Gamma-Ray Bursts : :sts GeV/TeV photon emission and

Size: px
Start display at page:

Download "Gamma-Ray Bursts : :sts GeV/TeV photon emission and"

Transcription

1 Gamma-Ray Bursts : :sts GeV/TeV photon emission and UHECR/UHEν Peter Mészáros Pennsylvania State University

2 GRB: (via PNS?) short long

3 GRB paradigm 3 Mészáros

4 Fireball Model of GRBs Several shocks - - also possible cross-shock IC Internal Shock Collisions betw. diff. parts of the flow External Shock Flow decelerating into the surrounding medium Reverse shock Forward shock n,p decouple Photospheric th. radiation GRB Afterglow X O R cm Mészáros

5 Standard shock γ-ray components : shock Fermi acc. of e - synchrotron and inv.compton E 2 N(E) Or? GeV νf ν Ext.Sh. Sy (reverse) 0pt Sy (forward) TeV γ ν GRB bright (9 th mag) prompt opt. transient (Akerlof etal 99). 1st 10 min: decay steeper than forw.sh. Interpreted as reverse shock But is it? Mészáros

6 BAT: Energy Range: kev FoV: 2.0 sr Burst Detection Rate: 100 bursts/yr SWIFT Three instruments Gamma-ray, X-ray and optical/uv Slew time: s! >95% of triggers yield XRT det >50% triggers yield UVOT det. XRT: Energy Range: kev Mission Operations PSU (Bristol Res. Park) UVOT: Wavelength Range: nm Launched Nov 04 Mészáros, L Aqu05

7 z=0.937 GRB B A prompt naked eye optical GRB Racusin et al, 08 Nature 455:183 γ, opt prompt l.c. appear similar same emission region, e.g. internal shock; but rad. mechanism? Interpret prompt as: i) optical synchrotron ii) MeV IC (SSC) (and) iii) predict 2nd order ~100 GeV (there are also differing opinions) Mészáros

8 080319b O/UV XR GRB B Mészáros Hei08

9 GRB B WJ Afterglow Prompt NJ Mészáros

10 080319B X-Ray 2-jet fit FS-NJ FS-WJ Mészáros Hei08

11 080319B optical 2-jet fit RS-WJ FS-WJ Mészáros Hei08

12 A different prompt: GRB060218/SN2006aj There may be more to prompt emission than high Γ shocks! An unusually long, smooth burst, T90~2100±100 s Low luminosity, low energy : Eiso~6x10 49 erg z=0.033, 2nd nearest GRB (138 Mpc) GRB/XRF Campana et al. 2006

13 A prompt X-ray BB component :...? SN Shock breakout (!) kt~0.17kev BB comp. temp. & radius Contribution of a fitted black-body component (20%) to the KeV flux: BB Interpreted as break-out of an anisotropic, semi-relativistic, radiation-mediated shock from Thomson optically thick stellar wind (Campana et al 06, Nature 442:1006; Waxman, Mészáros & Campana, 07, ApJ 667:351)

14 UHE CRs &, from GRB pγ, pp UHE, If protons present in (baryonic) jet p + Fermi accelerated (as are e - ) p,γ π ± μ ±,ν μ e ±,,ν e,ν μ (Δ-res.: E p E γ ~ 0.3 GeV 2 in jet frame) Eν,br ~ ev for MeV γs (int. shock) Eν,br ~ ev for 100 ev γs (ext. rev. sh.) : ICECUBE π 0 2γ γγ cascade : GLAST, ACTs.. Test hadronic content of jets (are they pure MHD/e ±, or baryonic?) Also (if dense): p,γ π ± μ ±,ν μ e ±,,ν e,ν μ Test acceleration physics (injection effic., ε e, ε B..) Test scattering length (magnetic inhomog. scale?..or non-fermi?..) Test shock radius: γγ cascade cut-off: E γ ~ GeV (internal shock) ; E γ ~ TeV (ext shock/igm) photon cut-off: diagnostic for int. vs. ext-rev shock

15 Fermi Also on Fermi : GBM (~BATSE range) ; 12 NaI: 10keV-3 MeV; 2 BGO: 150 kev-30 MeV Launched June LAT: Pair-conv.modules + calorimeter 20 MeV-300 GeV, ΔE/E~10%@1 GeV FoV = 2.5 sr (2xEgret), ang.res. θ~30-5 (10GeV) Sensit. ~ ph/cm 2 /s (2 yr; > 50xEgret) GBM: FoV 4π, 10keV-30MeV 2.5 ton, 518 W expect det/loc ~60 GRB/yr; simult. w. Swift : 30/yr

16 LL GRB : GeV-TeV γs arising from leptonic sy-ic origin 2 sources of hot IC e - : shocks- a: Γ~2, b: Γ~10 a) rel. jet in SS stage b) semirelat. outflow and 2 sources of seed photons: a) synchrotron (SSC) b) SN UV (SN IC), incl. early th. & late RI He, Wang, Yu & Mészáros 09 Mészáros

