Sunrise, Sunset and Mathematical Functions

Size: px
Start display at page:

Download "Sunrise, Sunset and Mathematical Functions"

Transcription

1 Teaching of Functions 13 Sunrise, Sunset and Mathematical Functions Activity #1: The table you are given reports the sunrise and sunset times for Manila, Philippines for each day of the year. Each day has been assigned a number using January 1 as Day 1 and then counting forwards for all other dates. The first few dates for next year are also included and that is why their values are greater than Convert each time to a 24 hour system using decimal parts of an hour rather than hours and minutes. Subtract the sunrise and sunset times to complete the last column in the table. Work in groups of 3 with each person doing one third of the dates and then sharing the information with the rest of the group members. 2. Use this data to draw a graph of daylight hours (y) versus day of the year (x). Daylight Hours by Day for Manila 13 Number of Hours of Daylight Day of the Year - Jan 1 is Day 1 3. Does this set of data form a function? If so why, if not explain. 4. Find December 21 on the graph. What do you notice? 5. Find another day with the same number of hours of daylight as March 21. What date would this be? 6. What would be true about the number of daylight hours for March 21, 2002 compared to March 21, 2003? 7. Graphs that have the property that they repeat over and over again in the same pattern are said to be periodic and the period refers to how often this repetition occurs. What would be the period of this relation?

2 14 Teaching of Functions Sunrise and Sunset Times for Manila Date Day No. Sunrise Sunset Hours of Daylight Jan 1 1 6:21 17:38 Jan :25 17:50 Feb :21 17:59 Mar :11 18:05 Mar :56 18:07 April :42 18:10 May :31 18:14 May :26 18:20 June :27 18:27 July :33 18:30 July :39 18:26 Aug :43 18:16 Sept :44 18:02 Oct :46 17:46 Oct :49 17:32 Nov :55 17:25 Dec :06 17:25 Dec :17 17:33 Jan :24 17:45 Feb :24 17:56 Feb :16 18:03

3 Teaching of Functions 15 Activity #2: There are other activities that can produce interesting mathematical graphs. You are provided with a diagram of the face of a clock with only the hour hand showing. Tape it to your desk anywhere you like as long as the top edge of the paper is between 1 and 10 cm from the top edge of the desk. Make sure that the edges of the paper are parallel to the edges of your desk. 1. Measure the distance (in cm) from the tip of the hour hand to the top edge of your desk for each hour, starting at 1 o'clock and ending at 12 o'clock. Remember that the distance must be the straight line distance to the top edge of the desk measured at right angles to this edge. 2. Record your data in the table below: Hour Dist Distance From Tip of Hour Hand to Desk Edge (cm) Position of Hour Hand 3. Draw a graph of hour (x-axis) versus distance to the top edge of the desk (y-axis). 4. Does this set of points form a function? Why/Why not? 5. Is it periodic? If so, what is the period? If not, why not?

4 16 Teaching of Functions 6. Assume that in our experiment, 1 o'clock represents 1 a.m. and that 12 o'clock is noon. If we call 1 p.m. 13:00 hours and continue making measurements all the way up to 24:00 hours explain why you could fill in another chart without making any measurements. 7. Make up another chart from 13:00 to 24:00 hours and add these points to the graph. What do you notice? 8. If you think of 00:00 (midnight) as an angle of 0, then what angle could you associate with (a) 1 a.m. (b) 7:00 a.m. (c) 11 a.m. (d) 3 p.m. 9. If you drew your graph with the angle on the x-axis and the distance along the y-axis, would the graph change? Establish what angle would be equivalent to each position of the hour hand recorded in your table. Re-label the x-axis below the original labels using the appropriate angles. Now if you graph angle on the x-axis and distance on the y-axis will the graph look the same or different? Explain. 10. Is there any reason you could not carry out this experiment to include the distances for the hour hand at 1:30, 2:30 and so on? Explain. 11. In what ways is this last graph similar to or different from the graph you drew for the number of daylight hours?

