The Pan-STARRS Moving Object Pipeline

Size: px
Start display at page:

Download "The Pan-STARRS Moving Object Pipeline"

Transcription

1 Astronomical Data Analysis Software and Systems XVI O4-1 ASP Conference Series, Vol. XXX, 2006 R.Shaw,F.HillandD.Bell,eds. The Pan-STARRS Moving Object Pipeline Larry Denneau, Jr. Pan-STARRS, Institute for Astronomy, University of Hawaii, Honolulu, HI, Jeremy Kubica Google, Inc., Pittsburg, PA, Robert Jedicke Institute for Astronomy, University of Hawaii, Honolulu, HI, Abstract. The Moving Object Processing System (MOPS) team of the University of Hawaii s Pan-STARRS telescope is developing software to automatically discover and identify >90% of near-earth objects (NEOs) 300m in diameter and >80% of other classes of asteroids and comets. MOPS relies on new, efficient multiple-hypothesis KD-tree and variabletree search algorithms developed by Kubica and the Carnegie Mellon AUTON Laboratory to search the detection pairs obtained per night. Candidate intra- and inter-night associations of detections are evaluated for consistency with a real solar system object and orbits are computed. We describe the basic operation of the MOPS pipeline, identify pipeline processing steps that are candidates for multiple-hypothesis spatial searches, describe our implementation of those algorithms and provide preliminary results for MOPS. 1. Introduction The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) under development by Institute for Astronomy at the University of Hawaii will provide state-of-the-art capability in several areas: four wide-field (7 deg 2 ) identical telescopes operating in parallel, a 1.4-gigapixel orthogonal transfer array (OTA) detector for each telescope, 0.01-arcsecond astrometric precision, and a limiting magnitude of R = 24. In a single night Pan-STARRS will observe approximately 6000 deg 2 of sky. All combined, this capability will allow Pan- STARRS to perform automated asteroid searching on an unprecedented scale. The Pan-STARRS single prototype telescope, called PS1, is expected to see first light in 2007, followed by the complete four-telescope system, PS4, in The Moving Object Processing System (MOPS) client of the Pan-STARRS Image Processing Pipeline (IPP) is developing software to automatically discover and identify >90% of near-earth objects (NEOs) 300m in diameter and >80% 1

2 2 Denneau, Kubica & Jedicke of other classes of asteroids and comets. MOPS is a traditional software pipeline that runs unattended and continuously to perform its asteroid discovery. 2. MOPS Synthetic Solar System The MOPS Synthetic Solar System (SSS) is an artifically-generated population of 11 million objects that represent various populations of objects that will be discovered by MOPS. The SSS exists so that the MOPS pipeline can be developed and verified using realistic data and so that operating efficiencies can be monitored. During the operation of PS4, the MOPS will require a way to measure how efficiently it is processing its input data stream. The MOPS will estimate its operating efficiency on real sky data by injecting its full synthetic model into the real data stream and then extract efficiency parameters from the synthetic stream after processing. As the MOPS discovers and verifies new objects, in particular near-earth objects (NEOs) and potentially hazardous objects (PHOs), orbital parameters and observations will be reported to external sources for further evaluation of impact hazard. 3. Intra-Night Linking Each night, the MOPS will search its detections database in order to identify intra-night linkages called tracklets. The simplest tracklet will be a pair of detections obtained within a 30-minute transient time interval (TTI). At 5σ there will be roughly 200 false detections deg 2, which is comparable to the expected sky-plane density of asteroids on the ecliptic (and therefore also comparable to the density of synthetic detections on the sky). At 1 deg/day an object will move about 75 arcsec ( 375 pixels) in a 30-minute TTI. To identify objects moving this fast requires linking all possible pairs of detections in an image that lie within 375 pixels of one another. Fully 50% of pairings attempted in this manner will be incorrectly linked tracklets. The vast majority of solar system objects move slower than about 1 deg/day, and for fast-moving objects there is other information available to reduce the false tracklet rate (detection flux and shape). For instance, at 1 deg/day an object will move about 4.2 pixels in a 30s exposure (assuming 0.3 pixel scale). It is expected that typical Pan-STARRS images will have PSFs on the order of 0.6 and at this rate of motion these objects will suffer trailing losses and measurably distend the appearance of the detection. Tracklets are identified using KD-tree spatial sorting and indexing. KD-tree algorithms can rapidly identify all tracklets in a single night s fields in tens of minutes on a typical science-grade PC. Given the constraints available to the algorithm that will identify tracklets it is expected that the false tracklet rate will be less than a percent.