17 Hadronic GRB: easier to look for secondary photons from p,γ interactions Asano, Inoue & Mészáros ApJ in press, arxiv: If GRB are UHECR sources, may need εp/εe 10 tends to give identifiable hadronic photon peak Diagnostic for : high εp/εp : high bulk Γ : high εb/εe Mészáros Hei08

18 A bright LONG burst : GRB c Abdo et al. (the Fermi collaboration), 2009 Science, 323:1688 1) All spectra approximate Band functions : same mechanism? Could be Synchrotron. No obvious cutoff or a softening Γ 100; expect also SSC, but this could be > TeV, not observed Since no statistically significant higher energy component above Band, the latter must have either E TeV or Y~εe/εB 0.1 2) GeV only in 2nd pulse or later, vs. MeV (1st pulse) - Why? Could originate in different region, e.g. a 2nd set of internal shocks, with parameters or physics (possible) Or radiation from one set of shells up-scattered by another set of shells? (but no expected delay between 2nd LAT & GBM) Mészáros

19 Counts/bin Counts/bin Counts/bin NaI 4 GBM NaI 3 (8 kev-260 kev) Time since trigger (s) GBM BGO 0 (260 kev-5 MeV) 54.7 Counts/bin a b c d e LAT (no selection) Counts/bin Counts/bin Time since trigger (s) Time since trigger (s) Counts/sec Counts/sec Counts/sec GRB c Abdo, A. and Fermi coll., 09, Sci. 323:1688 Light-curve E 0 0 Counts/bin Counts/bin LAT (> 100 MeV) Time since trigger (s) LAT (> 1 GeV) Time since trigger (s) Counts/bin Counts/bin Time since trigger (s) Counts/sec Counts/sec Notice : GeV photons lag behind MeV! Mészáros

20 GRB C Spectrum Band fits (joint GBM/LAT) for all the different time intervals Soft-to-hard, to sort-of-softpeak-but-hardslope afterglow No evidence for 2nd component Mészáros

21 GRB c (the Fermi collaboration, 2009) 3) GeV only in 2nd pulse or later, vs. MeV (1st pulse) - Why? Hadronic? (the burning question)... natural delay since extra time for cascade to develop - but : expect hard to soft time evolution & distinct sp. component - not seen) Upshot: more analysis needed to test hadronic model and/or constrain variant of leptonic model Future Fermi+Swift+ground observations will tell Mészáros

22 GRB Fermi LAT/GBM identified SHORT burst Shows (sim. to long bursts) time LAG between soft 1st pulse and hard 2nd pulse Shows an EXTRA spectral component, besides usual Band component (first clear!) Hadronic? Maybe... Mészáros

23 GRB Spectrum: clear 2nd comp (5σ) Abdo, et al. 09 (LAT/GBM coll.) Nature, subm. arxiv/ Mészáros

24 ε!"ε#$%&'()*+, ) C 34 5D Hadronic model: )0 γ <8=>$?:+@> 0 1 )0 γ 234 5A ε 53>B Asano, Guierec, Mészáros, 09 (ApJL, arxiv ) Secondaries from photomeson cascades (but: need Lp,iso~10 55 erg/s!) 34 5B ε ν & ν 'ε ν (!"#)*+,-. +/% 678*9':;':8 34 5E 34 C 34 D 34 B 34 E 34 F 34 G Secondary photons ε$%&/. Secondary neutrinos (not detectable, for this burst) >? 4A 869)!:6/,65# #, #,67 8)2;23!<73,=)2;)23 >? 4B >? 4C >? >@ >? >A >? >B >? >C >? >D ε ν!"#$% Mészáros

25 (Granot, Venice09) Mészáros

26 Mészáros

27 Fermi LAT/GBM results (10/9/09) Mészáros

28 UHE neutrinos from GRB p,γ π ± μ ±,ν μ e ±,,ν e,ν μ Need baryon-loaded relativistic outflow Need to accelerate protons (as well as e - ) Need target photons or nuclei with τ 1 (generally within GRB itself or environment) Need Erel,p Erel,e Might hope to detect individual GRB if nearby (z 0.15), or else cumul. background 28

29 1 e - capt p,n 2 UHE ν in GRB Various collapsar GRB ν-sites 1) at collapse, similarly to supernova core collapse, make GW + thermal ν (MeV) 3 pγ, pp pγ 2) If jet outflow is baryonic, have p,n p,n relative drift, pp/pn collisions inelastic nuclear collisions VHE ν (GeV) 3 Int. shocks while jet is inside star, accel. protons pγ, pp/pn collisions UHE ν (TeV) 4) internal shocks below jet photosphere, accel. protons pγ, pp/pn collisions UHE ν (TeV) 5) Internal shocks outside star accel. protons pγ collisions UHE ν (100 TeV) 6) External rev. shock: pγ EeV ν (10 18 ev)

30 Hadronic GRB Fireballs: Thermal p,n decoupling VHE ν, γ Bahcall & Meszaros 2000 Radiation pressure acts on e -, with p + coming along (charge neutrality) The n scatter inelastically with p + The p,n initially expand together, while tpn <texp (p,n inelastic) When tpn ~texp p,n decouple At same time, vrel 0.5c p,n becomes inelastic π + Decoupling important when Γ 400, resulting in Γp >Γn Decay ν, of Eν GeV Motivation for DEEP-CORE!