5 Teaching of Functions

6 18 Teaching of Functions Making Connections With Periodic Functions 1. In 1900, Willem Einthoven invented the electrocardiograph (EKG). This machine measures the electrical impulses that cause the heart to beat. Doctors use this record to help them in diagnosing heart problems; and, many medical shows on TV have video displays of the classic spiked pulse of the heartbeat. Einthoven was awarded the Nobel prize in 1924 for his invention. The display below shows a typical tracing from an EKG for a healthy adult. Typical EKG for Normal Adult Heartbeats Time (seconds) (a) Based on the portion of the graph that you can see, would you say that this is a periodic function? Explain. (b) Assume the graph illustrated is represented by y = f(x). Is f(0.5) = f(2)? Explain. (c) Find 2 values of a that make f(a) = f(3) a true statement. (d) How many complete cycles occur between t = 0.5 and t = 3.5 seconds? (e) What is the period of this graph? (f) Based on your answer to (e) what would you say is the heart rate in beats/minute for this person? Is this normal? (g) If the heart rate was 120 beats/minute, what would be the period of the EKG tracing in minutes? In seconds? (h) Animals such as cats and dogs have heart rates quite different to humans. The heart rate for an elephant is 46. What would be the period of the corresponding EKG tracing? (i) A canary s heart beats 1000 times per minute. What would be the period of the corresponding EKG tracing (if a canary would sit still for such a thing!)?

7 Teaching of Functions Some stock market analysts believe that stock prices vary in a predictable pattern and that if these patterns could be established it would make decisions about buying and selling stocks much easier. The average weekly stock price for the Acme Manufacturing Company for a five year period is illustrated in the display below: 32 Average Weekly Price of Acme Man ($) Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Month (a) Explain why this set of points forms a function. (b) What are the maximum and minimum values for this function? (c) When was the stock at its highest value over the past 5 years? (d) When was the stock at its lowest value over the past 5 years? (e) Based on the portion of the graph that you can see, would you say that this function is periodic? Explain. (f) What does the word cyclic mean? Would you say that these stock prices are cyclic? Explain.

8 20 Teaching of Functions Exploring Circular Functions - A 1. Use the function machine below and the circle to fill in the table of values for this function. For example, if you draw a 45 angle, the y-coordinate of the point where the angle cuts the circle will be This produces the ordered pair (45, 0.71) o INPUT PROCESSING INSTRUCTIONS Draw a line from O to make an angle with the x-axis equal to the input value. The output is the y-coordinate of the point where this line intersects the circle OUTPUT O Angle ( ) Function value 2. For every point on the unit circle will there be a corresponding angle? 3. For every angle will there be a corresponding point on the unit circle? 4. Are we justified in joining these points with a smooth continuous curve? Explain. 5. Plot these ordered pairs on the grid below. Comment on what you notice.

9 Teaching of Functions Compare your unit circle and function machine with that of your neighbour. In what ways are they the same or different? 7. Compare your graph with that of your neighbour. In what ways are they the same or different? 8. Where have you seen graphs similar to these before? 9. Would you say that the functions defined by these function machines represent periodic functions or not? Explain. The functions in these two exercises are called the sine (Exploration - A) and cosine y (Exploration - B) functions. The sine function is defined by sin θ = where r is the r radius of the circle used to generate the ordered pairs and is the angle. If the radius is 1 (as in this case) we can simply use the y-coordinate as we did here. The cosine function is x defined by cos θ = r 10. Sketch the graph of f(x) = sin θ and f(x) = cos θ in your notebook. Label the axes and state the domain and range for each function.

10 22 Teaching of Functions Exploring Circular Functions - B 1. Use the function machine below and the circle to fill in the table of values for this function. For example, if you draw a 60 angle, the x-coordinate of the point where the angle cuts the circle will be 0.5. This produces the ordered pair (60, 0.5). PROCESSING INSTRUCTIONS 60 o INPUT Draw a line from O to make an angle with the x-axis equal to the input value. The output is the x-coordinate of the point where this line intersects the circle. 0.5 OUTPUT O Angle ( ) Function value 2. For every point on the unit circle will there be a corresponding angle? 3. For every angle will there be a corresponding point on the unit circle? 4. Are we justified in joining these points with a smooth continuous curve? Explain. 5. Plot these ordered pairs on the grid below. Comment on what you notice.

11 Teaching of Functions Compare your unit circle and function machine with that of your neighbour. In what ways are they the same or different? 7. Compare your graph with that of your neighbour. In what ways are they the same or different? 8. Where have you seen graphs similar to these before? 9. Would you say that the functions defined by these function machines represent periodic functions or not? Explain. The functions in these two exercises are called the sine (Exploration - A) and cosine y (Exploration - B) functions. The sine function is defined by sin θ = where r is the r radius of the circle used to generate the ordered pairs and is the angle. If the radius is 1 (as in this case) we can simply use the y-coordinate as we did here. The cosine function is x defined by cos θ = r 10. Sketch the graph of f(x) = sin θ and f(x) = cos θ in your notebook. Label the axes and state the domain and range for each function.

