impact on crystalline rock? Are the effects in general worse for life, or better, or about the same? 13. Let s return to impacting Pike Place Market. Reset the parameters for the same impact as in question 7, but this time, make the impactor a comet, and see what happens. Use a projectile diameter of 100 m, and don t forget to adjust the impact velocity! 100 Iron material (yes/no); if yes, crater size (km) 100 Ice

7 14. What are the general trends you notice with having an asteroid impact versus a cometary impact? The differences may not be obvious from the table above. Are the effects in general worse for life, or better, or about the same? (In other words, is a Deep Impact scenario better or worse than an Armageddon scenario?) 15. Return to having an asteroid hit Pike Place Market. Now vary the angle at which the impactor hits. Fill in the table: Impact angle (degrees) (yes/no); if yes, crater size (km) What differences are evident from the impact angle? The differences may not be obvious from the table above. A couple of sites with some lists of historical impacts allow you to enter and simulate some classical impacts. tigger.uic.edu/~pankaj/science/asteroid.html

8 17. The textbook on page 140 makes the claim that the transition between simple and complex craters takes place somewhere around 2 to 4 km in crater diameter. Assume an iron meteorite striking the Earth at a relative velocity of 17 km/s. Find the largest diameter projectile that will make a simple crater; then find the smallest diameter projectile that will make a complex crater. Simple or complex crater? We can, of course, perform our own experiments. The best medium on which to make artificial craters is dry cement or flour. Spread about thirty pounds of it over a square meter area. Then start dropping objects into it. 18. We ll start with marbles. Weigh a couple of marbles to make sure that they are about the same mass. Then drop them straight down from various heights and measure a) the radius of the ejecta field, b) the diameter of the crater and c) the depth of the crater. Try to get a complex crater if you can. Mass of marble (kg) Height of drop (m) Simple or complex crater? Radius of ejecta field (cm) Crater diameter (cm) Crater depth (cm)

9 19. Using the numbers in the previous table, calculate the following entries (the first two columns of numbers should be identical to the previous table). Mass of marble (kg) Height of drop (m) Velocity at impact (m/s)* of impact (J)** Depth of crater/diameter of crater *The velocity at impact can be calculated from the formula v = 2 g h where v is the velocity at impact in m/s, g is the acceleration due to gravity in m/s 2 and h is the height of the drop in m. Clearly, we are neglecting air resistance and other factors here. **The energy of the impact can be calculated using the formula E = (1/2) m v 2 where E is the energy of the impact in J, m is the mass of the projectile in kg and v is velocity at impact of the projectile in m/s. 20. a. Was your depth/diameter of crater constant? Compare your value(s) to the one given on page 140 of the text (in the yellow box). Does flour make a good substitute for rock in illustrating this point? b. Did you get a complex crater? If so, what was the approximate diameter at which the transition from simple to complex took place? If not, suggest what parameter in the experiment should be changed (based on what you learned from the impactor modelling program) in order to generate a complex crater. c. Is there a correlation between the energy of the impact and the radius of the ejecta field? Is it linear? exponential?

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7 Name Section Partners By Tyler Nordgren Laboratory Exercise for Chapter 7 Equipment: Ruler Sand box Meter stick Log-log paper Small balls such as those included in the table at the end of the lab THE FORMATION

More information

Near Earth Objects and Past Impacts

Near Earth Objects and Past Impacts Near Earth Objects and Past Impacts Part 1: NEO Impacts A very large number of meteoroids enter the Earth's atmosphere each day amounting to more than a hundred tons of material. But they are almost all

More information

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects Test Bank The Good Earth: Introduction to Earth Science 3rd Edition McConnell Steer Completed download: https://testbankreal.com/download/good-earth-introduction-earth-science- 3rd-edition-test-bank-mcconnell-steer/

More information

Teachersʼ Guide. Creating Craters. Down to Earth KS3

Teachersʼ Guide. Creating Craters. Down to Earth KS3 Teachersʼ Guide Creating Craters Creating Craters! Creating Craters - Teachersʼ Guide - 2 Overview This lesson allows pupils to create impact craters in layered dry materials. Pupils can perform controlled