31 While jet is inside progenitor: Meszaros & Waxman 01 Mészáros pan05

32 GRB : precursor (& pre-sn shell?) with ICECUBE Burst of Lγ~10 51 erg/s, E SN ~ z~0.17, θ~68 o Flux of n Razzaque, Mészáros, Waxman 03 PRD 69, Mészáros pan05

33 Internal shock ν s, contemp. with γ s Detailed νµ diffuse flux incl. cooling, using GEANT4 sim., integrate up to z=7, Up/Uγ=10 (left) ; z=20, Up/Uγ=100 (right) Asano 05, ApJ 623:967; Murase & Nagataki 06, PRD 73:

34 GRB Photospheric Neutrinos GRB relativistic outflows have a Thomson scattering τt~1 photosphere, below which photons are quasi-thermal Shocks and dissipation can occur below photosphere. Acceleration of protons occurs, followed by pp and pγ interactions neutrinos Gas and photon target density higher than in shocks further out. Characteristics resemble precursor neutrino bursts, but contemporan. with prompt gamma-rays Wang, Dai Murase

35 A different magnetar signature : Magnetar birth ν-alert? Murase, Mészáros & Zhang, PRD 09 ; arxiv: Magnetars (B~ G) may result from turbulent dynamo when born with fast (ms) rotation A fraction 0.1 of CC SNe may result in magnetars In PNS wind, wake-field acceleration can lead to UHECR energies E(t) ev Z η-1 μ33-1 t4-1 Surrounding ejecta provides cold proton targets for pp π ± ν ν-fluence during time tint first increases (strong initial π/μ cooling), then decreases (with the proton flux) Mészáros

36 Magnetar birth ν-alert Murase, Mészáros & Zhang 09 Magnetar D=5 Mpc Light curve - Can signal birth of magnetar - Test UHECR acc. in magnetar -BUT: Not an explanation for Auger, because a) UHECR flux not sufficient, and b) UHECR spectrum not like Auger obs. Diffuse flux Mészáros

37 EHE ν s Neutrino fluxes; Asano et al, 09, arxiv: JEM-EUSO sens.: M. Teshima, MPI Crucial parameter for neutrino (and CR) flux is Up/Ee. Note that ν s from pion decay are good targets too (not just muon decay) For typical values Up/Ee ~ 30 needed to make GRB interesting UHECR sources, the neutrino flux might be detectable from individual GRB sources at z~0.1 with 37 JEM- EUSO (K. Asano et al, 2008, in prep.)

38 AUGER result: UHECR spatial correlations with AGN/LSS Science Nov 2007 Dashed line: supergalactic equator Circles (proton): Events E>4.5x10 19 ev Crosses: Veron-Cety catalog AGNs

39 Auger spatial correlation Found 3σ corr. with V.C. AGNs within 3.5 deg inside 75 Mpc, for 28 events E>4.5x10 19 ev The above correlation suggest protons Science, 07 But cannot say positively it is AGNs - could be correl. with underlying LSS Kashti-Waxman confirm correl. with LSS at >98% confidence level, via two-pt corr., ang. power spectr. and predicted-observed coincid. If heavy mix: many more gals. inside each event s larger angular spread. But: AGN significance now (09) weakened to 1.7 σ 39

40 CR Flux & spectrum - GRB [Waxman 95] Mészáros grb-glast06

41 GZK CR Sources Sources: GRB ; AGN... #? Rate: R GRB (z=0)~ 0.5 Gpc -3 yr -1 ~ (D/100 Mpc) -3 yr -1 But, arrival time dispersion: t dis ~ 10 7 yr (B/10-8 G) 2 (λ B /1 Mpc) (D/100MPC) 2 (E p /10 20 ev) -2 N GRB (E>E p, D<D GZK ) ~ R. t disp ~ 10 4 B 2-8 λ B,0 D E 2 p20 GZK event rate: ~ 1 /Km 2 /100 yr [Waxman 95, 2005] Mészáros grb-glast06

42 UHECR data vs. GRB model Waxman 06

43 What about Eν ev? 2 CR models same GZK CR fit from GZK CRs to GZK νs But lead to GZK ν flux Can infer GZK CR injection spectrum and/or source cosm. luminosity evolution via their GZK νs. Seckel & Stanev astroph/

44 GRB GZK cosmogenic neutrinos Yuksel & Kistler 07 PRD 75: If GRB make the GZK UHECR, then: ν flux dep. on GRB rate vs. z (from z>> RGZK ) 44 Yuksel et al, 2007

45 Potential of Cosmogenic νs for CR Composition If CRs have large fraction of heavies, depending on source distance, photodissociation opt. depth could be <1 only some of them break up into p,n Implies smaller fraction contributes to π + and cosmogenic ν production (Anchordoqui et al 06) Cosmogenic ν flux vs. CR flux may help resolve discrepancy between Auger Xmax data and apparent correlation with AGN suggesting protons 45