12 24 Teaching of Functions Exploring Circular Functions - C As we saw in the previous exercises, the function machine can be programmed to produce different functions depending on the procedure that is part of the machine. This last set of processing instructions will produce yet another circular function. The function machine at the 5 30 o INPUT PROCESSING INSTRUCTIONS Draw a line from O to make an angle with the x-axis equal to the input value. The output is the y-coord of the point where this line intersects the tangent to the circle OUTPUT left is used in conjunction with the diagram on your handout. This diagram illustrates a circle along with a tangent line. Recall that a tangent is a line that intersects a circle in only one point. Once again, the radius of the circle is exactly one unit and the marks on the tangent line are 0.1 units. Use your own copy of the unit circle and the function machine above along with its defined rule to generate a table of values for this function for angles of -60, -45, -30, 0, 30, 45, , 390 and 420. (Hint: If the terminal ray of the angle doesn't hit the tangent line just extend the other end until it does). Make up a table similar to this one to help organize your work: O Angle Function value...

13 Teaching of Functions For every point on the tangent line will there be a corresponding angle? 2. For every angle will there be a corresponding point on the tangent line? Explain. The angles that do not produce values are 90 and 270 (and all coterminal equivalents). It is useful to draw dotted vertical lines at these angle values on the x-axis so that we know that the function is undefined at these values. 3. Now plot the ordered pairs in your table of values on a graph When a curve is not as well behaved as we would like, it is sometimes necessary to use more data points to get a good curve. This function is called the tangent function and you can get a few more points by using the button on your calculator. Get function values for 70, 75, 80 and 85 using the calculator and plot these ordered pairs on the graph to help you establish what the curve looks like. 5. Try to draw a smooth curve through the points. Comment on what you notice, particularly in what ways this curve is similar to or different from the graphs of the sine and cosine functions.

14 26 Teaching of Functions 6. Explain why the ordered pairs in the graph form a function. 7. Explain why the function appears to be periodic. 8. What is the period of this function? 9. What are the maximum and minimum values of this function? 10. For what values of the angle does the value of the function appear to be 0? 11. For what values of the angle does the value of the function appear to be undefined? 12. What are the domain and range of the tangent function? 13. Try to find tan 90 on your calculator. What happens? Explain.

Principles of Mathematics 12: Explained!

Principles of Mathematics 12: Explained! www.math12.com 18 Part I Ferris Wheels One of the most common application questions for graphing trigonometric functions involves Ferris wheels, since the up and down motion of a rider follows the shape

More information

Section 6.5 Modeling with Trigonometric Functions

Section 6.5 Modeling with Trigonometric Functions Section 6.5 Modeling with Trigonometric Functions 441 Section 6.5 Modeling with Trigonometric Functions Solving right triangles for angles In Section 5.5, we used trigonometry on a right triangle to solve

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

TILT, DAYLIGHT AND SEASONS WORKSHEET

TILT, DAYLIGHT AND SEASONS WORKSHEET TILT, DAYLIGHT AND SEASONS WORKSHEET Activity Description: Students will use a data table to make a graph for the length of day and average high temperature in Utah. They will then answer questions based

More information

MiSP Astronomy - Seasons Worksheet #1 L2

MiSP Astronomy - Seasons Worksheet #1 L2 MiSP Astronomy - Seasons Worksheet #1 L2 Name Date Changing Hours of Daylight on Long Island (L 1, 2, 3) Introduction You sometimes hear people say, Days are longer in the summer and shorter in the winter.

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

MiSP Astronomy Seasons Worksheet #1 L1

MiSP Astronomy Seasons Worksheet #1 L1 MiSP Astronomy Seasons Worksheet #1 L1 Name Date CHANGING HOURS OF DAYLIGHT ON LONG ISLAND Introduction You sometimes hear people say, Days are longer in the summer and shorter in the winter. That is a

More information

Chapter 13: Trigonometry Unit 1

Chapter 13: Trigonometry Unit 1 Chapter 13: Trigonometry Unit 1 Lesson 1: Radian Measure Lesson 2: Coterminal Angles Lesson 3: Reference Angles Lesson 4: The Unit Circle Lesson 5: Trig Exact Values Lesson 6: Trig Exact Values, Radian

More information

Motions of the Sun Model Exploration

Motions of the Sun Model Exploration Name Date Bell Motions of the Sun Model Exploration 1. Go to the University of Nebraska-Lincoln Motions of the Sun Simulator: http://astro.unl.edu/naap/motion3/animations/sunmotions.swf 2. This is what