3 3 Figure 1. Conceptual diagram of intra-night linking. Note that some fast-moving detections have been associated over large distances using elongation information present in the detection. 4. Inter-Night Linking Following the completion of intra-night linking, the MOPS uses the new tracklets linkages and attempts to link them with old tracklets from previous nights. These associations are called tracks. The simplest manner to envisage the process is to extrapolate each tracklet s motion vector to a pre-specified time on the other nights. If the extrapolated position and motion vector coincides with another tracklet on another night then assume that both tracklets represent the same object and use the internight motion to predict the object s location and motion vector on other nights. Once multiple nights of tracklets are linked into a track for a proposed object, an initial orbit determination (IOD) will be computed for the detections in the track. If a sufficiently good IOD is obtained (with low residuals), the MOPS will attempt a differentially-corrected orbit determination. If a sufficiently low residual is again achieved, the track is considered provisionally to be a real object and is inserted into the MOPS database. Otherwise the tracklets are released back into the pool for further processing. The combinatoric complexity of linking millions of tracklets together over many nights is intractable without special spatial indexing and searching. For this problem, MOPS uses a variable-tree algorithm developed by Jeremy Kubica and Carnegie Mellon s AUTON Laboratory. The variable-tree approach generates model tracks using endpoint tracklets at some starting and ending time, then looks for support tracks that satisfy the models. 5. Results The Pan-STARRS MOPS team has performed simulations using full sky-plane density of asteroids and expected density of false detections. With these simulations, MOPS is able to achieve > 99.9% efficiency in its intra-night linkages. The only reason the MOPS is not at 100% is that the intra-night linker is aggresive:

4 4 Denneau, Kubica & Jedicke y T 1 x T 2 T 3 T 4 t Figure 2. Conceptual diagram of inter-night linking. Model tracks are generated using tracklets at times T1 and T4. Support tracks are obtained from times T2 and T3. When a sufficient number of support tracks are obtained, the linkage is returned to MOPS for orbit determination. a small fraction of correct linkages are incorrectly linked into three-detection tracklets with an incorrect detection. Currently we do not believe that this loss will hurt the MOPS s overall efficiency. In Inter-night linking, the MOPS is able to achieve > 97% efficiency with NEOs and > 98% of main belt objects. Losses in intra-night linking are primarily due to non-quadratic sky-plane motion of asteroids; these objects are lost in the variable-tree approach since the variable-tree model requires quadratic sky-plane motion. It is possible to open up thresholds in the variable tree processing to accept larger deviations from quadratic motion at the cost of many more false tracks (and thus greater post-processing). Using current tresholds, variable-tree linking generates nearly 300-to-1 false linkages to correct linkages. Tables 1 and 2 summarize MOPS intra- and inter-night linking performance. The MOPS team is encouraged with these results and believes that KDtree and variable-tree spatial searching will allow MOPS and Pan-STARRS to achieve its NEO discovery goals. Table 1. MOPS Intra-night linking performance. Tracklets Available Found Percent 636, , % Acknowledgments. We are extremely grateful to Carnegie Mellon University and LSST Corporation for their contribution to development of MOPS.

5 5 Table 2. MOPS Inter-night linking performance. Type Available Found Percent NEO % MB 151, , % TNO % False 45M N/A 286X References Kubica, J., Moore, A., Connolly, R., & Jedicke, R A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations. The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2005), ACM Press, Eds. Robert L. Grossman and Roberto Bayardo and Kristin Bennett and Jaideep Vaidya, p Kubica, J., Denneau, L., Grav, T., Heasley, J., Jedicke, R., Masiero, J., & Tholen, D. Efficient Intra- and Inter-night Linking of Asteroid Detections using KD-Trees In preparation. Bottke, W. F., Jedicke, R., Morbidelli, A., Petit, J. & Gladman, B. Understanding the Distribution of Near-Earth Asteroids. Science, 288: , Jedicke, R. Pan-STARRS Moving Object Pipeline Requirements, Institute for Astronomy, University of Hawaii, Kaiser, N., Pan-STARRS Project Team. Asteroid Collision Hazard Reduction Requirements, Institute for Astronomy, University of Hawaii, Chesley, S., Heasley, J., Jedicke, R. & Spahr, T. MOPS: NEO Preliminary Orbit Calculation Studies, Institute for Astronomy, University of Hawaii, Jedicke, R. ACM 2005 Plenary Oral Presentation, Petit, J.-M., Holman, M., Scholl, H., Kavelaars, J. & Gladman, B. An automated moving object detection package. Mon. Not. R. Astron. Soc. 347, , 2004.

Asteroid Detection with the Pan-STARRS Moving Object Processing System

Asteroid Detection with the Pan-STARRS Moving Object Processing System Asteroid Detection with the Pan-STARRS Moving Object Processing System Larry Denneau, Jr., Robert Jedicke, Mikael Granvik, Daniel Chang, The Pan-STARRS Team Pan-STARRS, Institute for Astronomy, University

More information

Efficient intra- and inter-night linking of asteroid detections using kd-trees

Efficient intra- and inter-night linking of asteroid detections using kd-trees Icarus 189 (2007) 151 168 www.elsevier.com/locate/icarus Efficient intra- and inter-night linking of asteroid detections using kd-trees Jeremy Kubica a,1, Larry Denneau b, Tommy Grav b, James Heasley b,

More information

LSST: Comprehensive NEO detection, characterization, and orbits

LSST: Comprehensive NEO detection, characterization, and orbits Near Earth Objects, Our Celestial Neighbors: Opportunity And Risk Proceedings IAU Symposium No. 236, 2006 c 2007 International Astronomical Union A. Milani, G.B. Valsecchi & D. Vokrouhlický, eds. doi:10.1017/s1743921307003420

More information

PS1 Moving Object Processing System (MOPS) Software Requirement Specification (SRS)

PS1 Moving Object Processing System (MOPS) Software Requirement Specification (SRS) Pan-STARRS Project Management System PS1 Moving Object Processing System (MOPS) Software Requirement Specification (SRS) Grant Award No. : F29601-02-1-0268 Prepared For : Pan-STARRS Team, IfA Document