46 Conclusions Much new information about GRB in the VHE range from Fermi They are likely sources of UHECR and UHENU, but still unknown Will learn much about best UHECR/UHENU candidates (GRB, AGN, MGR?) from GeV and TeV photon observations with good statistics TeV gamma obs. Fermi: (a) Second spectral component found; (b) HE emission SGRB ~ LGRB, (c) MQG > MPlanck for n=1, need n 2 Will constrain particle acceleration / shock parameters, compactness of emission region (dimension, mag.field,.) UHECR : chemical composition, angular correl.: sources? UHE ν will allow test of proton content of jets, proton injection fraction, test shock acceleration physics, magn. field If UHE ν NOT detected in GRB jets are Poynting dominated! Probe ν interactions at ~ TeV CM energies Constraints on stellar birth & death high-z, first structures? Cosmogenic nus: probe CR origins, sources

47 Back-up slides

48 Origin of ev UHECR: may be GRB - but what about ev? Radio, x-ray & gamma-ray observations of SN1998bw/GRB sub-energetic GRB GRB980425: E~1e48 erg (d=38 Mpc) Radio afterglow modeling: E>1e49 erg, \Gamma~1-2 X-ray afterglow: E~5e49 erg, \beta=0.8 Mildly relativistic ejecta component E_SN=3-5e52 erg V=0.1c S N SN shock acceleration in the Envelope? Tan et al. 01 Woosley et al. 99 Other SN/GRB w. semi-relativistic ejecta: SN2003lw/GRB SN2006aj/GRB060218

49 The maximum energy of accelerated particles 1) Type Ib/c hypernovae expanding into the stellar wind of Wolf-Rayet star 2) equipartition magnetic field B, both upstream and downstream Maximum energy: Hillas 84, Bell & Lucek 2001 Protons can be accelerated to ~10 19 ev Heavy nuclei can be accelerated to ~Z*10 19 ev

50 Flux level--- energetics Kinetic energy generation rate: Compare w. normal GRBs The required rate : Rate (z=0) kinetice nergy Hypernova (v=0.1c) ~500 ~1 Normal Ib/c SN rate: Normal GRBs 3-5e52 erg 1e53-1e54erg sub-energetic GRB rate: Soderberg et al. 06

51 Energy distribution with velocity Data from Soderberg et al. 06 Normal SN Very steep distribution -> negligible contribution to high-energy CRs Berezhko & Volk 04 Semi-relativistic hypernova: high velocity ejecta with significant energy is essential Wang, Razzaque, Meszaros, Dai 07 CR spectrum:

52 Transition from GCRs to EGCRs

53 Semi-relat. ( slow ) jets in core-collapse SN? Maybe all core coll. (II or Ib/c) SN resemble (watered-down) GRB? Evidence for asymmetric expansion of c.c. (Ib/c) SNR: - asymmetric remnants - optical polarization - jets may help eject envelope slow jets Γ~ few? Mészáros TeV05

54 Core collapse SN : slow jets? Spectrum and diffuse flux Razzaque, Mészáros, Waxman, 2004, PRL 93, Ando & Beacom, 2005, PRL 95, 1103 Maybe all core coll. (or Ib/c) SN resemble (watered-down) GRB? Evidence for asymmetric expansion of c.c. (Ib/c) SNR: slow jets Γ~ few? If so, accel protons while jet inside star, pγ π,μ ν (TeV) Diffuse flux: negligible, but individual SN in nearby (2-3 Mpc) gals, e.g. M82, NGC253, detectable (if have slow jets), at a rate ~ 1 SN/5 yr, fluence ~2 up-muons/sn (hypernova: 1/50 yr, 20 up-μ), negligible background, in km 3 detectors - ICECUBE

55 LIV limits GRB C Fermi collaboration (Abdo et al), 2009, Sci.. 1st and 2nd order (n=1,2) energy dependent pulse time dispersion in effective field theory formulation of LIV effects, where leading order deviation is E 2 - p 2 - m 2 ± E 2 (E/EQG) n Conservative lower limit on EQG, taking Eh/t (Eh/t 1/2 ) with t=pulse time since trigger These are (almost) the most stringent limits to-date via dispersion Mészáros

Neutrinos from GRB. Péter Mészáros Pennsylvania State University

Neutrinos from GRB. Péter Mészáros Pennsylvania State University TeV-EeV Neutrinos from GRB Péter Mészáros Pennsylvania State University Neutrino production in baryonic GRB 3 types of neutrino energy & timescale, depending on shock location Substellar shocks Shocks

More information

GRB : Modeling of Multiwavelength Data

GRB : Modeling of Multiwavelength Data GRB 090510: Modeling of Multiwavelength Data Soeb Razzaque NRC-NRL, Washington, DC Gamma Ray Bursts Workshop, Nov 8-12, GSFC Detection of GRB 090510 Fermi GBM and LAT observations Trigger on 2009 May 10

More information

Gamma-Ray Bursts. Felix Aharonian Fest, Barcelona, Peter Mészáros, Pennsylvania State University. Recent results

