DETECTING TRANSITING PLANETS WITH COROT. Stefania Carpano ESAC (25th of November 2009)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DETECTING TRANSITING PLANETS WITH COROT. Stefania Carpano ESAC (25th of November 2009)"

Transcription

1 DETECTING TRANSITING PLANETS WITH COROT Stefania Carpano ESAC (25th of November 2009)

2 Outline 1) Introduction: Exoplanet science and detection methods Detection of exoplanets using the transit method The CoRoT mission and CoRoT light curves 2) Results from the CoRoT mission 3) Comparison of CoRoT with Kepler and Plato missions

3 Why to look for extra-solar planets? Study formation and evolution of planetary systems (How unique are we? How common are planets?) need to measure the distribution of planet sizes, masses, orbits and age Search for life around other habitable planets small rocky planets with liquid water in benign temperature

4 Relatively a new field First extra-solar planet (giant) discovered by Mayor & Queloz in 1995 using radial-velocity technique. Found close to parent star has probably migrate there. Since 1995, about 400 extrasolar planets have been reported: most of them of Jupiter size but few of them of Neptune size and now even a low-mass rocky planet (CoRoT-7b). (Prediction)

5 Most common detection methods Radial-velocity: star moves back and forth along line-of-sight due to gravitational influence of planet blue/red-shift of spectral lines by Doppler-effect. Today can discover planets down to few Earth masses. Micro-lensing method: gravitational lensing of a star +planet enhancing the light of a background object. First extragalactic planet, discovered in M31?? (ask Achille Nucita!)

6 Transit method If the orbital plane intersect the line-of-sight to the star, the planet will obscure part of the star light. From the transit depth we can derive the ratio of the size of parent star to size of planet. Transit depth: ~1% for Jupiter-size 0.01% for Earth-size

7 If more than one transit is visible, the orbital period is known. It is possible to simultaneously monitor a large number of sources (10, ,000) The probability of transit varies from 0.5% for 1R planet at 1AU around solar type stars to several % for giant planets close to red dwarf stars (prob period (-2/3) ).

8 Secondary transits Secondary transits correspond to the occultation of the planet by the star provide information about the heat redistribution in the atmosphere and the eccentricity of the orbit

9 False positives Troublesome configurations that can lead to photometric signatures similar to planetary transits Main contributors: eclipsing binaries at grazing angles or in background stars (when source confusion)

10 Ground-based follow-up observations Confirm or infirm the presence of a potential planets detected in light curves. High spatial resolution photometric follow-up: in case of source confusion determine if the eclipse is on target or on a fainter neighbouring star with deeper flux drop. Spectroscopic follow-up: to discriminate between a planet and an eclipsing binary at grazing angle, by measuring the mass of the companion object.

11 The CoRoT mission Launched on the 27th of December 2006 Devoted to the analysis of stellar variability and photometric observations of extrasolar planets Continuously monitoring ~11,000 stars per observing field with magnitudes [ ] Mission duration: 3 years+3 years extension ( March 2013)

12 CoRoT observing regions Observes a 2 x2 field within a circular region of 10 of diameter in two different regions of the sky (galactic center and anti-center)

13 CoRoT fields Year divided into two period of 6 months of observations toward galactic center and anticenter Each of these six months is divided between a short run (20 days) and a long run (150 days), except for the initial run (60 days) Observed runs: IRa01, LRc01, SRc01, LRa01, SRa01, LRc02, SRc02, SRa02, LRa02 (IR=initial run, SR=short run, LR=long run, a=galactic anti-center, c=galactic center)

14 Focal plane and new observing strategy (?) 2 CCDs dedicated to astero-seismology (A1- A2) and 2 for extra-solar planets (E1-E2) Last September anomaly detected in 2 of the 4 CCDs temporary change in observing strategy to keep the same number of observed stars: long runs get split into 2 medium runs of 75 days each (ex: LRc03 and LRc04). Might change again for future runs.