More information

arxiv: v1 [astro-ph.im] 10 Nov 2015

arxiv: v1 [astro-ph.im] 10 Nov 2015 Asteroids: New Observations, New Models Proceedings IAU Symposium No. 318, 2015 S. Chesley, A. Morbidelli, R. Jedicke & D. Farnocchia eds. c 2015 International Astronomical Union DOI: 0000/X000000000000000X

More information

Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope

Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope JPL Publication 16-11 Projected Near-Earth Object Discovery Performance of the Large Synoptic Survey Telescope Center for Near-Earth Object Studies Steven R. Chesley and Peter Vereš National Aeronautics

More information

WISE (Wide-field Infrared Survey Explorer)

WISE (Wide-field Infrared Survey Explorer) WISE (Wide-field Infrared Survey Explorer) A Clear View of Dark Objects R. Cutri, J. Bauer, J. Dailey (IPAC/Caltech) A. Mainzer, J. Masiero (JPL), T. Grav (JHU), R. McMillan (UA) D. Tholen, R. Jedicke,

More information

Unbiased orbit determination for the next generation asteroid/comet surveys

Unbiased orbit determination for the next generation asteroid/comet surveys Asteroids Comets Meteors 2005 Proceedings IAU Symposium No. 229, 2005 D. Lazzaro et al. eds. c 2005 International Astronomical Union DOI: 00.0000/X000000000000000X Unbiased orbit determination for the

More information

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 4 Don Campbell How do telescopes work? Typical telescope used

More information

Asteroid Models from the Pan-STARRS Photometry

Asteroid Models from the Pan-STARRS Photometry Earth, Moon, and Planets (2006) Ó Springer 2006 DOI 10.1007/s11038-006-9084-8 Asteroid Models from the Pan-STARRS Photometry JOSEF Dˇ URECH Astronomical Institute, Charles University in Prague, V Holesˇovicˇka

More information

Physical models of asteroids from sparse photometric data

Physical models of asteroids from sparse photometric data Near Earth Objects, our Celestial Neighbors: Opportunity and Risk Proceedings IAU Symposium No. 236, 26 c 26 International Astronomical Union A. Milani, G. Valsecchi & D. Vokrouhlický, eds. DOI:./XX Physical

More information

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C.

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Zhai Introduction to synthetic tracking Synthetic tracking

More information

arxiv: v1 [astro-ph.ep] 27 Jun 2017

arxiv: v1 [astro-ph.ep] 27 Jun 2017 Draft version November 13, 2018 Typeset using L A TEX manuscript style in AASTeX61 HIGH-FIDELITY SIMULATIONS OF THE NEAR-EARTH OBJECT SEARCH PERFORMANCE OF THE LARGE SYNOPTIC SURVEY TELESCOPE arxiv:1706.09398v1

More information

NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY

NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY Building the Infrastructure for Time-Domain Alert Science in the LSST Era May 22-25, 2017 Tucson CATALINA

More information

Wide-field Infrared Survey Explorer (WISE)

Wide-field Infrared Survey Explorer (WISE) Wide-field Infrared Survey Explorer (WISE) Summary of Results from the WISE Moving Object Pipeline Subsystem Operational Readiness Test Version 1.1 30-November-2009 Prepared by: James Bauer Infrared Processing

More information

arxiv: v1 [astro-ph.ep] 29 Nov 2017

arxiv: v1 [astro-ph.ep] 29 Nov 2017 The Large Synoptic Survey Telescope as a Near-Earth Object Discovery Machine R. Lynne Jones 1, Colin T. Slater 1, Joachim Moeyens 1, Lori Allen 2, Tim Axelrod 3, Kem Cook 4, Željko Ivezić1, Mario Jurić

More information

2 The PanSTARRS PS1 NEO Survey

2 The PanSTARRS PS1 NEO Survey 1 Table of Contents 1 Table of Contents...1 2 The PanSTARRS PS1 NEO Survey...2 3 References...17 4 Biographical Sketches (alphabetical order)...18 5 Current and Pending Support (alphabetical)...27 6 Budget...30

More information

The Pan-STARRS Moving Object Processing System

The Pan-STARRS Moving Object Processing System PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 125:357 395, 2013 April 2013. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. The Pan-STARRS Moving Object Processing

More information

Spacewatch and Follow-up Astrometry of Near-Earth Objects

Spacewatch and Follow-up Astrometry of Near-Earth Objects Spacewatch and Follow-up Astrometry of Near-Earth Objects International Asteroid Warning Network Steering Group Meeting Cambridge, MA 2014 Jan 13 Robert S. McMillan1, T. H. Bressi1, J. A. Larsen2, J. V.

