The Scientific Method

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Scientific Method"

Transcription

1 The Scientific Method Objectives: 1. Outline the scientific method. 2. Explain why the scientific method has been more successful than other approaches to understanding the universe. 3. Distinguish between a law and a theory. 4. Discuss the role of a model in formulating a scientific theory. 5. Give the reason why Polaris is the heavenly body that remains most nearly stationary in the sky. 6. Define constellation. 7. Tell how to distinguish planets from stars by observations of the night sky made several weeks or months apart. 8. Compare how the ptolemaic and copernican systems account for the observed motions of the sun, moon, planets, and stars across the sky. 9. Explain the significance of Kepler's laws. 10. State why the copernican system is considered correct. 11. Define day and year. 12. Define fundamental force. 13. Explain why the earth is round but not a perfect sphere. 14. Explain the origin of tides. 15. Explain in terms of the scientific method why the discovery of Neptune was so important in confirming the law of gravity. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 1

2 1 1. The Scientific Method The scientific method consists of five steps: 1. Formulation of a problem a. Documentation b. Observation c. Questions 2. An initial scientific interpretation is called the hypothesis 3. Observation and experiment 4. Interpretation 5. Testing the interpretation 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 2

3 A. law describes a relationship or regularity between' naturally occurring phenomena. B. A theory explains why a phenomenon or a set of phenomena occurs. C. Scientists often use models to simplify complex situations. Example: The celestial sphere to describe the Universe Newton chose an oval called an ellipse as a model of the earth's orbit. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 3

4 1 2. Why Science Is Successful A. A scientific law or theory, if refuted by contrary evidence, must be modified or discarded. A. The work of scientists is open to review, test, and change. B. Science has provided an understanding of the natural world and a sophisticated technology. C. Scientific laws and theories are not accepted as "absolute truth" and therefore differ from belief systems. Voyager 2 spaceship have not the predicted position by calculation using gravity theory, so scientific is looking for a new expression for corrections to the Newton Law. But another physical phenomena should be responsible for the discrepancies. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 4

5 1 3. A Survey of the Sky To an observer north of the equator, the position of the North Star, or Polaris, changes very little, and the whole nighttime sky appears to revolve around Polaris. The constellations are easily recognized groups of stars and are useful as labels for regions of the sky. Polaris 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 5

6 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 6

7 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 7

8 PLANETS 378 días 399 días 116 días 584 días 780 días The planets visible to the naked eye (Mercury, Venus, Mars, Jupiter, and Saturn) appear to drift in a generally eastward motion relative to the stars; however, each planet at times appears to head westward briefly, and its path across the sky resembles a series of loops. The phase period in days are shown below. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 8

9 1 4. The Ptolemaic System A. Ptolemy of Alexandria (2nd century A.D.) described the universe in the Almagest. 1. The earth is the center of the universe. 2. The sun, stars, and planets revolve around the earth. 3. The orbits of the planets are circular. B. According to Ptolemy, the planets as they orbit the earth travel in a series of loops (epicycles). C. The ptolemaic system had the components of a valid theory: 1. It was based on observation. 2. It apparently accounted for known celestial motions. 3. It made predictions that could be tested. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 9

10 1 5. The Copernican System A. The ptolemaic system failed to make accurate predictions of planetary positions. B. Nicholaus Copernicus ( ) developed anew theory of the universe: 1. The earth and planets follow circular orbits around the sun. 2. The earth rotates on its axis once every 24 hours. 3. The earth's rotation explains the daily rising and setting of celestial bodies. 4. Irregular movements of the planets area result of the combination of their motions around the sun and the change in position of the earth in its orbit. C. The copernican system was attacked by religious leaders and by other supporters of the ptolemaic system. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 10

11 Copernicus The hypothesis The Model

12 1.6 Kepler's Laws A. A. Johannes Kepler ( ), using Tycho Brahe's improved measurements of planetary motion, found fault with the copernican system. B. Kepler's calculations resulted in the discovery of three laws of planetary motion: 1. The paths of the planets around the sun are ellipses. 2. A planet moves so that its radius vector sweeps out equal areas in equal times. 3. Period and distance are related: 4 π P GM 3 2 C. Kepler's laws agreed with past observations of planetary positions and made accurate predictions of future planetary movements. a 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 12