Gamma-Ray Bursts. Felix Aharonian Fest, Barcelona, Peter Mészáros, Pennsylvania State University. Recent results Gamma-Ray Bursts Recent results Peter Mészáros, Pennsylvania State University Felix Aharonian Fest, Barcelona, 2012 Fermi 2 !"#$%&!"#$%&'&(')*+$,'-'),')(,!"#$%&'&(')*+$,'-'),')(, //#9'(:;?#0'@(:#9AB

More information

Single- and Two-Component GRB Spectra in the Fermi GBM-LAT Energy Range

Single- and Two-Component GRB Spectra in the Fermi GBM-LAT Energy Range Single- and Two-Component GRB Spectra in the Fermi GBM-LAT Energy Range Péter Veres and Péter Mészáros Dept. of Astronomy & Astrophysics, Dept. of Physics and Center for Particle Astrophysics Pennsylvania

More information

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg Contents Introduction Simulation of sources Multi-messenger

More information

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie High-energy emission from Gamma-Ray Bursts Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie HEPRO III High Energy Phenomena in Relativistic Outflows Barcelona, June 27

More information

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams The Fermi Zoo : GRB prompt spectra Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams Multi-Messenger Workshop KIAA 2013 1 Multi-Messenger Workshop KIAA 2013 2 Before Fermi:

More information

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO Hiroyasu Tajima Institute for Space Earth Environmental Research Nagoya University 17th DECIGO Workshop Nov 1, 18 Nagoya University

More information

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope Jonathan Granot University of Hertfordshire (Royal Society Wolfson Research Merit Award Holder) on behalf

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006 Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006 The Main Questions Is there any connection between

More information

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms Recent Advances in our Understanding of GRB emission mechanism Outline Pawan Kumar Constraints on radiation mechanisms High energy emission from GRBs and our understanding of Fermi data. My goal is to

More information

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint Fermi-LAT, NuSTAR,

More information

Gammaray burst spectral evolution in the internal shock model: comparison with the observations

Gammaray burst spectral evolution in the internal shock model: comparison with the observations Gammaray burst spectral evolution in the internal shock model: comparison with the observations Ž. Bošnjak, F. Daigne, and G. Dubus Citation: AIP Conference Proceedings 1358, 59 (2011); doi: 10.1063/1.3621737

More information

(Fermi observations of) High-energy emissions from gamma-ray bursts

(Fermi observations of) High-energy emissions from gamma-ray bursts (Fermi observations of) High-energy emissions from gamma-ray bursts Hiroyasu Tajima on behalf of Fermi LAT and GBM Collaborations Kavli Institute of Particle Astrophysics and Cosmology SLAC National Accelerator

More information

High energy neutrino signals from NS-NS mergers

High energy neutrino signals from NS-NS mergers High energy neutrino signals from NS-NS mergers He Gao 高鹤 University of Nevada Las Vegas Collaborators: Bing Zhang, Xue-Feng Wu & Zi-Gao Dai 2013-05-08 Multi-Messenger Workshop @ KIAA EM signals for a

More information

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications arxiv: 1706.00391 accepted by PRD Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications Bing T. Zhang Peking University, Penn State University Collaborator: Kohta

More information

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae Ultra High Energy Cosmic Rays from Mildly Relativistic Supernovae Tata Institute of Fundamental Research Mumbai, India March 13, 2012 Outline UHECRS Chakraborti, Ray, Soderberg, Loeb, Chandra 2011 Nature

More information

News from Fermi LAT on the observation of GRBs at high energies

News from Fermi LAT on the observation of GRBs at high energies News from Fermi LAT on the observation of GRBs at high energies Nicola Omodei* on behalf of the Fermi LAT collaboration *Stanford University The Fermi observatory LAT : Pair conversion telescope Trigger,

More information

ON GRB PHYSICS REVEALED BY FERMI/LAT

ON GRB PHYSICS REVEALED BY FERMI/LAT Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 223 227 c World Scientific Publishing Company DOI: 10.1142/S2010194513011343

More information

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova arxiv:1705.04750 Kohta Murase (Penn State) TeVPA 2017 @ Columbus, Ohio Neutrinos: Unique Probe of Cosmic Explosions

More information

Exploring Fermi-LAT Extended GeV Emission with Stacking Analysis

Exploring Fermi-LAT Extended GeV Emission with Stacking Analysis Exploring Fermi-LAT Extended GeV Emission with Stacking Analysis Judy Racusin (NASA/GSFC) Jim Chiang (Stanford) on behalf of the Fermi-LAT Collaboration Motivation LAT extended emission has been seen in

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

Outline. Spectra of Fermi/LAT GRBs? Physical Origins of GeV emission? Summary

Outline. Spectra of Fermi/LAT GRBs? Physical Origins of GeV emission? Summary Outline Spectra of Fermi/LAT GRBs? Physical Origins of GeV emission? Summary Prompt GRB Spectra : Clear Observations for >20 years 1991-2000 BATSE Power Law Breaks (Schaefer 1992) Band function (1993)

More information

Lecture 2 Relativistic Shocks in GRBs 2

Lecture 2 Relativistic Shocks in GRBs 2 Lecture 2 Relativistic Shocks in GRBs 2 Shiho Kobayashi (Liverpool JMU) We have discussed a blast wave. the dynamics: simple: single parameter E /" Blast wave model: applicable to any central engine model