15 CoRoT PSF PSF: 50% of the flux is contained in a elongated shape of about 35 x23, to get colour information source confusion

16 CoRoT light curves Each observed field records the light curve of 10,000-12,000 stars (with magnitude between 11.5 and 16) Time sampling: 512s (or 32 s for a limited number of stars) For bright stars the flux is measured in 3 separated channel: red, green and blue Role of the detection teams: filter the light curves, detect periodic transits, provide a list of planetary candidates (to be sent for ground-based follow-up)

17 Detection teams (at start!) DLR ESTEC Exeter IAC IAS Heike Rauer, Anders Erikson, Stefan Renner Malcolm Fridlund, Stefania Carpano Suzanne Aigrain, Frédéric Pont, Aude Alapini Hans Deeg, José M. Almenara, Clara Régulo Pascal Bordé, Benjamin Samuel Köln Martin Pätzold, Ludmilla Carone LAM LUTh Pierre Barge, Roi Alonso Jean Schneider, Juan Cabrera

18 Major enemy for detection: hot-pixels Sudden jumps and slow or sudden drops of intensity

19 Example of L.C. for a typical binary system (1/3)

20 Example of L.C. for a typical binary system (2/3)

21 Example of L.C. for a typical binary system (3/3)

22 Example of L.C. for a good planetary candidate

23 Not a planet but still interesting...

24 Oscillations?

25 Results from detection teams So far the light curves of the first 9 runs has been analyzed (~100,000 stars) Typical about 50 possible planet candidates are reported per observing run, with priority ranks (1 for the best candidates and 4 for potential false alarm) About 200 eclipsing binaries are discovered in each observing run. Results on planetary candidates and their follow-up observations, for IRa01 and LRc01 have been published. For the next runs work is in progress.

26 Planets discovered CoRoT-1b, CoRoT-2b, CoRoT-4b, CoRoT-5b (published): Jupiter like planets with periods of 1.5d, 1.7d, 9.2d and 4.0d respectively CoRoT-3b (published): Brown Dwarf. Jupiter size with 21 Jupiter Masses (P=4.3d) CoRoT-7b (published): smallest planet ever discovered Other confirmed planets under study: CoRoT-6b, CoRoT-8b and CoRoT-9b.

27 CoRoT-7b: the first Super- Earth with measured radius Radius=1.68 R Mass=4.8 M Orbital period=0.85d Distance=500 ly (150pc) Temperature= K

28 CoRoT-7a Active star Vmag=11.7 Spectral type= G9V Radius=0.87 R sun Mass=0.93 M sun

29 CoRoT-7b folded light curve Depth= 3.4e-4

30 CoRoT-7b: Harps Followup observations 70 hrs of spectroscopic follow-up observations with HARPS (La Silla, Chile) have been necessary to determine the mass of the planet Potential discovery of a more massive (8.4 M ) nontransiting planet: CoRoT-7c, with a period of 3.7d

31 CoRoT vs Kepler & Plato Launched on the 6th of March 2009, Kepler is the first Nasa space-based mission dedicated to the search of extra-solar planet. Plato is one of the 6 M-class missions proposed for the Cosmic Vision ESA Science Programme. Its goal will be to discover and characterise a large number of close-by exoplanetary systems.

32 Kepler Size of primary mirror: 1.4m (> 27 cm of CoRoT lower photon noise) FOV of 100 deg 2 with 42 CCDs Continuously point at a single star field in Cygnus-Lyra for at least 3.5 years (goal 6 years)

33 Plato 3 different payload concepts Concept A Concept B Concept C Number of telescopes Pupil diam. [mm] FOV [deg 2 ] 2x Number of CCDs

34 Plato designs A: 4 groups of 3 telescopes C: 42 telescopes mounted in groups B: 54 telescopes on a tilted base plate

35 Plato observational concept Primary objective: uninterrupted monitoring of bright stars with Mv between 8 and years (goal 3) observation of sky region 1 and region 2, and 2 years of step & stare observations (several successive fields monitored for a few months each)