More information

Transient Alerts in LSST. 1 Introduction. 2 LSST Transient Science. Jeffrey Kantor Large Synoptic Survey Telescope

Transient Alerts in LSST. 1 Introduction. 2 LSST Transient Science. Jeffrey Kantor Large Synoptic Survey Telescope Transient Alerts in LSST Jeffrey Kantor Large Synoptic Survey Telescope 1 Introduction During LSST observing, transient events will be detected and alerts generated at the LSST Archive Center at NCSA in

More information

Precision Tracking of Decimeter Targets at GEO Distances using the Magdalena Ridge Observatory 2.4-meter Telescope

Precision Tracking of Decimeter Targets at GEO Distances using the Magdalena Ridge Observatory 2.4-meter Telescope Precision Tracking of Decimeter Targets at GEO Distances using the Magdalena Ridge Observatory 2.4-meter Telescope William H. Ryan and Eileen V. Ryan Magdalena Ridge Observatory, New Mexico Institute of

More information

Some ML and AI challenges in current and future optical and near infra imaging datasets

Some ML and AI challenges in current and future optical and near infra imaging datasets Some ML and AI challenges in current and future optical and near infra imaging datasets Richard McMahon (Institute of Astronomy, University of Cambridge) and Cameron Lemon, Estelle Pons, Fernanda Ostrovski,

More information

Automated Prototype for Asteroids Detection

Automated Prototype for Asteroids Detection Automated Prototype for Asteroids Detection Denisa Copândean, Ovidiu Văduvescu, Dorian Gorgan Computer Science Department, Technical University of Cluj-Napoca, Cluj-Napoca, Memorandumului 28, Romania email:

More information

UNIVERSITY OF HAWAII AT MANOA Institute for Astrononmy

UNIVERSITY OF HAWAII AT MANOA Institute for Astrononmy Pan-STARRS Document Control UNIVERSITY OF HAWAII AT MANOA Institute for Astrononmy Pan-STARRS Project Management System The MOPS Solar System Model A model of every small object that moves in the solar

More information

Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University

Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University Astroinformatics: massive data research in Astronomy Kirk Borne Dept of Computational & Data Sciences George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Ever since humans first gazed

More information

arxiv: v2 [astro-ph.ep] 29 Mar 2012

arxiv: v2 [astro-ph.ep] 29 Mar 2012 Identification of known objects in solar system surveys arxiv:121.2587v2 [astro-ph.ep] 29 Mar 212 Andrea Milani a, Zoran Knežević b, Davide Farnocchia c,a, Fabrizio Bernardi c, Robert Jedicke d, Larry

More information

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia

An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia An optimal search strategy for Trojan asteroids and science follow-up of GAIA alerts with the Zadko Telescope, Western Australia Michael Todd May 4, 2011 M. Todd 1, D. Coward 2 and M.G. Zadnik 1 Email:

More information

arxiv:astro-ph/ v1 3 Aug 2004

arxiv:astro-ph/ v1 3 Aug 2004 Exploring the Time Domain with the Palomar-QUEST Sky Survey arxiv:astro-ph/0408035 v1 3 Aug 2004 A. Mahabal a, S. G. Djorgovski a, M. Graham a, R. Williams a, B. Granett a, M. Bogosavljevic a, C. Baltay

More information

The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope The Large Synoptic Survey Telescope Philip A. Pinto Steward Observatory University of Arizona for the LSST Collaboration 17 May, 2006 NRAO, Socorro Large Synoptic Survey Telescope The need for a facility

More information

An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington

An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington LSST in a nutshell The LSST will be a large, wide-field, ground-based optical/near-ir

More information

ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System

ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System ANTARES: The Arizona-NOAO Temporal Analysis and Response to Events System Thomas Matheson and Abhijit Saha National Optical Astronomy Observatory 950 North Cherry Avenue Tucson, AZ 85719, USA and Richard

More information

WMOPS. Clean DetecHons of Newly Discovered Solar System Objects by WISE

WMOPS. Clean DetecHons of Newly Discovered Solar System Objects by WISE WMOPS Clean DetecHons of Newly Discovered Solar System Objects by WISE J. Dailey, J. Bauer, T. Grav, A. Mainzer, R. Cutri, J. Myers, J. Masiero, R. McMillan, S. Gomillion, R. Jedicke, L. Denneau, R. Walker,

More information

Real Astronomy from Virtual Observatories

Real Astronomy from Virtual Observatories THE US NATIONAL VIRTUAL OBSERVATORY Real Astronomy from Virtual Observatories Robert Hanisch Space Telescope Science Institute US National Virtual Observatory About this presentation What is a Virtual

More information

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline Astroinformatics Example Application:

More information

Large Synoptic Survey Telescope

Large Synoptic Survey Telescope Large Synoptic Survey Telescope Željko Ivezić University of Washington Santa Barbara, March 14, 2006 1 Outline 1. LSST baseline design Monolithic 8.4 m aperture, 10 deg 2 FOV, 3.2 Gpix camera 2. LSST science

More information

Near Earth Object Observations Program

Near Earth Object Observations Program Near Earth Object Observations Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 16 February 2010 1 Terminology Near Earth Objects (NEOs) -

More information

Machine Learning Applications in Astronomy

Machine Learning Applications in Astronomy Machine Learning Applications in Astronomy Umaa Rebbapragada, Ph.D. Machine Learning and Instrument Autonomy Group Big Data Task Force November 1, 2017 Research described in this presentation was carried

More information

From DES to LSST. Transient Processing Goes from Hours to Seconds. Eric Morganson, NCSA LSST Time Domain Meeting Tucson, AZ May 22, 2017

From DES to LSST. Transient Processing Goes from Hours to Seconds. Eric Morganson, NCSA LSST Time Domain Meeting Tucson, AZ May 22, 2017 From DES to LSST Transient Processing Goes from Hours to Seconds Eric Morganson, NCSA LSST Time Domain Meeting Tucson, AZ May 22, 2017 Hi, I m Eric Dr. Eric Morganson, Research Scientist, Nation Center