More information

Theory of the prompt emission of Gamma-Ray Bursts

Theory of the prompt emission of Gamma-Ray Bursts Theory of the prompt emission of Gamma-Ray Bursts Department of Physics, NC State University, Raleigh, NC 27695-8202 E-mail: davide_lazzati@ncsu.edu Since their discovery more than 40 years ago the origin

More information

High-Energy Neutrinos from Gamma-Ray Burst Fireballs

High-Energy Neutrinos from Gamma-Ray Burst Fireballs High-Energy Neutrinos from Gamma-Ray Burst Fireballs Irene Tamborra GRAPPA Center of Excellence, University of Amsterdam TAUP 2015 Turin, September 9, 2015 Outline IceCube detection of high-energy neutrinos

More information

Lobster X-ray Telescope Science. Julian Osborne

Lobster X-ray Telescope Science. Julian Osborne Lobster X-ray Telescope Science Julian Osborne What we want The whole high-energy sky right now 1.00E+13 1.00E+12 1 / f_lim (100 s) 1.00E+11 1.00E+10 1.00E+09 1.00E+08 0.0000001 0.000001 0.00001 0.0001

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM Detection of transient sources with the ANTARES telescope Manuela Vecchi CPPM Multimessenger Astronomy CRs astronomy feasible at energies higher than 1019 ev extragalactic origin UHECRs horizon limited

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Acceleration of Particles in Gamma-Ray Bursts

Acceleration of Particles in Gamma-Ray Bursts Acceleration of Particles in Gamma-Ray Bursts Bing Zhang Department of Physics and Astronomy University of Nevada, Las Vegas Sep. 29, 2009 In Nonlinear Processes in Astrophysical Plasma: Particle Acceleration,

More information

Citation PHYSICAL REVIEW LETTERS (2006), 97( RightCopyright 2006 American Physical So

Citation PHYSICAL REVIEW LETTERS (2006), 97(   RightCopyright 2006 American Physical So Title High energy neutrino flashes from f flares in gamma-ray bursts Author(s) Murase, K; Nagataki, S Citation PHYSICAL REVIEW LETTERS (2006), 97( Issue Date 2006-08-04 URL http://hdl.handle.net/2433/50481

More information

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime Andreas von Kienlin MPE -Gamma 14. November 2003 1 Outline Time averaged GRB spectra Example spectra Instrumental response Band function

More information

Hard X-ray emission from Novae

Hard X-ray emission from Novae Hard X-ray emission from Novae Indrek Vurm (Columbia University) in collaboration with: Brian D. Metzger, Andrei M. Beloborodov (Columbia) Koji Mukai (NASA) Shocks and Particle Acceleration in Novae and

More information

Afterglows Theory Re em Sari - Caltech

Afterglows Theory Re em Sari - Caltech Π= Π m /3 Afterglows Theory Re em Sari - Caltech 30s 2h t -2 30m t +1/2 t Rising -1 spectrum ν 1/3 1d t -2.2 100d t -1.5 Gamma-Ray Burst: 4 Stages 1) Compact Source, E>10 51 erg 2) Relativistic Kinetic

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

GRB emission models and multiwavelength properties

GRB emission models and multiwavelength properties GRB emission models and multiwavelength properties Gabriele Ghisellini INAF-Osservatorio Astronomico di Brera - Italy with the help of: Z. Bosniak, D. Burlon, A. Celotti, C. Firmani, G. Ghirlanda, D. Lazzati,

More information

arxiv:astro-ph/ v1 7 Jul 1999

arxiv:astro-ph/ v1 7 Jul 1999 Gamma-ray Burst Energetics Pawan Kumar Institute for Advanced Study, Princeton, NJ 08540 Abstract arxiv:astro-ph/9907096v1 7 Jul 1999 We estimate the fraction of the total energy in a Gamma-Ray Burst (GRB)

More information

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration ref.) NK & Ioka 2015, PRD accepted (arxiv:1504.03417) Norita Kawanaka (Univ. of Tokyo) Kunihito Ioka (KEK/Sokendai) TeV Particle Astrophysics

More information

Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB C

Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB C 150 The Open Astronomy Journal, 010, 3, 150-155 Open Access Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C Soebur Razzaque 1,,*, Charles D. Dermer 1,* and

More information

The spectacular stellar explosion - GRB A: synchrotron modeling in the wind and the ISM

The spectacular stellar explosion - GRB A: synchrotron modeling in the wind and the ISM The spectacular stellar explosion - GRB 17A: synchrotron moeling in the win an the ISM University of Johannesburg, Department of Physics, Aucklan Park 6, Johannesburg, South Africa E-mail: jessymolkt@uj.ac.za

More information

Emission Model And GRB Simulations

Emission Model And GRB Simulations Emission Model And GRB Simulations Nicola Omodei (University of Siena, INFN Pisa) 1 ISSS-L Aquila 2001 N. Omodei Spectral Properties? Data collected Range (γ) 10 KeV 10 GeV In the BATSE energy range: (25

More information

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov.