13 1.7 Why Copernicus was right? Tycho Brahe from a copy of an oil painting by Gemperlin (a painter hired by Tycho). The original was distroyed in a fire in 1859, but a copy by Jensen is preserved. This picture is from a card, 3.3 x 5.5 cm, that was massreproduced as a "cigarette card" during the nineteenth century, and with the original painting as model. Kepler visited Tycho because He had very precision positions of the planets Mars. Tycho was the first great optical observer. His primary contribution to astrophysics was the precise data he collected on the motions of the celestial bodies. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 13

14 His data were accurate to within 1/60 of one degree, i.e., to within 1 arc minute. (Comment A simple thing which Tycho did which greatly improved his accuracy was to make several measurements of quantities and to then average his results in order to arrive at his final answer. This is standard practice today, but was highly unusual during Tycho's time.) The most direct observational evidence for Earth's orbital motion is the apparent shift of nearby stars after six months, as the Earth moves from one side of its orbit to the other. Because of the large distance to even the nearest start, this parallax shift is too small to been seen without a telescope. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 14

15 However Copernicus Was Right because: A. There is direct evidence that the earth rotates and revolves around the sun. B. There is direct evidence for the motions of the moon and the other planets. The most direct evidence of daily rotation is via a Foucault pendulum, which swings in the same plane as the Earth rotates beneath it. At either pole, the swinging plane mirrors the Earth's 24 hour period. Some rotation is observed at all other locations on the Earth's surface as well, except for the equator. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 15

16 1.8 What Is Gravity? A. Isaac Newton's ( ) discovery of the law of gravity was dependent upon Copernicus's model of the solar system. B. Gravity is a fundamental force. 1. A fundamental force cannot be explained in terms of any other force. 2. There are four fundamental forces: a. Gravitational b. Electromagnetic c. Weak d. Strong C. Gravity is thought to be a universal force because: 1. Observed star systems and galaxies behave as if influenced by gravity. 2. Matter appears to be the same throughout the universe; therefore, gravitational attraction must also be universal. 3. There is no evidence that gravity is not universal. mm F G d /1/2010 ASTR 3001 Dep. of Physics & Electronics 16

17 1.9 Why the Earth Is Round? A. The theory of gravity accounts for the earth's shape; the earth is round because gravity squeezes it into a spherical shape. B. The earth is not a perfect sphere because its spinning motion causes it to bulge slightly at the equator and flatten slightly at the poles. The asteroid Ida is about 35 miles (55 kilometers) long. It is one of thousands of asteroids in the asteroid belt, a region between the orbits of Mars and Jupiter. Image credit: NASA Asteroids vary greatly in size. The largest and first known asteroid, Ceres, was discovered in It is 580 miles (933 kilometers) in diameter. Ceres is believed to contain about 1/3 the total mass of all the asteroids. One of the smallest, discovered in 1991 and named 1991 BA, is only about 20 feet (6 meters) across. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 17

18 1.10 The Tides A. The law of gravity successfully explains the occurrence of the tides. B. The earth's tides are the result of the gravitational attraction of the moon and the sun. C. Coastal areas experience two high tides and two low tides each day. D. The relative positions of the earth, sun and moon produce different tides. 1. Unusually high (and low) spring tides occur bimonthly when the moon and sun are aligned with the earth. 2. Weak neap tides occur bimonthly when the sun and moon pull at right angles to each other in regard to earth. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 18

19 1 11. The Discovery of Neptune A. Discrepancies in the predicted orbit of Uranus led to two hypotheses: 1. The law of gravity is wrong. 2. An unknown body is exerting a gravitational pull on Uranus. B. Calculations based on the law of gravity predicted the position of an unknown body. C. The prediction was tested, resulting in the discovery of Neptune. John Couch Adams ( ) John Couch Adams (5 June January 1892) was a British mathematician and astronomer. His most famous achievement was predicting the existence and position of Neptune, using only mathematics. The calculations were made to explain discrepancies with Uranus's orbit and the laws of Kepler and Newton. At the same time, but unknown to each other, the same calculations were made by Urbain Le Verrier. Le Verrier would assist Berlin Observatory astronomer Johann Gottfried Galle in locating the planet on 23 September 1846, which was found within 1 of its predicted location, a point in Aquarius. (There was, and to some extent still is, some controversy over the apportionment of credit for the discovery; see Discovery of Neptune.) 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 19