More information

Asteroids, Comets, and Meteoroids

Asteroids, Comets, and Meteoroids Asteroids, Comets, and Meteoroids Bode s Law In 1772 Johann Bode, a German astronomer, created a mathematical formula now called Bode s Law. This formula determines the pattern that describes the distances

More information

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Calculating Damage from Asteroid Impacts H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Impact Effects can be divided into two basic categories: Local or Regional: Global: Thermal

More information

Earth s Layers Activity

Earth s Layers Activity Earth s Layers Activity Purpose: To visualize the basic structure of the Earth and how we study it. Materials: Procedure: A piece of poster board shaped like a pizza slice with radius of about 16 cm Compass

More information

Asteroids, Comets and NEOs. (Answers) Solar System Impacts. Author: Sarah Roberts

Asteroids, Comets and NEOs. (Answers) Solar System Impacts. Author: Sarah Roberts Asteroids, Comets and NEOs (Answers) Author: Sarah Roberts Asteroids, Comets and NEOs - Impact craters on the Earth 1. Using the data given below for real impact craters on the Earth, investigate the effect

More information

Chapter 3 Checkpoint 3.1 Checkpoint 3.2 Venn Diagram: Planets versus Asteroids Checkpoint 3.3 Asteroid Crashes the Moon?

Chapter 3 Checkpoint 3.1 Checkpoint 3.2 Venn Diagram: Planets versus Asteroids Checkpoint 3.3 Asteroid Crashes the Moon? Chapter 3 Checkpoint 3.1 Which characteristics are true of both planets and asteroids? a) They are approximately spherical in shape. b) There are thousands of examples. c) They formed 1 to 2 billion years

More information

Teacher Lesson 4: Are Craters Always Round?

Teacher Lesson 4: Are Craters Always Round? www.barringercrater.com Teacher Lesson 4: Are Craters Always Round? Overview Most of the craters we have seen on Mars, Mercury and the Moon are round, but is that always the case? Daniel Barringer experimented

More information

The impact flux (hazard?) on Earth

The impact flux (hazard?) on Earth The impact flux (hazard?) on Earth The young Earth and Moon suffered the same heavy bombardment early in the Solar System Only the Moon preserves the record of this The lunar record indicates roughly constant

More information

A rock is released from rest, in deep space, far from the earth. At a certain point, as it falls towards us, it crosses the moon's orbit.

A rock is released from rest, in deep space, far from the earth. At a certain point, as it falls towards us, it crosses the moon's orbit. Sir Issac Newton... We went into the garden, & drank tea under the shade of some appletrees, only he, & myself. amidst other discourse, he told me, he was just in the same situation, as when formerly,

More information

Death From the Skies

Death From the Skies Death From the Skies Learning Objectives! Use the Titius-Bode Rule to list the planet s distances. What connects the Titius-Bode Rule to the asteroids?! How big is Ceres? How big are typical asteroids?

More information

ASTRONOMY SNAP GAME. with interesting facts

ASTRONOMY SNAP GAME. with interesting facts ASTRONOMY SNAP GAME with interesting facts Sun Sun The Sun is the largest object in the solar system The Sun's life expectancy is approximately 5 billion more years At its core, the Sun s temperature is

More information

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building Solar System Junk So far, we ve taken a brief look at the 8 planets of the solar system, their array of moons or natural satellites, and how we think such a system formed. Most of the material in the solar

More information

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto Chapter 9 Remnants of Rock and Ice Asteroids, Comets, and Pluto 9.1 Asteroids and Meteorites Our Goals for Learning Why is there an asteroid belt? How are meteorites related to asteroids? Asteroid Facts

More information

Craters of The Moon. David-Alexander Robinson ; Daniel Tanner; Jack Denning th November Abstract 2. 2 Introduction & Theory 2

Craters of The Moon. David-Alexander Robinson ; Daniel Tanner; Jack Denning th November Abstract 2. 2 Introduction & Theory 2 Craters of The Moon David-Alexander Robinson ; Daniel Tanner; Jack Denning 08332461 12th November 2009 Contents 1 Abstract 2 2 Introduction & Theory 2 3 Experimental Method 3 3.1 Depht of Craters.........................