More information

Lesson: Slope. Warm Up. Unit #2: Linear Equations. 2) If f(x) = 7x 5, find the value of the following: f( 2) f(3) f(0)

Lesson: Slope. Warm Up. Unit #2: Linear Equations. 2) If f(x) = 7x 5, find the value of the following: f( 2) f(3) f(0) Warm Up 1) 2) If f(x) = 7x 5, find the value of the following: f( 2) f(3) f(0) Oct 15 10:21 AM Unit #2: Linear Equations Lesson: Slope Oct 15 10:05 AM 1 Students will be able to find the slope Oct 16 12:19

More information

6.3 More Sine Language

6.3 More Sine Language 6.3 More Sine Language A Solidify Understanding Task Clarita is helping Carlos calculate his height at different locations around a Ferris wheel. They have noticed when they use their formula h(t) = 30

More information

Earth Motions Packet 14

Earth Motions Packet 14 Earth Motions Packet 14 Your Name Group Members Score Minutes Standard 4 Key Idea 1 Performance Indicator 1.1 Explain complex phenomena, such as tides, variations in day length, solar insolation, apparent

More information

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS NAME(S)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ASTRONOMY 25 Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS SECTION DAY/TIME S. V. LLOYD Overview The seasonal variation in temperature is due to two changes

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. ASTR 110L 5 - Seasons Purpose: To plot the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. What do you think? Write answers to questions

More information

Candidate Number. General Certificate of Secondary Education Higher Tier June 2012

Candidate Number. General Certificate of Secondary Education Higher Tier June 2012 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier June 2012 Pages 2 3 4 5 Mark Mathematics

More information

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS 4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS MR. FORTIER 1. Trig Functions of Any Angle We now extend the definitions of the six basic trig functions beyond triangles so that we do not have to restrict

More information

LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S):

LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S): GEOG 101L PHYSICAL GEOGRAPHY LAB SAN DIEGO CITY COLLEGE SELKIN 1 LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S): The main objective of today s lab is for you to be able to visualize the sun s position

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Using Functions in Models and Decision Making: Cyclical Functions V.B Student Activity Sheet 4: Length of Daylight

Using Functions in Models and Decision Making: Cyclical Functions V.B Student Activity Sheet 4: Length of Daylight Student: Class: V.B Student Activity Sheet 4: Daylight You may have noticed that during the winter the days are shorter and during the summer the days are longer. How much longer are days during the summer?

More information

Section 5.1 Extra Practice. Section 5.2 Extra Practice. Chapter 5 Review. cos x. 9. Determine the amplitude & period for the graphs below.

Section 5.1 Extra Practice. Section 5.2 Extra Practice. Chapter 5 Review. cos x. 9. Determine the amplitude & period for the graphs below. Chapter Review Section. Etra Practice. a) Sketch the graph of y = sin θ for 60 θ 60. Identify the key points by labelling their coordinates on the graph. b) What is the eact value of this function at?

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Functions and their Graphs

Functions and their Graphs Chapter One Due Monday, December 12 Functions and their Graphs Functions Domain and Range Composition and Inverses Calculator Input and Output Transformations Quadratics Functions A function yields a specific

More information

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and 2001-2002 Rainfall For Selected Arizona Cities Phoenix Tucson Flagstaff Avg. 2001-2002 Avg. 2001-2002 Avg. 2001-2002 October 0.7 0.0

More information

OBSERVING PROJECT PARTNER ELECTION

OBSERVING PROJECT PARTNER ELECTION ASTRONOMY 25 NOON SUN PROJECT P. P. 1 Name(s) Section Day/Time Fill in either Part 1 or Part 2. OBSERVING PROJECT PARTNER ELECTION Part I. SOLO OBSERVER I will do the observing project by myself. I will

More information

STATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; )

STATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; ) STATISTICAL FORECASTING and SEASONALITY (M. E. Ippolito; 10-6-13) PART I OVERVIEW The following discussion expands upon exponential smoothing and seasonality as presented in Chapter 11, Forecasting, in

More information

VCE. VCE Maths Methods 1 and 2 Pocket Study Guide

VCE. VCE Maths Methods 1 and 2 Pocket Study Guide VCE VCE Maths Methods 1 and 2 Pocket Study Guide Contents Introduction iv 1 Linear functions 1 2 Quadratic functions 10 3 Cubic functions 16 4 Advanced functions and relations 24 5 Probability and simulation

More information

Reason for the Seasons Workbook

Reason for the Seasons Workbook Name Reason for the Seasons Workbook Clipart from the Florida Center for Instructional Technology (FCIT) Table of Contents What Causes the Seasons Factsheet and Activity............. 1 Angle of Light Rays