20 Supposedly, Adams communicated his work to James Challis, director of the Cambridge Observatory, in mid September 1845 but there is some controversy as to how. On 21 October 1845, Adams, returning from a Cornwall vacation, without appointment, twice called on Astronomer Royal George Biddell Airy in Greenwich. Failing to find him at home, Adams reputedly left a manuscript of his solution, again without the detailed calculations. Airy responded with a letter to Adams asking for some clarification. It appears that Adams did not regard the question as "trivial", as is often alleged, but he failed to complete a response. Various theories have been discussed as to Adams's failure to reply, such as his general nervousness, procrastination and disorganization. Adams learned of the irregularities while still an undergraduate and became convinced of the "perturbation" hypothesis. Adams believed, in the face of anything that had been attempted before, that he could use the observed data on Uranus, and utilizing nothing more than Newton's law of gravitation, deduce the mass, position and orbit of the perturbing body. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 20

21 Meanwhile, Urbain Le Verrier, on November 10, 1845, presented to the Académie des sciences in Paris a memoir on Uranus, showing that the pre existing theory failed to account for its motion. Unaware of Adams's work, he attempted a similar investigation, and on June 1, 1846, in a second memoir, gave the position, but not the mass or orbit, of the proposed perturbing body. Le Verrier located Neptune within one degree of its predicted position. Urbain Le Verrier ( ) On September 23 (1846) Le Verrier asked to Johann Gottfried Galle to look at a certain region of sky to find a predicted new planet, which would explain the perturbations of the planet Uranus. Johann Gottfried Galle ( ) 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 21

22 Relative positions calculated by Adams and Leverrier, respect to the actual position. Neptuno Planet 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 22

23 In fact Neptune could have been discovered without the mathematical arguments. It seen by Galileo, the first person who could possibly have discovered a new planet. Galileo turned his telescope on the planets and was immediately fascinated by the system of Jupiter and its moons which he observed. While he was observing the Jupiter system on 28 December 1612 he recorded Neptune as an 8th magnitude star. Just over a year later the same alignment of Neptune and Jupiter occurred and Galileo, on 27 January 1613, recorded two stars in his field of view. One was Neptune and, remarkably, Galileo observed it again the following night when he noted that the two stars appeared to be further apart. How close he was at that point to discovering that one of the stars was the planet Neptune. Neptune was to be recorded several more times, without being recognized as a planet, over the following years. Galileo s record, 1612 Neptune is the only planet in the Solar System whose existence was mathematically predicted before it was directly observed. By 1846, the planet Uranus had completed nearly one full orbit since its discovery by William Herschel in 1781, and astronomers had detected a series of irregularities in its path which could not be entirely explained by Newton's law of gravitation. 10/1/2010 ASTR 3001 Dep. of Physics & Electronics 23

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1 Greek Astronomy Aristotelian Cosmology: Evidence that the Earth does not move: 1. Stars do not exhibit parallax: 2-1 At the center of the universe is the Earth: Changeable and imperfect. Above the Earth

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

More information

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

More information

The Scientific Method

The Scientific Method Chapter 1 The Scientific Method http://www.mhhe.com/physsci/physical/bookpage/ Chapter 1 Outline: Main Ideas Scientists make science work The Scientific Method Science is a process Exploring Nature An

More information

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton. Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope

More information

Chapter 2 The Science of Life in the Universe

Chapter 2 The Science of Life in the Universe In ancient times phenomena in the sky were not understood! Chapter 2 The Science of Life in the Universe The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

1. The Moon appears larger when it rises than when it is high in the sky because

1. The Moon appears larger when it rises than when it is high in the sky because 2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Astronomy- The Original Science

Astronomy- The Original Science Astronomy- The Original Science Imagine that it is 5,000 years ago. Clocks and modern calendars have not been invented. How would you tell time or know what day it is? One way to tell the time is to study

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

More information

Chapter 02 The Rise of Astronomy

Chapter 02 The Rise of Astronomy Chapter 02 The Rise of Astronomy Multiple Choice Questions 1. The moon appears larger when it rises than when it is high in the sky because A. You are closer to it when it rises (angular-size relation).