More information

Near-Earth Asteroids Orbit Propagation with Gaia Observations

Near-Earth Asteroids Orbit Propagation with Gaia Observations Near-Earth Asteroids Orbit Propagation with Gaia Observations David Bancelin, Daniel Hestroffer, William Thuillot To cite this version: David Bancelin, Daniel Hestroffer, William Thuillot. Near-Earth Asteroids

More information

A Planetary Defense Policy

A Planetary Defense Policy A Planetary Defense Policy Al Globus February 2014 If the dinosaurs had a space program, they would still be here. anonymous Whereas, 1. Millions of Near Earth Objects (NEOs) large enough to cause significant

More information

Scientific Data Flood. Large Science Project. Pipeline

Scientific Data Flood. Large Science Project. Pipeline The Scientific Data Flood Scientific Data Flood Large Science Project Pipeline 1 1 The Dark Energy Survey Study Dark Energy using four complementary* techniques: I. Cluster Counts II. Weak Lensing III.

More information

A search for main-belt comets in the Palomar Transient Factory survey

A search for main-belt comets in the Palomar Transient Factory survey A search for main-belt comets in the Palomar Transient Factory survey ADAM WASZCZAK 1, ERAN O. OFEK 2, ODED AHARONSON 1,3, SHRINIVAS R. KULKARNI 4, DAVID POLISHOOK 5,JAMES M. BAUER 6, DAVID B. LEVITAN

More information

Asteroids Detection Tehnique: Classic Blink

Asteroids Detection Tehnique: Classic Blink Asteroids Detection Tehnique: Classic Blink An Automated Approch Denisa Copândean, Constantin Nandra, Dorian Gorgan, Computer Science Department Technical University of Cluj-Napoca Cluj-Napoca, Romania

More information

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline What is Surprise Detection? Example Application: The LSST

More information

LSST Discovery Potential for Solar System Science and Planetary Defense

LSST Discovery Potential for Solar System Science and Planetary Defense LSST Discovery Potential for Solar System Science and Planetary Defense Zeljko Ivezic Mario Juric Lynne Jones Colin Slater Joachim Moeyens (University of Washington) and the LSST Project. SBAG June 14,

More information

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-Planets A Search for Transiting Planets Around Cool stars J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-STARRS 1: 1.8m prototype telescope operated on Haleakala/Hawaii consortium of few

More information

Topocentric Orbit Determination: Algorithms for the Next Generation Surveys

Topocentric Orbit Determination: Algorithms for the Next Generation Surveys Topocentric Orbit Determination: Algorithms for the Next Generation Surveys Andrea Milani 1, Giovanni F. Gronchi 1, Davide Farnocchia 1, Zoran Knežević 2 Robert Jedicke 3, Larry Denneau 3, Francesco Pierfederici

More information

Time Domain Astronomy in the 2020s:

Time Domain Astronomy in the 2020s: Time Domain Astronomy in the 2020s: Developing a Follow-up Network R. Street Las Cumbres Observatory Workshop Movies of the Sky Vary in depth, sky region, wavelengths, cadence Many will produce alerts

More information

arxiv: v1 [astro-ph.ep] 15 Sep 2016

arxiv: v1 [astro-ph.ep] 15 Sep 2016 Not to appear in Nonlearned J., 45. Preprint typeset using LATEX style AASTeX6 v. 1.0 THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS arxiv:1609.04677v1 [astro-ph.ep] 15 Sep 2016 Hsing Wen Lin

More information

Max-Planck-Institut für Astronomie Dr. Markus Pössel, Center for Astronomy Education and Outreach

Max-Planck-Institut für Astronomie Dr. Markus Pössel, Center for Astronomy Education and Outreach Pressemitteilung Max-Planck-Institut für Astronomie Dr. Markus Pössel, Center for Astronomy Education and Outreach 31.12.2010 http://idw-online.de/de/news403081 Kooperationen, Schule und Wissenschaft Physik

More information

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 Near Earth Objects The NEO Observation Program and Planetary Defense Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 NEO Observation Program US component to International Spaceguard

More information

Brendan Krueger Phy 688, Spring 2009 May 6 th, 2009

Brendan Krueger Phy 688, Spring 2009 May 6 th, 2009 Brendan Krueger Phy 688, Spring 2009 May 6 th, 2009 Development of the theory Alvarez hypothesis Periodicity of extinctions Proposal of a solar companion Orbit of Nemesis Proposed orbit Current location

More information

The Minor Planet Center Data Processing System. Matthew J. Holman Harvard-Smithsonian Center for Astrophysics. Of Minor Planets

The Minor Planet Center Data Processing System. Matthew J. Holman Harvard-Smithsonian Center for Astrophysics. Of Minor Planets The Minor Planet Center Data Processing System Matthew J. Holman Harvard-Smithsonian Center for Astrophysics Of Minor Planets OUTLINE Brief Minor Planet Center History Motivation Minor Planet Center Roles

More information

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES]

Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] Gaia Astrometry Upkeeping by GNSS - Evaluation Study [GAUGES] M. Gai, A. Vecchiato [INAF-OATo] A. Fienga, F. Vakili, J.P. Rivet, D. Albanese [OCA] Framework: Development of High Precision Astrometric Techniques