36 FOV comparison

37 Conclusions Space-based missions using the transit method complemented by ground-based photometric and spectroscopic follow-up will allow the discovery and characterization of exoplanetary systems CoRoT has already discovered several giant planets and one Super-Earth Kepler will likely discover Super-Earth planets and Earth-like candidates (that cannot be confirmed so far by ground-based follow-up) Plato in parallel to the next generation of ground-based telescope will be able to detect and fully characterize exoplanetary systems down to Earth-like planets

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

A Method to Identify and Characterize Binary Candidates A Study of CoRoT 1 Data

A Method to Identify and Characterize Binary Candidates A Study of CoRoT 1 Data PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 123:536 546, 2011 May 2011. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. A Method to Identify and Characterize

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

Exoplanetary transits as seen by Gaia

Exoplanetary transits as seen by Gaia Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

Searching for extrasolar planets using microlensing

Searching for extrasolar planets using microlensing Searching for extrasolar planets using microlensing Dijana Dominis Prester 7.8.2007, Belgrade Extrasolar planets Planets outside of the Solar System (exoplanets) Various methods: mostly massive hot gaseous

More information

EXOPLANETS. Aurélien CRIDA

EXOPLANETS. Aurélien CRIDA EXOPLANETS Aurélien CRIDA EXOPLANETS Giordano Bruno said that the many stars are like our Sun, with planets like our Earth, inhabited as well (in de l'infinito universo e mondi (1574) ). He was burnt alive

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

Planetary transit candidates in Corot-IRa01 field ABSTRACT

Planetary transit candidates in Corot-IRa01 field ABSTRACT A&A 506, 491 500 (2009) DOI: 10.1051/0004-6361/200911882 c ESO 2009 The CoRoT space mission: early results Astronomy & Astrophysics Special feature Planetary transit candidates in Corot-IRa01 field S.

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

Transiting Extrasolar Planets

Transiting Extrasolar Planets Transiting Extrasolar Planets Recent Progress, XO Survey, and the Future Christopher J. Burke Solar System Has Predominately Circular Orbits Top View Side View Planet Formation NASA/JPL-Caltech/R. Hurt

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation PLATO PLAnetary Transits and Oscillations of Stars revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation The PLATO Consortium:

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY EXONEST The Exoplanetary Explorer Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY Kepler Mission The Kepler mission, launched in 2009, aims to explore the structure

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

Astronomy 421. Lecture 8: Binary stars

Astronomy 421. Lecture 8: Binary stars Astronomy 421 Lecture 8: Binary stars 1 Key concepts: Binary types How to use binaries to determine stellar parameters The mass-luminosity relation 2 Binary stars So far, we ve looked at the basic physics

More information

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Eric Agol University of Thanks to Josh Winn for slides 1 Venusian transit 2004 August 6, 2004 from Slovenia (Lajovic et al.) 2 History

More information

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk  ascension.html Astronomy 330 This class (Lecture 11): What is f p? Eric Gobst Suharsh Sivakumar Next Class: Life in the Solar System HW 2 Kira Bonk http://www.ufodigest.com/news/0308/ ascension.html Matthew Tenpas http://morphman.hubpages.com/hub/alien-

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

More information

The life of stars & their planets

The life of stars & their planets The life of stars & their planets A space science concept presented by C. Catala, Paris Observatory M. Auvergne, A.Baglin, E. Michel B. Mosser, J. Schneider A.C. Cameron, University of St. Andrews K. Horne

More information

PLAnetary Transits and Oscillations of stars

PLAnetary Transits and Oscillations of stars PLATO: Contribución n española PLAnetary Transits and Oscillations of stars J. Miguel Mas-Hesse Centro de Astrobiología (CSIC-INTA) 29 de junio 2011 Introduction PLATO: PLAnetary Transits and Oscillations

More information

Gravitational microlensing. Exoplanets Microlensing and Transit methods

Gravitational microlensing. Exoplanets Microlensing and Transit methods Gravitational microlensing Exoplanets Microlensing and s Planets and Astrobiology (2016-2017) G. Vladilo May take place when a star-planet system crosses the visual of a background star, as a result of