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov. Two recent developments with Gamma Ray Burst Classification And their implications for GLAST Eric Charles Glast Science Lunch Nov. 2, 2006 Outline Numerology, taxonomy and phrenology of GRBs Salient facts

More information

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle astronomy coming of age How it is done The sources The signals What we have learned

More information

High Energy Emission. Brenda Dingus, LANL HAWC

High Energy Emission. Brenda Dingus, LANL HAWC High Energy Emission from GRBs Brenda Dingus, LANL HAWC What are GRBs? Cosmological distance Typical observed z>1 Energy released is up to few times the rest mass of Sun (if isotropic) in a few seconds

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Gamma-Ray Bursts. Peter Mészáros, Pennsylvania State University. SLAC Summer School 2010

Gamma-Ray Bursts. Peter Mészáros, Pennsylvania State University. SLAC Summer School 2010 Gamma-Ray Bursts Peter Mészáros, Pennsylvania State University SLAC Summer School 2010 GRB: basic numbers Rate: ~ 1/day inside a Hubble radius Distance: 0.1 z 6.3! D ~ 10 28 cm Fluence: ~10-4 -10-7 erg/cm

More information

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor Time-domain astronomy with the Fermi Gamma-ray Burst Monitor C. Michelle Hui (NASA/MSFC) on behalf of the Fermi GBM team TeVPA, Aug 11 2017 GBM: FOV >8sr Whole sky every ~90min Fermi Gamma-ray Space Telescope

More information

Models for the Spectral Energy Distributions and Variability of Blazars

Models for the Spectral Energy Distributions and Variability of Blazars Models for the Spectral Energy Distributions and Variability of Blazars Markus Böttcher Ohio University, Athens, OH, USA Fermi Meets Jansky Bonn, Germany, June 21, 2010 Outline: 1) Introduction to leptonic

More information

High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts?

High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts? SLAC-PUB-11954 astro-ph/0607104 July 2006 High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts? Kohta Murase 1, Kunihito Ioka 2, Shigehiro Nagataki 1,3, and Takashi Nakamura 2 ABSTRACT

More information

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Maria Petropoulou Department of Physics & Astronomy, Purdue University, West Lafayette, USA Einstein Fellows Symposium Harvard-Smithsonian

More information

Short GRB and kilonova: did observations meet our theoretical predictions?

Short GRB and kilonova: did observations meet our theoretical predictions? Short GRB and kilonova: did observations meet our theoretical predictions? Riccardo Ciolfi INAF - Astronomical Observatory of Padova INFN - Trento Institute for Fundamental Physics and Applications GW170817

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Observing GRB afterglows with SIMBOL-X

Observing GRB afterglows with SIMBOL-X Observing GRB afterglows with SIMBOL-X Frédéric Daigne (daigne@iap.fr) (Institut d Astrophysique de Paris - Université Paris 6) Gamma-ray bursts : prompt emission Highly variable time profile Non-thermal

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts GW from GRBs Gravitational Radiation from Gamma-Ray Bursts Tsvi Piran Racah Inst. of Jerusalem, Israel Dafne Guetta,, Ehud Nakar, Reem Sari Once or twice a day we see a burst of low energy gamma-rays from

More information

Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai)

Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai) Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai) Introduction High Energy Neutrinos are produced in Cosmic Ray Accelerators (GRBs,

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

A Search for Astrophysical Neutrinos in Coincidence with Gamma Ray Bursts

A Search for Astrophysical Neutrinos in Coincidence with Gamma Ray Bursts A Search for Astrophysical Neutrinos in Coincidence with Gamma Ray Bursts Preliminary Examination Erik Strahler UW Madison 4/5/2006 Major Advisor: Albrecht Karle Outline Gamma Ray Bursts Neutrino Physics

More information

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum Gamma Ray Bursts Progress & Prospects Resmi Lekshmi Indian Institute of Space Science & Technology Trivandrum Why study GRBs? to study GRBs end stages of massive star evolution jet launching, collimation

More information

Multi-messenger light curves from gamma-ray bursts

Multi-messenger light curves from gamma-ray bursts Multi-messenger light curves from gamma-ray bursts 1409.2874, 1606.02325 Mauricio Bustamante Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State University 8th Huntsville Gamma-Ray Burst

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array A.MARCOWITH ( LABORATOIRE UNIVERS ET PARTICULES DE MONTPELLIER, FRANCE) & M.RENAUD, V.TATISCHEFF, V.DWARKADAS

More information

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008 The 2006 Giant Flare in PKS 2155-304 and Unidentified TeV Sources Justin Finke Naval Research Laboratory 5 June 2008 Outline Part I: The SSC Model Part II: The giant flare in PKS 2155-304 Part III: Blazars

More information

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS 1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS WITH TAM, Pak Hin (Sun Yat-sen University/ICRR) GAMMA-RAY BURST OBSERVATIONS WITH CTA LESSONS LEARNT FROM FERMI/LAT TAM, Pak Hin (Sun Yat-sen University/ICRR,