More information

University of Hawai'i at Mänoa

University of Hawai'i at Mänoa Ms. Mildred Garner Grants Officer NASA Goddard Space Flight Center Code 216 Greenbelt,MD 20771 University of Hawai'i at Mänoa SUBJECT: Progress Report, Grant NAG 5-4669 Dear Ms. Garner, Institute for Astronomy

More information

Mony a Mickle Maks a Muckle:

Mony a Mickle Maks a Muckle: Noname manuscript No. (will be inserted by the editor) Mony a Mickle Maks a Muckle: Minor Body Observations with Optical Telescopes of All Sizes Colin Snodgrass Received: date / Accepted: date Abstract

More information

PAN-PLANETS. Searching for Hot Jupiters around Cool Stars. Christian Obermeier Johannes Koppenhöfer, Thomas Henning, Roberto Saglia

PAN-PLANETS. Searching for Hot Jupiters around Cool Stars. Christian Obermeier Johannes Koppenhöfer, Thomas Henning, Roberto Saglia PAN-PLANETS Searching for Hot Jupiters around Cool Stars Christian Obermeier Johannes Koppenhöfer, Thomas Henning, Roberto Saglia OVERVIEW EXOPLANET THEORY PROJECT PROPERTIES MONTE-CARLO TRANSIT INJECTIONS

More information

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Reliability and Completeness for the GLIMPSE Survey C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Abstract This document examines the GLIMPSE observing strategy and criteria

More information

Rotation period determination for asteroid 9021 Fagus

Rotation period determination for asteroid 9021 Fagus Rotation period determination for asteroid 9021 Fagus G. Apostolovska 1, A. Kostov 2, Z. Donchev 2 and E. Vchkova Bebekovska 1 1 Institute of Physics, Faculty of Science, Ss. Cyril and Methodius University,

More information

Science Results Enabled by SDSS Astrometric Observations

Science Results Enabled by SDSS Astrometric Observations Science Results Enabled by SDSS Astrometric Observations Željko Ivezić 1, Mario Jurić 2, Nick Bond 2, Jeff Munn 3, Robert Lupton 2, et al. 1 University of Washington 2 Princeton University 3 USNO Flagstaff

More information

Suspected Asteroid Collision

Suspected Asteroid Collision National Aeronautics and Space Administration Suspected Asteroid Collision Taken from: Hubble 2010: Science Year in Review Produced by NASA Goddard Space Flight Center and the Space Telescope Science Institute.

More information

The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes

The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes The Zadko Telescope: the Australian Node of a Global Network of Fully Robotic Follow-up Telescopes David Coward, Myrtille Laas-Bourez, Michael Todd To cite this version: David Coward, Myrtille Laas-Bourez,

More information

NEARBY Platform for Detecting Asteroids in Astronomical Images Using Cloud-based Containerized Applications

NEARBY Platform for Detecting Asteroids in Astronomical Images Using Cloud-based Containerized Applications NEARBY Platform for Detecting Asteroids in Astronomical Images Using Cloud-based Containerized Applications Victor Bacu, Adrian Sabou, Teodor Stefanut, Dorian Gorgan and Ovidiu Vaduvescu Computer Science

More information

A STRATEGY FOR FINDING NEAR-EARTH OBJECTS WITH THE SDSS TELESCOPE

A STRATEGY FOR FINDING NEAR-EARTH OBJECTS WITH THE SDSS TELESCOPE The Astronomical Journal, 127:2978 2987, 2004 May # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A STRATEGY FOR FINDING NEAR-EARTH OBJECTS WITH THE SDSS TELESCOPE Sean

More information

Update on NASA NEO Program

Update on NASA NEO Program Near Earth Object Observations Program Update on NASA NEO Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 3 February 2015 1 NASA s NEO Search

More information

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo

Automatic Star-tracker Optimization Framework. Andrew Tennenbaum The State University of New York at Buffalo SSC17-VIII-6 Automatic Star-tracker Optimization Framework Andrew Tennenbaum The State University of New York at Buffalo aztennen@buffalo.edu Faculty Advisor: John Crassidis The State University of New

More information

1 A photometric probe for Pan-STARRS

1 A photometric probe for Pan-STARRS The Pan-STARRS Imaging Sky Probe B.R. Granett, K.C. Chambers, E.A. Magnier, K. Fletcher and the Pan-STARRS Project Team University of Hawai i Institute for Astronomy Abstract Photometric performance is

More information

Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies

Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies Instrument Science Report ACS 2016-06 Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies Blair Porterfield, Dan Coe, Shireen Gonzaga, Jay Anderson, Norman Grogin November 1, 2016 Abstract

More information

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 4: Moving Objects Detected by SDSS

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 4: Moving Objects Detected by SDSS Astr 598: Astronomy with SDSS Spring Quarter 2004, University of Washington, Željko Ivezić Lecture 4: Moving Objects Detected by SDSS 1 Asteroids as seen from spacecrafts 2 What is the significance of

More information

SDSS Data Management and Photometric Quality Assessment

SDSS Data Management and Photometric Quality Assessment SDSS Data Management and Photometric Quality Assessment Željko Ivezić Princeton University / University of Washington (and SDSS Collaboration) Thinkshop Robotic Astronomy, Potsdam, July 12-15, 2004 1 Outline