More information

Universe: everything that exists, including all matter and energy everywhere

Universe: everything that exists, including all matter and energy everywhere WHAT DO YOU KNOW? Universe: everything that exists, including all matter and energy everywhere The study of what is beyond Earth Many years ago, skywatchers took note of patterns in the stars and there

More information

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler When Worlds Collide GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler Copyright, 1996 Dale Carnegie & Associates, Inc. Introduction This talk is about impacts between objects

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

Lab #11. Impact Craters

Lab #11. Impact Craters Lab #11 Impact Craters Introduction It is clear from the surface features of geologically old planets (the Moon, Mercury) and some of the unusual phenomena in the solar system (Earth s large moon, the

More information

Astronomy 150: Killer Skies Lecture 13, February 15

Astronomy 150: Killer Skies Lecture 13, February 15 Assignments: Astronomy 150: Killer Skies Lecture 13, February 15 Hour Exam 1 next time, Feb 17, in class more later today Planetarium: report due Feb 24 extra show added tomorrow, Thursday Feb 16 or can

More information

What are they? Where do they come from?

What are they? Where do they come from? Comets What are they? Where do they come from? Lesson Objectives To distinguish between the orbits of planets and those of comets. To describe the likely origins of short-period and long-period comets.

More information

STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary

STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary Vocabulary STUDENT RESOURCE 1.1 INFORMATION SHEET asteroids thousands of rocky objects that orbit the Sun Most asteroids orbit in a belt between the orbits of Mars and Jupiter. More than 9, asteroids have

More information

Impact Cratering. Exercise Four. Instructor Notes. Background. Purpose. Materials. Suggested Correlation of Topics

Impact Cratering. Exercise Four. Instructor Notes. Background. Purpose. Materials. Suggested Correlation of Topics 2.0 hours Exercise Four Impact ing Instructor Notes Suggested Correlation of Topics s on planets and satellites, gradation, impact mechanics, physics Purpose This exercise demonstrates the mechanics of

More information

The End of the World...

The End of the World... The End of the World... as we know it. Impacts in the Inner Solar System Collisions have played a key role in the past formation of planets by accretion fragmentation (formation of the Moon) sustained

More information

Cratering and the Lunar Surface

Cratering and the Lunar Surface Lab 3 Cratering and the Lunar Surface 3.1 Overview This exercise begins a two-exercise module exploring evolutionary processes on terrestrial surfaces. It contains a hands-on cratering activity, an analysis

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Purpose: To determine the factors affecting the appearance of impact craters and ejecta.

Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Title: Impact Craters Subject: Science Grade Level: 4 th - 8th Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Materials 1 pan Lunar surface material Tempera paint,

More information

Laboratory 15: Meteor Impact

Laboratory 15: Meteor Impact Laboratory 15: Meteor Impact Figure 1: Meteor Crater Meteor Crater was formed about 50,000 years ago by a massive meteorite striking the Earth. There were no humans living in North America at that time:

More information

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday.

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am!

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am! Homework #3 is due Friday at 11:50am! Nighttime observing has more nights. Check the webpage. 1 st exam is October th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

Simple Harmonic Motion - MBL

Simple Harmonic Motion - MBL Simple Harmonic Motion - MBL In this experiment you will use a pendulum to investigate different aspects of simple harmonic motion. You will first examine qualitatively the period of a pendulum, as well

More information

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon The Moon Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon Earth Moon Semi-major Axis 1 A.U. 384 x 10 3 km Inclination 0 Orbital period 1.000 tropical year 27.32

More information

Chapter 12. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 34: Asteroids and Comets [4/13/07] Announcements. Near-Earth Objects

Chapter 12. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 34: Asteroids and Comets [4/13/07] Announcements. Near-Earth Objects ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 34: Asteroids and Comets [4/13/07] Announcements Near-Earth Objects

More information

Finding Impact Craters with Landsat

Finding Impact Craters with Landsat Name Finding Impact Craters with Landsat Known Effects of Impact Events When an object from space hits the Earth, here is what can happen. There's a huge explosion. The impact makes a big hole or crater