More information

Tsvi Piran The Hebrew University

Tsvi Piran The Hebrew University Some new (old) ideas about particle acceleration and other topics Tsvi Piran The Hebrew University Evgeny Derishev, Daniel Kagan, Ehud Nakar, Glennys Farrar Paris Sept 13-16, 2016 Outline Shock Acceleration

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Jonathan Granot 1 and Dafne Guetta 2 ABSTRACT arxiv:astro-ph/0211136v1 7 Nov 2002 We present the main observational features expected

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie On (shock ( shock) acceleration of ultrahigh energy cosmic rays Martin Lemoine Institut d Astrophysique d de Paris CNRS, Université Pierre & Marie Curie 1 Acceleration Hillas criterion log 10 (B/1 G) 15

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

arxiv: v1 [astro-ph.he] 11 Mar 2015

arxiv: v1 [astro-ph.he] 11 Mar 2015 Shedding light on the prompt high efficiency paradox - self consistent modeling of GRB afterglows Paz Beniamini 1a, Lara Nava 1b, Rodolfo Barniol Duran 2c & Tsvi Piran 1d (a) paz.beniamini@mail.huji.ac.il;

More information

MULTIMESSENGER APPROACH:Using the Different Messengers

MULTIMESSENGER APPROACH:Using the Different Messengers MULTIMESSENGER APPROACH:Using the Different Messengers PROTONS p NUCLEI (A,Z) NEUTRINOS νµ PHOTONS LECTURE PLAN: 1) COSMIC RAYS- proton interactions with photons, composition, nuclei interactions with

More information

Follow-up of high energy neutrinos detected by the ANTARES telescope

Follow-up of high energy neutrinos detected by the ANTARES telescope Follow-up of high energy neutrinos detected by the ANTARES telescope, on behalf of the ANTARES, TAROT, ROTSE, MASTER and SWIFT Collaborations Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288,

More information

A few grams of matter in a bright world

A few grams of matter in a bright world A few grams of matter in a bright world Benjamin Rouillé d Orfeuil (LAL) Fellow Collaborators: D. Allard, C. Lachaud & E. Parizot (APC) A. V. Olinto (University of Chicago) February 12 th 2013 LAL All

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

TEMPORAL DECOMPOSITION STUDIES OF GRB LIGHTCURVES arxiv: v2 [astro-ph.he] 18 Feb 2013 Narayana P. Bhat 1

TEMPORAL DECOMPOSITION STUDIES OF GRB LIGHTCURVES arxiv: v2 [astro-ph.he] 18 Feb 2013 Narayana P. Bhat 1 Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2018 TEMPORAL DECOMPOSITION STUDIES OF GRB LIGHTCURVES arxiv:1301.4180v2 [astro-ph.he] 18 Feb

More information

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar? Chin. J. Astron. Astrophys. Vol. 7 2007), No. 5, 669 674 http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

News from the Niels Bohr International Academy

News from the Niels Bohr International Academy News from the Niels Bohr International Academy What is a gamma-ray burst? The development of our understanding of the phenomenon illustrated by important events (including very recent results on gravitational

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos

Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos Imre Bartos, 1, Basudeb Dasgupta, 2, and Szabolcs Márka 1 1 Department of Physics,

More information

Electromagne,c Counterparts of Gravita,onal Wave Events

Electromagne,c Counterparts of Gravita,onal Wave Events Electromagne,c Counterparts of Gravita,onal Wave Events Bing Zhang University of Nevada Las Vegas Jul. 21, 2014, INT Program14-2a, Binary Neutron Star Coalescence as a Fundamental Physics Laboratory Collaborators:

More information

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST D. J. Thompson, 1 on behalf of the GLAST LAT Collaboration 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA E-mail(DJT): David.J.Thompson@nasa.gov

More information

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection University of Sao Paulo) E-mail: bkhiali@usp Elisabete de Gouveia Dal Pino University

More information

arxiv:astro-ph/ v1 6 Jun 1996

arxiv:astro-ph/ v1 6 Jun 1996 Submitted to Ap.J.(Lett.), 5/31/96 OPTICAL AND LONG WAVELENGTH AFTERGLOW FROM GAMMA-RAY BURSTS arxiv:astro-ph/9606043v1 6 Jun 1996 P. Mészáros 1 525 Davey Laboratory, Pennsylvania State University, University

More information

Possible Implications of. GeV - TeV. observations of GRB. Peter Mészáros. Pennsylvania State University. Mészáros, Gla04

Possible Implications of. GeV - TeV. observations of GRB. Peter Mészáros. Pennsylvania State University. Mészáros, Gla04 Possible Implications of GeV - TeV observations of GRB Peter Mészáros Pennsylvania State University GeV g emission from GRB and other extragalactic, galactic & un-id d sources GeV: space obs. (SAS-2, HEAO-A4,

More information

Theories of multiwavelength emission from Gamma-Ray Bursts: Prompt to afterglow

Theories of multiwavelength emission from Gamma-Ray Bursts: Prompt to afterglow Theories of multiwavelength emission from Gamma-Ray Bursts: Prompt to afterglow Dept. of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa E-mail: srazzaque@uj.ac.za Gamma-Ray

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information