More information

The B612 Foundation Sentinel Mission. Ed Lu CEO, B612 Foundation

The B612 Foundation Sentinel Mission. Ed Lu CEO, B612 Foundation The B612 Foundation Sentinel Mission Ed Lu CEO, B612 Foundation The B612 Foundation Silicon Valley based nonprofit 501(c)3 Founded 2002 Mission is to protect humanity by preventing future asteroid impacts

More information

NEAR-EARTH ASTEROIDS Positions of all known asteroids projected onto the plane of the Earth s orbit on Jan 20, 2008

NEAR-EARTH ASTEROIDS Positions of all known asteroids projected onto the plane of the Earth s orbit on Jan 20, 2008 Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 3 Don Campbell NEAR-EARTH ASTEROIDS Positions of all known

More information

Optical Synoptic Telescopes: New Science Frontiers *

Optical Synoptic Telescopes: New Science Frontiers * Optical Synoptic Telescopes: New Science Frontiers * J. Anthony Tyson Physics Dept., University of California, One Shields Ave., Davis, CA USA 95616 ABSTRACT Over the past decade, sky surveys such as the

More information

APLUS: A Data Reduction Pipeline for HST/ACS and WFC3 Images

APLUS: A Data Reduction Pipeline for HST/ACS and WFC3 Images APLUS: A Data Reduction Pipeline for HST/ACS and WFC3 Images Wei Zheng 1,AmitSaraff 2,3,LarryBradley 4,DanCoe 4,AlexViana 4 and Sara Ogaz 4 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

Spitzer Space Telescope Calibration Strategy: The Use of Asteroids

Spitzer Space Telescope Calibration Strategy: The Use of Asteroids Spitzer Space Telescope Calibration Strategy: The Use of Asteroids 1, J. Stansberry 2, C. Engelbracht 2, M. Blaylock 2, A. Noriega-Crespo 1 2004 December 3 Herschel Calibration Workshop, Leiden, The Netherlands

More information

ASTEROID DETECTION WITH THE SPACE SURVEILLANCE TELESCOPE. Ronak Shah MIT Lincoln Laboratory. Deborah F. Woods MIT Lincoln Laboratory

ASTEROID DETECTION WITH THE SPACE SURVEILLANCE TELESCOPE. Ronak Shah MIT Lincoln Laboratory. Deborah F. Woods MIT Lincoln Laboratory ASTEROID DETECTION WITH THE SPACE SURVEILLANCE TELESCOPE Ronak Shah Deborah F. Woods Walter Faccenda Julie Johnson Richard Lambour Eric C. Pearce J. Scott Stuart ABSTRACT The Space Surveillance Telescope

More information

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Asteroid Mitigation Strategy By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Impact History 65 mya- End of the Jurassic Period 3.3 mya- Impact in Argentina 50,000 ya- Barringer

More information

Near Earth Object Observations Program

Near Earth Object Observations Program Near Earth Object Observations Program Presentation to UN COPUOS Science & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 16 February 2009 Terminology Near Earth Objects (NEOs) - any

More information

The SKYGRID Project A Calibration Star Catalog for New Sensors. Stephen A. Gregory Boeing LTS. Tamara E. Payne Boeing LTS. John L. Africano Boeing LTS

The SKYGRID Project A Calibration Star Catalog for New Sensors. Stephen A. Gregory Boeing LTS. Tamara E. Payne Boeing LTS. John L. Africano Boeing LTS The SKYGRID Project A Calibration Star Catalog for New Sensors Stephen A. Gregory Boeing LTS Tamara E. Payne Boeing LTS John L. Africano Boeing LTS Paul Kervin Air Force Research Laboratory POSTER SESSION

More information

Astronomy of the Next Decade: From Photons to Petabytes. R. Chris Smith AURA Observatory in Chile CTIO/Gemini/SOAR/LSST

Astronomy of the Next Decade: From Photons to Petabytes. R. Chris Smith AURA Observatory in Chile CTIO/Gemini/SOAR/LSST Astronomy of the Next Decade: From Photons to Petabytes R. Chris Smith AURA Observatory in Chile CTIO/Gemini/SOAR/LSST Classical Astronomy still dominates new facilities Even new large facilities (VLT,

More information

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California NASA s National Aeronautics and Near-Earth Object Program Overview Don Yeomans/JPL The Population of Near-Earth Objects is Made Up of Active Comets (1%) and Asteroids (99%) Comets (Weak and very black

More information

arxiv: v1 [astro-ph.im] 8 Jan 2019

arxiv: v1 [astro-ph.im] 8 Jan 2019 Draft version January 1, 219 Typeset using L A TEX modern style in AASTeX61 FAST ALGORITHMS FOR SLOW MOVING ASTEROIDS: CONSTRAINTS ON THE DISTRIBUTION OF KUIPER BELT OBJECTS arxiv:191.2492v1 [astro-ph.im]

More information

Image Processing in Astronomy: Current Practice & Challenges Going Forward

Image Processing in Astronomy: Current Practice & Challenges Going Forward Image Processing in Astronomy: Current Practice & Challenges Going Forward Mario Juric University of Washington With thanks to Andy Connolly, Robert Lupton, Ian Sullivan, David Reiss, and the LSST DM Team

More information

How occultations improve asteroid shape models

How occultations improve asteroid shape models How occultations improve asteroid shape models Josef Ďurech Astronomical Institute, Charles University in Prague ESOP, August 30, 2014 Contents 1 Lightcurves Direct problem Inverse problem Reliability