More information

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is 8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Student Exploration: Free-Fall Laboratory

Student Exploration: Free-Fall Laboratory Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these

More information

Super Quiz. 4 TH Grade

Super Quiz. 4 TH Grade Super Quiz 4 TH Grade The SUPER QUIZ is the most exciting event of the Academic Challenge because, for the first time, you will compete as a team with your friends to answer the questions. TEAM SIGN UP

More information

Lunar Crater Activity - Teacher Pages

Lunar Crater Activity - Teacher Pages Adapted from: http://www.nasa.gov/pdf/180572main_etm.impact.craters.pdf I took the activity and simplified it so that there was just one independent variable: the drop height, and one dependent variable:

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

PHYSICS CLASS XI CHAPTER 8 GRAVITATION

PHYSICS CLASS XI CHAPTER 8 GRAVITATION PHYSICS CLASS XI CHAPTER 8 GRAVITATION Q.1. Can we determine the mass of a satellite by measuring its time period? Ans. No, we cannot determine the mass of a satellite by measuring its time period. Q.2.

More information

Teacher Background. Impact! Down to Earth KS 3&4

Teacher Background. Impact! Down to Earth KS 3&4 Teacher Background Impact! Impact! - Teacher Background- 2 Meteorites What Are They, and Where Do They Come From? Meteorites are rocks from space that have passed through the atmosphere and landed on the

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

Lesson 2 The Inner Planets

Lesson 2 The Inner Planets Lesson 2 Student Labs and Activities Page Launch Lab 25 Content Vocabulary 26 Lesson Outline 27 MiniLab 29 Content Practice A 30 Content Practice B 31 School to Home 32 Key Concept Builders 33 Enrichment

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016

Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016 Name: Section: Earth 110 Exploration of the Solar System Assignment 2: Solar System Formation Due in class Tuesday, Jan. 26, 2016 Can we use our observations of the solar system to explain how it formed?

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

A geologic process An erosional force A chronological tool An influence on biology

A geologic process An erosional force A chronological tool An influence on biology Impact Cratering: Physics and Chronology A geologic process An erosional force A chronological tool An influence on biology Impact features are common All solar system bodies with solid surfaces show evidence

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

More information

Safety goggles must be worn whenever the slingshot is in use!

Safety goggles must be worn whenever the slingshot is in use! Name Impact Cratering Lab Class Purpose To learn about the mechanics of impact cratering, the concept of kinetic energy, and to recognize the landforms associated with impact cratering. Materials This

More information

Contents of the Solar System

Contents of the Solar System The Solar System Contents of the Solar System Sun Planets 9 known (now: 8) Mercury, Venus, Earth, Mars ( Terrestrials ) Jupiter, Saturn, Uranus, Neptune ( Jovians ) Pluto (a Kuiper Belt object?) Natural

More information

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 Ages on Mars Martian Surface Age Exploration You have now learned some very important things about various planets and moons in our Solar

More information

12.3 Pluto: Lone Dog No More

12.3 Pluto: Lone Dog No More 12.3 Pluto: Lone Dog No More Our goals for learning: How big can a comet be? What are the large objects of the Kuiper belt like? Are Pluto and Eris planets? How big can a comet be? Pluto s Orbit Pluto

More information

This Week. 1/15/2015 Physics 214 Spring

This Week. 1/15/2015 Physics 214 Spring This Week Gravity: Dropping and throwing objects From Baseballs to satellites What causes motion. All changes involve motion Extinction of the dinosaurs 1/15/2015 Physics 214 Spring 2015 1 One dimensional

More information

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7 Today asteroids, meteorites, comets things that go bump Events Homework 5 Due Thanksgiving next week Exam III - Dec. 7 Lots of small asteroids number A few big asteroids apparent brightness Asteroids are

More information

Astron 104 Laboratory #4 Gravity and Orbital Motion

Astron 104 Laboratory #4 Gravity and Orbital Motion Name: Date: Section: Astron 104 Laboratory #4 Gravity and Orbital Motion Section 5.5, 5.6 Introduction No astronomical object can stand still gravity makes certain of this. Newton s Law of Universal Gravitation

More information

What effect do they have?