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES

YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES This topic includes: Transformation of data to linearity to establish relationships

More information

Grade 6 Standard 2 Unit Test Astronomy

Grade 6 Standard 2 Unit Test Astronomy Grade 6 Standard 2 Unit Test Astronomy Multiple Choice 1. Why does the air temperature rise in the summer? A. We are closer to the sun. B. The air becomes thicker and more dense. C. The sun s rays are

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus. Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. Write the equation of the line that goes through the points ( 3, 7) and (4, 5)

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Paper 2. Calculator allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 5 7. satspapers.org

Paper 2. Calculator allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 5 7. satspapers.org Ma KEY STAGE 3 Mathematics test TIER 5 7 Paper 2 Calculator allowed First name Last name School 2009 Remember The test is 1 hour long. You may use a calculator for any question in this test. You will need:

More information

GAMINGRE 8/1/ of 7

GAMINGRE 8/1/ of 7 FYE 09/30/92 JULY 92 0.00 254,550.00 0.00 0 0 0 0 0 0 0 0 0 254,550.00 0.00 0.00 0.00 0.00 254,550.00 AUG 10,616,710.31 5,299.95 845,656.83 84,565.68 61,084.86 23,480.82 339,734.73 135,893.89 67,946.95

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

ST MARY S DSG, KLOOF GRADE: 12 1 SEPTEMBER 2011 MATHEMATICS: PAPER II. Teacher s name:

ST MARY S DSG, KLOOF GRADE: 12 1 SEPTEMBER 2011 MATHEMATICS: PAPER II. Teacher s name: 1 ST MARY S DSG, KLOOF GRADE: 12 1 SEPTEMBER 2011 MATHEMATICS: PAPER II TIME: 3 HOURS EXAMINER: J. KINSEY TOTAL: 150 MARKS MODERATOR: V. GOVENDER Name: Teacher s name: READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

More information

Day Length Web Activity

Day Length Web Activity Day Length We Activity SAMPLE Name: Follow the directions for each section and type your answers on a separate sheet of paper. Use TI-Graph Link or TI Inter Active! to present your data and models you

More information

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY

Secondary Math GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Secondary Math 3 7-5 GRAPHING TANGENT AND RECIPROCAL TRIG FUNCTIONS/SYMMETRY AND PERIODICITY Warm Up Factor completely, include the imaginary numbers if any. (Go to your notes for Unit 2) 1. 16 +120 +225

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Friday 10 January 2014 Morning Time: 2 hours Centre Number Candidate Number Higher Tier Paper Reference

More information

Line Graphs. 1. Use the data in the table to make a line graph. 2. When did the amount spent on electronics increase the most?

Line Graphs. 1. Use the data in the table to make a line graph. 2. When did the amount spent on electronics increase the most? Practice A Line Graphs Use the table to answer the questions. U.S. Personal Spending on Selected Electronics Amount Spent Year ($billions, estimated) 1994 $71 1996 $80 1998 $90 2000 $107 1. Use the data

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN

ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN Name(s) Section Time ASTRONOMY 25 SUMMER 2017 PROJECT 2: THE HEIGHT OF THE SUN Rules: 1) Do the project by yourself or with one other person. If you want to work with a partner, get an agreement form from

More information

CHAPTER 8. Sinusoidal Functions

CHAPTER 8. Sinusoidal Functions CHAPTER 8 Sinusoidal Functions 8.1 UNDERSTANDING ANGLES Chapter 8 DEFINITIONS A central angle is an angle whose vertex is at the center of a circle. The unit circle is a circle whose radius is 1. Arc length

More information

Pre-Calc Chapter 1 Sample Test. D) slope: 3 4

Pre-Calc Chapter 1 Sample Test. D) slope: 3 4 Pre-Calc Chapter 1 Sample Test 1. Use the graphs of f and g to evaluate the function. f( x) gx ( ) (f o g)(-0.5) 1 1 0 4. Plot the points and find the slope of the line passing through the pair of points.