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Space Notes Covers Objectives 1 & 2

Space Notes Covers Objectives 1 & 2 Space Notes Covers Objectives 1 & 2 Space Introduction Space Introduction Video Celestial Bodies Refers to a natural object out in space 1) Stars 2) Comets 3) Moons 4) Planets 5) Asteroids Constellations

More information

Isaac Newton and the Laws of Motion and Gravitation 2

Isaac Newton and the Laws of Motion and Gravitation 2 Isaac Newton and the Laws of Motion and Gravitation 2 ASTR 101 3/21/2018 Center of Mass motion Oblate shape of planets due to rotation Tidal forces and tidal locking Discovery of Neptune 1 Center of Mass

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

What was once so mysterious about planetary motion in our sky? We see apparent retrograde motion when we pass by a planet

What was once so mysterious about planetary motion in our sky? We see apparent retrograde motion when we pass by a planet What was once so mysterious about planetary motion in our sky? Planets usually move slightly eastward from night to night relative to the stars. You cannot see this motion on a single night. But sometimes

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Ast ch 4-5 practice Test Multiple Choice

Ast ch 4-5 practice Test Multiple Choice Ast ch 4-5 practice Test Multiple Choice 1. The distance from Alexandria to Syene is about 500 miles. On the summer solstice the sun is directly overhead at noon in Syene. At Alexandria on the summer solstice,

More information

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe 1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the

More information

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

More information

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation

More information

Origin of Modern Astronomy Chapter 21

Origin of Modern Astronomy Chapter 21 Origin of Modern Astronomy Chapter 21 Early history of astronomy Ancient Greeks Used philosophical arguments to explain natural phenomena Also used some observa:onal data (looking at the night sky) Ancient

More information

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer. Name: Read each question carefully, and choose the best answer. 1. During a night in Schuylkill Haven, most of the stars in the sky (A) are stationary through the night. (B) the actual motion depends upon

More information

Not Your Parents Solar System! Dr. Frank Summers Space Telescope Science Institute July 11, 2013

Not Your Parents Solar System! Dr. Frank Summers Space Telescope Science Institute July 11, 2013 Not Your Parents Solar System! Dr. Frank Summers Space Telescope Science Institute July 11, 2013 Your Ancient Ancestors Solar System Earth Moon Mercury Venus Sun Mars Jupiter Saturn Claudius Ptolemy

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

The History of Astronomy

The History of Astronomy The History of Astronomy The History of Astronomy Earliest astronomical record: a lunar calendar etched on bone from 6500 B.C. Uganda. Also we find early groups noted the Sun, Moon, Mercury, Venus, Earth,

More information

Chapter. Origin of Modern Astronomy

Chapter. Origin of Modern Astronomy Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.

More information

Notes: The Solar System

Notes: The Solar System Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

More information

PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

More information

Read each slide then use the red or some underlined words to complete the organizer.

Read each slide then use the red or some underlined words to complete the organizer. Read each slide then use the red or some underlined words to complete the organizer. 1B Did it start as a bang! 1B The Expanding Universe A. The Big Bang Theory: Idea that all matter began in an infinitely

More information

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle

More information

Chapter 16 The Solar System

Chapter 16 The Solar System Chapter 16 The Solar System Finding the Standard Time and Date at Another Location Example When it is 12 noon in London, what is the standard time in Denver, Colorado (40 N, 105 W)? Section 15.3 Finding

More information

EXAM #2. ANSWERS ASTR , Spring 2008

EXAM #2. ANSWERS ASTR , Spring 2008 EXAM #2. ANSWERS ASTR 1101-001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his

More information

DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.

DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Winter 2018 First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. Instructions: 1. On your Parscore sheet

More information

Newton s Three Law of Motion

Newton s Three Law of Motion Born in England on Christmas day 1643. Overview Chapter 2b Copernican Revolution Bubonic Plague 1665 While home for 2 years with nothing to do he made his most profound discoveries and proposed his most

More information

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives: AP Physics-B Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the

More information

Tycho Brahe

Tycho Brahe Tycho Brahe 1546-1601 At the time of Shakespeare and Elizabeth I and Champlain Lost part of his nose in a duel over who was the best mathematician At 27 he measured the distance of a supernova and a comet

More information

The History of Astronomy. Theories, People, and Discoveries of the Past

The History of Astronomy. Theories, People, and Discoveries of the Past The History of Astronomy Theories, People, and Discoveries of the Past Early man recorded very little history. Left some clues in the form of petrographs. Stone drawings that show eclipses, comets, supernovae.

More information

SCIENCE 9 CHAPTER 10 SECTION 1

SCIENCE 9 CHAPTER 10 SECTION 1 SCIENCE 9 CHAPTER 10 SECTION 1 Observing the Stars (pp. 352-365) Celestial Bodies Celestial body: a natural object in space, such as the Sun, the Moon, a planet, or a star Star: a celestial body of hot

More information

Astronomy Lesson 8.1 Astronomy s Movers and Shakers

Astronomy Lesson 8.1 Astronomy s Movers and Shakers 8 Astronomers.notebook Astronomy Lesson 8.1 Astronomy s Movers and Shakers Aristotle 384 322 BCE Heavenly objects must move on circular paths at constant speeds. Earth is motionless at the center of the

More information

Chapter 18: Studying Space Astronomy: The Original Science

Chapter 18: Studying Space Astronomy: The Original Science Chapter 18: Studying Space 18.1 Astronomy: The Original Science What is Astronomy? Astronomy is the study of the universe People in ancient cultures used the seasonal cycles of the stars, planets, and

More information

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006 4. Gravitation & Planetary Motion Geocentric models of ancient times Heliocentric model of Copernicus Telescopic observations of Galileo Galilei Systematic observations of Tycho Brahe Three planetary laws

More information

Planetary Mechanics:

Planetary Mechanics: Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the

More information

THE SUN AND THE SOLAR SYSTEM

THE SUN AND THE SOLAR SYSTEM Chapter 26 THE SUN AND THE SOLAR SYSTEM CHAPTER 26 SECTION 26.1: THE SUN S SIZE, HEAT, AND STRUCTURE Objectives: What is the Sun s structure and source of energy? Key Vocabulary: Fusion Photosphere Corona

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc.

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. CW10 p374 Vocab What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. The Scientific Revolution In the 1500s and 1600s the Scientific Revolution

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics Planetary Motion Today Tycho Brahe s Observations Kepler s Laws of Planetary Motion Laws of Motion in physics Page from 1640 text in the KSL rare book collection That the Earth may be a Planet the seeming

More information

If Earth had no tilt, what else would happen?

If Earth had no tilt, what else would happen? A more in depth explanation from last week: If Earth had no tilt, what else would happen? The equator would be much hotter due to the direct sunlight which would lead to a lower survival rate and little

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

towards the modern view

towards the modern view Brief review of last time: Og through Tycho Brahe Early Science 1 Reading: Chap. 2, Sect.2.4, Ch. 3, Sect. 3.1 Homework 3: Due Tomorrow and Mon. Homework 4: Now available, due next recitation cycle, or

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary

More information

The Puzzle of Planetary Motion versus

The Puzzle of Planetary Motion versus The Puzzle of Planetary Motion versus Finding Earth s place in the Universe Observing the Planets Five of the planets are bright enough to be seen by the unaided eye. This view shows the sky after sunset

More information

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company 11 Video Script: 1. For thousands of years people have looked up at the night sky pondering the limits of our solar system. 2. Perhaps you too, have looked up at the evening stars and planets, and wondered

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

SPI Use data to draw conclusions about the major components of the universe.