What effect do they have? Exploring Meteorite Mysteries Lesson 16 Near Miss Objectives apply science to daily life as they simulate possible responses to a meteorite impact. produce articles for a newspaper. role-play in a panel

More information

Physics 201 Lab 2 Air Drag Simulation

Physics 201 Lab 2 Air Drag Simulation Physics 201 Lab 2 Air Drag Simulation Jan 28, 2013 Equipment Initial Set Up Type the data from Table 1 into the appropriate cells. By preceding the content of the cell with an equal sign (as in cell A6)

More information

Explore Marvel Moon: KID MOON: SPLAT!

Explore Marvel Moon: KID MOON: SPLAT! ~ LPI EDUCATION/PUBLIC ENGAGEMENT SCIENCE ACTIVITIES ~ Explore Marvel Moon: KID MOON: SPLAT! OVERVIEW Participants model ancient lunar impacts using water balloons. Like huge asteroids, the water balloons

More information

18.1 Earth and Its Moon Earth s shape and orbit Earth s shape Earth s orbit around the Sun

18.1 Earth and Its Moon Earth s shape and orbit Earth s shape Earth s orbit around the Sun 18.1 Earth and Its Moon Revolving around Earth at a distance of 384,400 kilometers is our only moon. Since the invention of spacecraft, our knowledge of Earth and the Moon has grown tremendously. In fact,

More information

Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe?

Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? Background Questions Celestial Objects 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe? 3. Describe the Galileo probe mission. 4. What are scientists

More information

5/3/17. Extinction of the Dinosaurs. Extinction of Dinosaurs - Causes. #40 Meteorite Impacts III - Dinosaur Extinction, Future Risk, Mitigation

5/3/17. Extinction of the Dinosaurs. Extinction of Dinosaurs - Causes. #40 Meteorite Impacts III - Dinosaur Extinction, Future Risk, Mitigation Paper Scores are posted Please check grades Web Exercise #6 LATE; was Due by 1 pm, Monday 5/1 There is a 2-point penalty for every 24-hour period the assignment is late. No Web Exercise #6 will be accepted

More information

ALL ABOUT THE PLANETS

ALL ABOUT THE PLANETS Venus Earth Mercury Mars ALL ABOUT THE PLANETS and a few other things By:James Cooper Elsberry Jupiter Saturn Uranus Neptune Mercury First I will start off with Mercury. Mercury is extremely difficult

More information

Assignment 4. Due TBD

Assignment 4. Due TBD Assignment 4 Due TBD Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your work is

More information

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature Earth Physical Properties of Earth Equatorial Diameter Mass 12,756 km 5.976 10 24 kg Average Density 5.497 g/cm 2 Surface Gravity 9.8 m/s 2 Escape Velocity Surface Temperature 11.2 km/s -50 o C to 50 o

More information

Vagabonds of the Solar System. Chapter 15

Vagabonds of the Solar System. Chapter 15 Vagabonds of the Solar System Chapter 15 ASTR 111 003 Fall 2007 Lecture 13 Nov. 26, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15)

More information

Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?

Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? How did we come to be? How can we know what the universe was like in the

More information

Assignment 2. Due March 4, 2019

Assignment 2. Due March 4, 2019 Assignment 2 Due March 4, 2019 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

Modeling the Motion of a Projectile in Air

Modeling the Motion of a Projectile in Air In this lab, you will do the following: Modeling the Motion of a Projectile in Air analyze the motion of an object fired from a cannon using two different fundamental physics principles: the momentum principle

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

PHY 221 Lab 7 Work and Energy

PHY 221 Lab 7 Work and Energy PHY 221 Lab 7 Work and Energy Name: Partners: Goals: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Note: originally, Lab 7 was momentum and collisions. The

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

Table of Contents. Space Bits: Outer Space Objects

Table of Contents. Space Bits: Outer Space Objects Table of Contents Space Bits: Outer Space Objects Comet vs. Asteroid * Meteoroid vs. Meteor vs. Meteorite Crazy Craters Around the World * Halley's Comet * What is Pluto? Solar Eclipse vs. Lunar Eclipse