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

Polar Coordinates: Graphs

Polar Coordinates: Graphs Polar Coordinates: Graphs By: OpenStaxCollege The planets move through space in elliptical, periodic orbits about the sun, as shown in [link]. They are in constant motion, so fixing an exact position of

More information

IB Mathematics HL Year 1 Unit 4: Trigonometry (Core Topic 3) Homework for Unit 4. (A) Using the diagram to the right show that

IB Mathematics HL Year 1 Unit 4: Trigonometry (Core Topic 3) Homework for Unit 4. (A) Using the diagram to the right show that IB Mathematics HL Year Unit 4: Trigonometry (Core Topic 3) Homework for Unit 4 Lesson 4 Review I: radian measure, definitions of trig ratios, and areas of triangles D.2: 5; E.: 5; E.2: 4, 6; F: 3, 5, 7,

More information

Section 6.1 Sinusoidal Graphs

Section 6.1 Sinusoidal Graphs Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle We noticed how the x and y values

More information

Candidate Name Centre Number Candidate Number MATHEMATICS UNIT 1: NON-CALCULATOR HIGHER TIER SPECIMEN PAPER SUMMER 2017

Candidate Name Centre Number Candidate Number MATHEMATICS UNIT 1: NON-CALCULATOR HIGHER TIER SPECIMEN PAPER SUMMER 2017 GCSE MATHEMATICS Specimen Assessment Materials 7 Candidate Name Centre Number Candidate Number 0 GCSE MATHEMATICS UNIT 1: NON-CALCULATOR HIGHER TIER SPECIMEN PAPER SUMMER 2017 1 HOUR 45 MINUTES ADDITIONAL

More information

Activity Sheet Counting M&Ms

Activity Sheet Counting M&Ms Counting M&Ms Pour a half-pound bag of M&Ms onto a paper plate so that the candies are one layer thick. You will need to spread the M&Ms to the edges of the plate. Remove all the M&Ms that have the M showing

More information

The Orchid School Weekly Syllabus Overview Std : XI Subject : Math. Expected Learning Objective Activities/ FAs Planned Remark

The Orchid School Weekly Syllabus Overview Std : XI Subject : Math. Expected Learning Objective Activities/ FAs Planned Remark The Orchid School Weekly Syllabus Overview 2015-2016 Std : XI Subject : Math Month Lesson / Topic Expected Learning Objective Activities/ FAs Planned Remark March APRIL MAY Linear Inequalities (Periods

More information

`Name: Period: Unit 4 Modeling with Advanced Functions

`Name: Period: Unit 4 Modeling with Advanced Functions `Name: Period: Unit 4 Modeling with Advanced Functions 1 2 Piecewise Functions Example 1: f 1 3 2 x, if x) x 3, if ( 2 x x 1 1 For all x s < 1, use the top graph. For all x s 1, use the bottom graph Example

More information

7.4 Off on a Tangent. A Develop and Solidify Understanding Task. tan(%) = Recall that the right triangle definition of the tangent ratio is:

7.4 Off on a Tangent. A Develop and Solidify Understanding Task. tan(%) = Recall that the right triangle definition of the tangent ratio is: 7.4 Off on a Tangent A Develop and Solidify Understanding Task Recall that the right triangle definition of the tangent ratio is: tan(%) = ()*+,- /0 123) /44/12,) 5*+() 6 ()*+,- /0 123) 53758)*,,/ 5*+()

More information

Adding Integers KEY CONCEPT MAIN IDEA. 12 California Mathematics Grade 7. EXAMPLE Add Integers with the Same Sign

Adding Integers KEY CONCEPT MAIN IDEA. 12 California Mathematics Grade 7. EXAMPLE Add Integers with the Same Sign 1 4 Adding Integers EXAMPLE Add Integers with the Same Sign MAIN IDEA Add integers. Standard 7NS1.2 Add, subtract, multiply, and divide rational numbers (integers, fractions, and terminating decimals)

More information

NAME; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle

NAME; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle NAME; PERIOD; DATE; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle 1 OBJECTIVE Explain how latitude affects the seasonal path of the Sun. I) Path of the Sun and Latitude.

More information

Unit 3 Trigonometry. 3.4 Graph and analyze the trigonometric functions sine, cosine, and tangent to solve problems.

Unit 3 Trigonometry. 3.4 Graph and analyze the trigonometric functions sine, cosine, and tangent to solve problems. 1 General Outcome: Develop trigonometric reasoning. Specific Outcomes: Unit 3 Trigonometry 3.1 Demonstrate an understanding of angles in standard position, expressed in degrees and radians. 3.2 Develop

More information

Practice Test Chapter 8 Sinusoidal Functions

Practice Test Chapter 8 Sinusoidal Functions FOM 12 Practice Test Chapter 8 Sinusoidal Functions Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Block: _ 1. Convert 120 into radians. A. 2" 3 B.

More information

Triangles and Vectors

Triangles and Vectors Chapter 3 Triangles and Vectors As was stated at the start of Chapter 1, trigonometry had its origins in the study of triangles. In fact, the word trigonometry comes from the Greek words for triangle measurement.