SPI Use data to draw conclusions about the major components of the universe. SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions

More information

Motion in the Heavens

Motion in the Heavens Motion in the Heavens Most ancient cultures believed that the earth was the centre of the universe. Most felt that the planets, stars, moon and sun revolved around the earth. This is known as a geocentric

More information

Four Centuries of Discovery. Visions of the Universe. Discovering. Universe. the. supplemental materials

Four Centuries of Discovery. Visions of the Universe. Discovering. Universe. the. supplemental materials Visions of the Universe ~ Four Centuries of Discovery Discovering the Universe supplemental materials Discovering the Universe Table of Contents - Exhibit Overview... 3 Science Background... 4 Science

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past?

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past? Skills Worksheet Directed Reading Section: Viewing the Universe 1. How did observations of the sky help farmers in the past? 2. How did observations of the sky help sailors in the past? 3. What is the

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy 3.1 The Ancient Roots of Science Our goals for learning: In what ways do all humans employ scientific thinking? How did astronomical observations benefit ancient societies?

More information

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual. Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis. Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

Uranus, Neptune, and Pluto. Outer Worlds 4/19/07

Uranus, Neptune, and Pluto. Outer Worlds 4/19/07 The : Uranus, Neptune, and Pluto Reading Assignment Finish Chapter 17 Announcements 6 th homework due on Tuesday, April 24 Quiz on Tuesday, April 24 (will cover all lectures since the last exam and Chapters

More information

NAME: Log onto YouTube and search for jocrisci channel.

NAME: Log onto YouTube and search for jocrisci channel. NAME: Log onto YouTube and search for jocrisci channel. EARTH MOTIONS (Video 10.1) 1. Define rotation, how long it takes, which direction it happens, the proof it happens, and the result. 2. Define revolution,

More information

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Celestial poles, celestial equator, ecliptic, ecliptic plane (Fig

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

The Birth of Astronomy. Lecture 3 1/24/2018

The Birth of Astronomy. Lecture 3 1/24/2018 The Birth of Astronomy Lecture 3 1/24/2018 Fundamental Questions of Astronomy (life?) What is the shape of the Earth? How big is the planet we live on? Why do the stars move across the sky? Where is Earth

More information

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website Planetarium Shows begin Sept 9th Info on course website Register your iclicker! Last time: The Night Sky Today: Motion and Gravity ASTR 150 Hang on tight! Most math all semester-- get it over with right

More information

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors What is gravity? Gravity is defined as the force of attraction by which terrestrial bodies tend to fall

More information

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe Name: Period: Chapter 26 Section 1 pages 659-666 Directed Reading Section: Viewing the Universe 1. How did observations of the sky help sailors in the past? 2. What is the main reason people study the

More information

1 The Solar System. 1.1 a journey into our galaxy

1 The Solar System. 1.1 a journey into our galaxy 1 The Solar System Though Pluto, and the far-flung depths of the Solar System, is the focus of this book, it is essential that Pluto is placed in the context of the planetary system that it inhabits our

More information

UNIT 1: EARTH AND THE SOLAR SYSTEM.

UNIT 1: EARTH AND THE SOLAR SYSTEM. UNIT 1: EARTH AND THE SOLAR SYSTEM. 1) A BRIEF HISTORY Theories of the Universe In the second century BC, the astronomer Ptolemy proposed that the Earth was the centre of the Universe, and that the Sun,

More information

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets Earth s Place in the Universe outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets the big bang the universe is expanding

More information

Benefit of astronomy to ancient cultures

Benefit of astronomy to ancient cultures Benefit of astronomy to ancient cultures Usefulness as a tool to predict the weather (seasons) Usefulness as a tool to tell time (sundials) Central Africa (6500 B.C.) Alignments Many ancient cultures built

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens Exam# 1 Review Exam is Wednesday October 11 h at 10:40AM, room FLG 280 Bring Gator 1 ID card Bring pencil #2 (HB) with eraser. We provide the scantrons No use of calculator or any electronic device during

More information

4π 2 G(M1+M2 ) p2 = Newton s 3 Laws of Motion AST 105. Introduction to Astronomy: The Solar System. Newton's Version of Kepler's Third Law