More information

The Number Density of Asteroids in the Asteroid Main-belt

The Number Density of Asteroids in the Asteroid Main-belt Astronomy & Astrophysics manuscript no. Bidstrup August 10, 2004 (DOI: will be inserted by hand later) The Number Density of Asteroids in the Asteroid Main-belt Philip R. Bidstrup 1,2, René Michelsen 2,

More information

Boardworks Ltd Asteroids and Comets

Boardworks Ltd Asteroids and Comets 1 of 20 Boardworks Ltd 2011 Asteroids and Comets 2 of 20 Boardworks Ltd 2011 What are asteroids? 3 of 20 Boardworks Ltd 2011 Asteroids are large rocks which normally orbit the Sun. Scientists believe that

More information

Measuring Radial Velocities of Low Mass Eclipsing Binaries

Measuring Radial Velocities of Low Mass Eclipsing Binaries Measuring Radial Velocities of Low Mass Eclipsing Binaries Rebecca Rattray, Leslie Hebb, Keivan G. Stassun College of Arts and Science, Vanderbilt University Due to the complex nature of the spectra of

More information

LSST Pipelines and Data Products. Jim Bosch / LSST PST / January 30, 2018

LSST Pipelines and Data Products. Jim Bosch / LSST PST / January 30, 2018 LSST Pipelines and Data Products Jim Bosch / LSST PST / January 30, 2018 1 Context This is the first of six talks on LSST's data products: 1. Pipelines and Data Products Overview (January 30, Jim Bosch)

More information

Earth and space-based NEO survey simulations: prospects for achieving the Spaceguard Goal

Earth and space-based NEO survey simulations: prospects for achieving the Spaceguard Goal Available online at www.sciencedirect.com R Icarus 161 (2003) 17 33 www.elsevier.com/locate/icarus Earth and space-based NEO survey simulations: prospects for achieving the Spaceguard Goal Robert Jedicke,

More information

The Trouble with 'Planets'

The Trouble with 'Planets' The Trouble with 'Planets' The history of the 'planet' debate The scientific context The future Brett Gladman UBC, Dept. of Physics and Astronomy Institute of Planetary Science It all seemed so easy...

More information

arxiv: v1 [astro-ph.sr] 6 Jul 2013

arxiv: v1 [astro-ph.sr] 6 Jul 2013 On The Period Determination of ASAS Eclipsing Binaries L. Mayangsari a,, R. Priyatikanto a, M. Putra a,b a Prodi Astronomi Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, Jawa Barat, Indonesia

More information

PROJECT PAN-STARRS AND THE OUTER SOLAR SYSTEM

PROJECT PAN-STARRS AND THE OUTER SOLAR SYSTEM PROJECT PAN-STARRS AND THE OUTER SOLAR SYSTEM DAVID JEWITT Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Abstract. Pan-STARRS, a funded project to repeatedly survey the entire visible

More information

Searching for known asteroids in the WFI archive using Astro-WISE

Searching for known asteroids in the WFI archive using Astro-WISE Searching for known asteroids in the WFI archive using Astro-WISE Jeffrey Bout A small research project for bachelor students Supervisors: Gijs Verdoes Kleijn and Edwin Valentijn Kapteyn Astronomical Institute

More information

arxiv: v1 [astro-ph.ep] 18 Jun 2009

arxiv: v1 [astro-ph.ep] 18 Jun 2009 The Thousand Asteroid Light Curve Survey 1 Joseph Masiero 2, Robert Jedicke 2, Josef Ďurech3, Stephen Gwyn 4, Larry Denneau 2, Jeff Larsen 5 arxiv:0906.3339v1 [astro-ph.ep] 18 Jun 2009 ABSTRACT We present

More information

Identication of asteroids and comets: update on methods and results

Identication of asteroids and comets: update on methods and results Mem. S.A.It. Suppl. Vol. 26, 7 c SAIt 2014 Memorie della Supplementi Identication of asteroids and comets: update on methods and results F. Manca and A. Testa Osservatorio Astronomico di Sormano, Località

More information

Rotation Rates of Koronis Family Asteroid (1029) La Plata

Rotation Rates of Koronis Family Asteroid (1029) La Plata Rotation Rates of Koronis Family Asteroid (1029) La Plata Alessondra Springmann Advisor: Stephen M. Slivan Wellesley College Department of Astronomy May 18, 2007 For Astronomy 350, Spring 2007 2 ABSTRACT

More information

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Jessie Christiansen Kepler Participating Scientist NASA Exoplanet Science Institute/Caltech jessie.christiansen@caltech.edu

More information

Transneptunian Orbit Computation

Transneptunian Orbit Computation Transneptunian Orbit Computation Jenni Virtanen Finnish Geodetic Institute Gonzalo Tancredi University of Uruguay G. M. Bernstein University of Pennsylvania Timothy Spahr Smithsonian Astrophysical Observatory

More information

Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1

Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1 Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1 McNeill, A., Fitzsimmons, A., Jedicke, R., Wainscoat, R., Denneau, L., Veres, P.,... Waters,

More information

Synergies between and E-ELT

Synergies between and E-ELT Synergies between and E-ELT Aprajita Verma & Isobel Hook 1) E- ELT Summary 2) E- ELT Project Status 3) Parameter space 4) Examples of scientific synergies The World s Biggest Eye on the Sky 39.3m diameter,

More information