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 5 5.. Determine the value of each trigonometric ratio. Use eact values where possible; otherwise write the value to the nearest thousandth. a) tan (5 ) b) cos c) sec ( ) cos º cos ( ) cos

More information

5.5. Data Collecting and Modelling. Investigate

5.5. Data Collecting and Modelling. Investigate 5.5 Data Collecting and Modelling One of the real-world applications of sinusoidal models is the motion of a pendulum. A Foucault pendulum is used to measure the rotation of Earth. As Earth turns, the

More information

Chapter 8. Experiment 6: Collisions in Two Dimensions. Historical Aside

Chapter 8. Experiment 6: Collisions in Two Dimensions. Historical Aside Chapter 8 Experiment 6: Collisions in Two Dimensions Last week we introduced the Principle of Conservation of Momentum and we demonstrated it experimentally in linear collisions. This week we will extend

More information

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations Student Instruction Sheet: Unit 3, Lesson 3 Solving Quadratic Relations Suggested Time: 75 minutes What s important in this lesson: In this lesson, you will learn how to solve a variety of quadratic relations.

More information

Semester 2 Final Review

Semester 2 Final Review Name: Date: Per: Unit 6: Radical Functions [1-6] Simplify each real expression completely. 1. 27x 2 y 7 2. 80m n 5 3. 5x 2 8x 3 y 6 3. 2m 6 n 5 5. (6x 9 ) 1 3 6. 3x 1 2 8x 3 [7-10] Perform the operation

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x AFM Midterm Review I Fall 06. Determine if the relation is a function.,6,,, 5,. Determine the domain of the function 7 h ( ). 4. Sketch the graph of f 4. Sketch the graph of f 5. Sketch the graph of f

More information

982T1S2 Assignment Topic: Trigonometric Functions Due Date: 28 th August, 2015

982T1S2 Assignment Topic: Trigonometric Functions Due Date: 28 th August, 2015 HAWKER COLLEGE Faculty 42 Assignment Cover Sheet This sheet should be attached to the front of your assessment item. Read it carefully, complete the appropriate details, and sign it. Course: Specialist

More information

4-10. Modeling with Trigonometric Functions. Vocabulary. Lesson. Mental Math. build an equation that models real-world periodic data.

4-10. Modeling with Trigonometric Functions. Vocabulary. Lesson. Mental Math. build an equation that models real-world periodic data. Chapter 4 Lesson 4-0 Modeling with Trigonometric Functions Vocabular simple harmonic motion BIG IDEA The Graph-Standardization Theorem can be used to build an equation that models real-world periodic data.

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 2002

Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 2002 Name Teacher (circle): Roos/Andersen Kelly Kresser Class block (circle): A B C D E F G H Lexington High School Mathematics Department Honors Pre-Calculus Final Exam 00 This is a 90-minute exam, but you

More information

13) y = - sin 2x, y = cos2(x-(3π/4)), y = cos 2(x+(π/4))

13) y = - sin 2x, y = cos2(x-(3π/4)), y = cos 2(x+(π/4)) HW: Worksheet; Test on Fri., 2/9 Aim #59: How do we model data with trigonometric functions? Kickoff: A sine curve modeled in the form y = a sin(x) +d has a maximum value of 8 and a minimum value of -2.

More information

8.5. Modelling Data with Sinusoidal Functions. INVESTIGATE the Math

8.5. Modelling Data with Sinusoidal Functions. INVESTIGATE the Math 8.5 Modelling Data with Sinusoidal Functions GOAL Determine the sinusoidal function that best models a set of data, and use your model to solve a problem. INVESTIGATE the Math Kelly lives in Winnipeg,

More information

3.4 The Fundamental Theorem of Algebra

3.4 The Fundamental Theorem of Algebra 333371_0304.qxp 12/27/06 1:28 PM Page 291 3.4 The Fundamental Theorem of Algebra Section 3.4 The Fundamental Theorem of Algebra 291 The Fundamental Theorem of Algebra You know that an nth-degree polynomial

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

June If you want, you may scan your assignment and convert it to a.pdf file and it to me.