More information

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report PLATO Follow-up Organisa(on*&*Progress*Report Questions addressed A next generation transit mission will be efficient only with ground-based help S. Udry University of Geneva (Geneva Observatory) Needs

More information

Gravitational microlensing. Exoplanets Microlensing and Transit methods

Gravitational microlensing. Exoplanets Microlensing and Transit methods Gravitational microlensing Exoplanets Microlensing and s Planets and Astrobiology (2015-2016) G. Vladilo May take place when a star-planet system crosses the visual of a background star, as a result of

More information

Extrasolar Planet Detection Methods. Tom Koonce September, 2005

Extrasolar Planet Detection Methods. Tom Koonce September, 2005 Extrasolar Planet Detection Methods Tom Koonce September, 2005 Planets Around Other Stars? How is it possible to see something so small, so far away? If everything is aligned perfectly, we can see the

More information

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara Astronomy 330 This class (Lecture 10): Origin of the Moon Ilana Strauss Next Class: Our Planet Scott Huber Thomas Hymel HW 2! Alex Bara http://userpages.bright.net/~phobia/main.htm! Margaret Sharp http://hubpages.com/hub/proof-that-ufos-exist---

More information

Statistical validation of PLATO 2.0 planet candidates

Statistical validation of PLATO 2.0 planet candidates Statistical validation of PLATO 2.0 planet candidates Rodrigo F. Díaz Laboratoire d Astrophysique de Marseille José Manuel Almenara, Alexandre Santerne, Claire Moutou, Anthony Lehtuillier, Magali Deleuil

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101538 Number of pages (not including this page): 5 Author queries: Typesetter queries: Non-printed material: The Physics of the Sun and

More information

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ) Search for Transiting Planets around Nearby M Dwarfs Norio Narita (NAOJ) Outline Introduction of Current Status of Exoplanet Studies Motivation for Transiting Planets around Nearby M Dwarfs Roadmap and

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Exoplanet Microlensing Surveys with WFIRST and Euclid. David Bennett University of Notre Dame

Exoplanet Microlensing Surveys with WFIRST and Euclid. David Bennett University of Notre Dame Exoplanet Microlensing Surveys with WFIRST and Euclid David Bennett University of Notre Dame Why Space-based Microlensing? Space-based microlensing is critical for our understanding of exoplanet demographics

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION OGLE-TR-56 Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha Harvard-Smithsonian Center for Astrophysics Caltech, Department of Geological and Planetary Sciences University of California

More information

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work PLATO-20 Follow-up PLATO Follow-up activities Context'and'organisaon S Udry University of Geneva Overall PSPM structure The prime science product of PLATO = sample of fully characterized planets (various

More information

EXOPLANET DISCOVERY. Daniel Steigerwald

EXOPLANET DISCOVERY. Daniel Steigerwald EXOPLANET DISCOVERY Daniel Steigerwald WHAT IS AN EXOPLANET? An exoplanet is a planet outside of our solar system Extrastellar Rogue 1853 Planets 1162 planetary systems 473 Multiple planetary systems HISTORY

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

The Detection and Characterization of Extrasolar Planets

The Detection and Characterization of Extrasolar Planets Challenges 2014, 5, 296-323; doi:10.3390/challe5020296 Review OPEN ACCESS challenges ISSN 2078-1547 www.mdpi.com/journal/challenges The Detection and Characterization of Extrasolar Planets Ken Rice * Institute

More information

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

More information

IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS

IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS Emily K. Chang School of Ocean and Earth Science and Technology University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Exoplanet

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2 Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2 exoplanet scientist planetary scientist David Ehrenreich Mathieu Barthélemy Jean Lilensten...IPAG,

More information

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Extrasolar Planets Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Lecture Introduction to Solar System Physics Uni Göttingen, 8 June 2009 Outline Historical Overview Detection

More information

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth?