More information

Problem Set 3: Crater Counting

Problem Set 3: Crater Counting Problem Set 3: Crater Counting Introduction Impact craters are the dominant landforms on most of the solid surfaces in our solar system. These impact craters have formed on the surfaces over the 4.6 billion

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

4 Decoding the Arecibo Message

4 Decoding the Arecibo Message 4 Decoding the Arecibo Message In 1974, the Arecebo radio telescope was used to send a message into space. The message was directed at the globular cluster M13, which is an assembly of hundreds of thousands

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due Today The Little Things Rings, meteorites Asteroids & Comets Dwarf Planets Events Homework 5 Due geysers on Triton Rocky Planets versus Icy Moons Rock melts at higher temperatures. Only large rocky planets

More information

Ch. 6: Smaller Bodies in the Solar System

Ch. 6: Smaller Bodies in the Solar System Ch. 6: Smaller Bodies in the Solar System FIGURE 9-1 (Discovering the Universe) Different Classifications of Solar System Objects Some of the definitions of the different types of objects in the solar

More information

Physics 2101, First Exam, Spring 2008

Physics 2101, First Exam, Spring 2008 Physics 2101, First Exam, Spring 2008 January 22, 2008 Please turn OFF your cell phone and MP3 player! Write your name and section number in the front of the scantron form. Bubble in your name on the back

More information

PHY 221 Lab 9 Work and Energy

PHY 221 Lab 9 Work and Energy PHY 221 Lab 9 Work and Energy Name: Partners: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Goals: While F = ma may be one of the most important equations

More information

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve: NAME: Chapters 12, 13 & 14: Universal Gravitation Text: Chapter 12 Chapter 13 Think and Explain: Think and Explain: Think and Solve: Think and Solve: Chapter 13 Think and Explain: Think and Solve: Vocabulary:

More information

Constructing the Moon

Constructing the Moon Constructing the Solar System: A Smashing Success Constructing the Moon Thomas M. Davison Department of the Geophysical Sciences Compton Lecture Series Autumn 2012 T. M. Davison Constructing the Solar

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition 1 2 1 Conceptual Physical Science 6 th Edition Chapter 4: GRAVITY, PROJECTILES, AND SATELLITES Sections 4.1, 4.5-4.9 only 3 2017 Pearson Education, Inc. This lecture will help you understand: The Universal

More information

Craters. Part 1: What should we measure?

Craters. Part 1: What should we measure? When a meteoroid (called the impactor ) hits the surface of a planet or moon, it creates an impact crater. As the impactor s kinetic energy is dissipated, the resulting explosive energy release carves

More information

Matter, Force, Energy, Motion, and the Nature of Science (NOS)

Matter, Force, Energy, Motion, and the Nature of Science (NOS) Matter, Force, Energy, Motion, and the Nature of Science (NOS) Elementary SCIEnCE Dr. Suzanne Donnelly Longwood University donnellysm@longwood.edu Day 3: Morning schedule Problem-Based Learning (PBL) What

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 14 Astronomy Today 7th Edition Chaisson/McMillan Chapter 14 Solar System Debris Units of Chapter 14 14.1 Asteroids What Killed the Dinosaurs? 14.2 Comets 14.3 Beyond Neptune 14.4

More information

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION NAME: ORBITAL MOTION What will you learn in this Lab? You will be using some special software to simulate the motion of planets in our Solar System and across the night sky. You will be asked to try and

More information

Mini 4-H. Developed by Area VII Extension Youth Educators Draft Purdue University Cooperative Extension Service

Mini 4-H. Developed by Area VII Extension Youth Educators Draft Purdue University Cooperative Extension Service & Mini 4-H Developed by Area VII Extension Youth Educators Draft Purdue University Cooperative Extension Service Mini 4-Her's Page a special to Mini 4-H! are now a of the 4-H family. You Mini have lots

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture Chapter 12 Lecture The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts

More information

The Solar System. Name Test Date Hour

The Solar System. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information