June If you want, you may scan your assignment and convert it to a.pdf file and  it to me. Summer Assignment Pre-Calculus Honors June 2016 Dear Student: This assignment is a mandatory part of the Pre-Calculus Honors course. Students who do not complete the assignment will be placed in the regular

More information

Unit 1 Science Models & Graphing

Unit 1 Science Models & Graphing Name: Date: 9/18 Period: Unit 1 Science Models & Graphing Essential Questions: What do scientists mean when they talk about models? How can we get equations from graphs? Objectives Explain why models are

More information

Grade 12 Mathematics: Question Paper 2

Grade 12 Mathematics: Question Paper 2 Mathematics(NSC)/Grade 12/ P2 33 Eemplar Grade 12 Mathematics: Question Paper 2 MARKS: 150marks TIME: 3hours QUESTION 1 1.1 A(0;1) ; B(-2;-3); C(8;2); D(d;6) aretheverticesoftheparalelogram ABCD. 1.1.1

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

TEST 150 points

TEST 150 points Math 130 Spring 008 Name: TEST #1 @ 150 points Write neatly. Show all work. Write all responses on separate paper. Clearly label the exercises. 1. A piecewise-defined function is given. 1- x if x< f (

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information

The point is located eight units to the right of the y-axis and two units above the x-axis. A) ( 8, 2) B) (8, 2) C) ( 2, 8) D) (2, 8) E) ( 2, 8)

The point is located eight units to the right of the y-axis and two units above the x-axis. A) ( 8, 2) B) (8, 2) C) ( 2, 8) D) (2, 8) E) ( 2, 8) Name: Date: 1. Find the coordinates of the point. The point is located eight units to the right of the y-axis and two units above the x-axis. A) ( 8, ) B) (8, ) C) (, 8) D) (, 8) E) (, 8). Find the coordinates

More information

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. Midterm 1 Review Comments about the midterm The midterm will consist of five questions and will test on material from the first seven lectures the material given below. No calculus either single variable

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Questions Example Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. Example Find the linear approximation of the function

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Unit 6: Quadratics. Contents

Unit 6: Quadratics. Contents Unit 6: Quadratics Contents Animated gif Program...6-3 Setting Bounds...6-9 Exploring Quadratic Equations...6-17 Finding Zeros by Factoring...6-3 Finding Zeros Using the Quadratic Formula...6-41 Modeling:

More information

Odd numbers 4 2 = 4 X 4 = 16

Odd numbers 4 2 = 4 X 4 = 16 Even numbers Square numbers 2, 4, 6, 8, 10, 12, 1 2 = 1 x 1 = 1 2 divides exactly into every even number. 2 2 = 2 x 2 = 4 3 2 = 3 x 3 = 9 Odd numbers 4 2 = 4 X 4 = 16 5 2 = 5 X 5 = 25 1, 3, 5, 7, 11, 6

More information

Chapter 4/5 Part 1- Trigonometry in Radians

Chapter 4/5 Part 1- Trigonometry in Radians Chapter 4/5 Part 1- Trigonometry in Radians WORKBOOK MHF4U W1 4.1 Radian Measure MHF4U Jensen 1) Determine mentally the exact radian measure for each angle, given that 30 is exactly π 6 radians. a) 60

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

6.3 More Sine Language

6.3 More Sine Language 6.3 More Sine Language A Solidify Understanding Task Clarita is helping Carlos calculate his height at different locations around a Ferris wheel. They have noticed when they use their formula h(t) = 30

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact value of each trigonometric function, if defined. If not defined, write undefined. 9. sin The terminal side of in standard position lies on the positive y-axis. Choose a point P(0, 1) on

More information

6.1 George W. Ferris Day Off

6.1 George W. Ferris Day Off 6.1 George W. Ferris Day Off A Develop Understanding Task Perhaps you have enjoyed riding on a Ferris wheel at an amusement park. The Ferris wheel was invented by George Washington Ferris for the 1893

More information

MATH EVALUATION. What will you learn in this Lab?

MATH EVALUATION. What will you learn in this Lab? MATH EVALUATION What will you learn in this Lab? This exercise is designed to assess whether you have been exposed to the mathematical methods and skills necessary to complete the lab exercises you will

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

THE GREAT SUN-EARTH-MOON LINE-UP

THE GREAT SUN-EARTH-MOON LINE-UP NAME DATE PARTNERS THE GREAT SUN-EARTH-MOON LINE-UP Activity 1: Where Do Lunar Phases Come From? The phases of the moon have fascinated people for thousands of years. They have appeared in myths, art,

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

Exam Review. Completion Complete each statement. 1. The maximum value of the function is. 2. The period of the function is.

Exam Review. Completion Complete each statement. 1. The maximum value of the function is. 2. The period of the function is. Exam Review Completion Complete each statement. 1. The maximum value of the function is. 2. The period of the function is. 3. If and, then the domain of the function is. Matching Match each equation with

More information