4π 2 G(M1+M2 ) p2 = Newton s 3 Laws of Motion AST 105. Introduction to Astronomy: The Solar System. Newton's Version of Kepler's Third Law REVIEW Newton s 3 Laws of Motion AST 105 Introduction to Astronomy: The Solar System Announcement: First Midterm this Thursday 02/25 Newton's Version of Kepler's Third Law Newton's Version of Kepler's

More information

Peer Led Instruction. Celestial Motion. Get your lab manual. Tycho Brahe

Peer Led Instruction. Celestial Motion. Get your lab manual. Tycho Brahe Celestial Motion Chapter 21, pages 597-606 Chapter 22, pages 615-619 Lab starts this week NS 017 Peer Led Instruction Library Wednesday 6:30 to 8:30 PM Kristin Mooney Science Education Major Add ES104X

More information

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet CHAPTER 6 The Solar System Vocabulary star an object in space that makes its own light and heat moon an object that circles around a planet Sun astronomical unit the distance between Earth and the Sun

More information

1UNIT. The Universe. What do you remember? Key language. Content objectives

1UNIT. The Universe. What do you remember? Key language. Content objectives 1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn

More information

Reading Preview. Models of the Universe What is a geocentric model?

Reading Preview. Models of the Universe What is a geocentric model? Section 1 Observing the Solar System 1 Observing the Solar System Objectives After this lesson, students will be able to J.3.1.1 Identify the geocentric and heliocentric systems. J.3.1.2 Recognize how

More information

Measuring Distances in Space

Measuring Distances in Space Measuring Distances in Space Textbook pages 396 405 Section 11.3 Summary Before You Read Looking at stars is like looking into the past. What might be the reason why? Record your thoughts on the lines

More information

Satellites and Kepler's Laws: An Argument for Simplicity

Satellites and Kepler's Laws: An Argument for Simplicity OpenStax-CNX module: m444 Satellites and Kepler's Laws: An Argument for Simplicity OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License.0 Abstract

More information

Revolution and Enlightenment. The scientific revolution

Revolution and Enlightenment. The scientific revolution Revolution and Enlightenment The scientific revolution Background in Revolution In the middle ages, educated europeans relied on ancient authorities like Aristotle for scientific knowledge. By the 15th

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C.

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C. Name: The Sun The Sun is an average sized. Earth, Mars, Jupiter and Uranus are. A star is the only object in space that makes its own. This includes and. The sun is about million miles from Earth. This

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Evolution of the Solar System

Evolution of the Solar System DATE DUE: Name: Ms. Terry J. Boroughs Geology 305 Section: Evolution of the Solar System Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary where

More information

Planetary Orbits: Kepler s Laws 1/18/07

Planetary Orbits: Kepler s Laws 1/18/07 Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

Sample Assessment Material Time: 2 hours

Sample Assessment Material Time: 2 hours Paper Reference(s) 5AS01 Edexcel GCSE Astronomy Paper 1 Sample Assessment Material Time: 2 hours Materials required for examination Calculator Items included with question papers Nil Instructions to Candidates

More information

Origin of the Oceans I. Solar System? Copernicus. Our Solar System

Origin of the Oceans I. Solar System? Copernicus. Our Solar System Origin of the Oceans I Our Solar System Solar System? To begin our study of the oceans, we must understand why they exist. Fundamental to this question is whether every planet has oceans, and, if not,

More information

Test 1 Review Chapter 1 Our place in the universe

Test 1 Review Chapter 1 Our place in the universe Test 1 Review Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons Formulas will be projected on the screen You can use

More information

Motions of the Planets ASTR 2110 Sarazin

Motions of the Planets ASTR 2110 Sarazin Motions of the Planets ASTR 2110 Sarazin Motion of Planets Retrograde Motion Inferior Planets: Mercury, Venus Always near Sun on Sky Retrograde motion when very close to Sun on sky (Every other time) Superior

More information

Phys Homework Set 2 Fall 2015 Exam Name

Phys Homework Set 2 Fall 2015 Exam Name Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Increasing the temperature of a blackbody by a factor of 2 will increase its energy by

More information