The Kepler Mission. NASA Discovery Mission # 10: Are there other planets, orbiting other stars, with characteristics similar to Earth? Kepler Update: 2016 http://www.nasa.gov/sites/default/files/styles/side_image/public/thumbnails/imag e/286257main_07-3348d1-kepler-4x3_226-170.jpg?itok=hvzfdmjc The Kepler Mission NASA Discovery Mission

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax The Family of Stars Chapter 13 Measuring the Properties of Stars 1 Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

ADVANCED CCD PHOTOMETRY AND EXOPLANET TRANSIT PHOTOMETRY. By : Kenny A. Diaz Eguigure

ADVANCED CCD PHOTOMETRY AND EXOPLANET TRANSIT PHOTOMETRY. By : Kenny A. Diaz Eguigure ADVANCED CCD PHOTOMETRY AND EXOPLANET TRANSIT PHOTOMETRY By : Kenny A. Diaz Eguigure KELT: THE KILODEGREE EXTREMELY LITTLE TELESCOPE Robotic Survey for Transiting Exoplanets KELT-North Deployed 2005 to

More information

NASA's Kepler telescope uncovers a treasure trove of planets

NASA's Kepler telescope uncovers a treasure trove of planets NASA's Kepler telescope uncovers a treasure trove of planets By Los Angeles Times, adapted by Newsela on 03.04.14 Word Count 711 The Kepler Mission is specifically designed to survey a portion of our region

More information

Intro to Astrophysics

Intro to Astrophysics Intro to Astrophysics Dr. Bill Pezzaglia 1 III. Introduction To Astrophysics A. Distances to Stars B. Binary Stars C. HR Diagrams 2 Updated: Nov 2007 A. Stellar Distances 1. Method of Parallax 2. Absolute

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

In Our Galaxy, Far, Far Away

In Our Galaxy, Far, Far Away Non-fiction: In Our Galaxy, Far, Far Away In Our Galaxy, Far, Far Away NASA Announces the Discovery of a Planet That Orbits Two Stars, But There May Be More... In the film Star Wars: Episode IV A New Hope,

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Exo-planets. Introduction. Detection Methods. Teacher s Notes. Radial Velocity or Doppler Method. 1. Download these notes at

Exo-planets. Introduction. Detection Methods. Teacher s Notes. Radial Velocity or Doppler Method. 1. Download these notes at 1. Introduction An exoplanet, or an extrasolar planet, is a planet which orbits any star other than our Sun so one which is not within our Solar System. As far back as the 16th century, the existence of

More information

Exoplanets: the quest for Earth twins

Exoplanets: the quest for Earth twins 369, 572 581 doi:1.198/rsta.21.245 Exoplanets: the quest for Earth twins BY MICHEL MAYOR*, STEPHANE UDRY, FRANCESCO PEPE AND CHRISTOPHE LOVIS Observatoire de Genève, Université de Genève, Geneva, Switzerland

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe? Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

More information

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III. Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Team Name: Team Number: Directions: ~Answer all questions on the answer sheet provided. ~Please do NOT access the

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Lab 5: Searching for Extra-Solar Planets

Lab 5: Searching for Extra-Solar Planets Lab 5: Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years

More information

Notes 9: Extrasolar Planets and Exo-biology

Notes 9: Extrasolar Planets and Exo-biology Notes 9: Extrasolar Planets and Exo-biology This is an interesting section. We have all sorts of observations and data concerning extrasolar planets (planets outside the solar system), but no evidence

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

Comparative Planetology: Transiting Exoplanet Science with JWST

Comparative Planetology: Transiting Exoplanet Science with JWST Comparative Planetology: Transiting Exoplanet Science with JWST Mark Clampin, JWST Science Working Group, JWST Transits Working Group, Drake Deming, and Don Lindler MarkClampin JWSTObservatoryProjectScientist

More information

The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015

The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015 The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015 For there is a single general space, a single vast immensity which we may freely call Void; in it are innumerable

More information

Kepler, a Planet Hunting Mission

Kepler, a Planet Hunting Mission Kepler, a Planet Hunting Mission Riley Duren Kepler Chief Engineer Jet Propulsion Laboratory, California Institute of Technology with thanks to Jim Fanson (Kepler Project Manager) for slide contributions

More information

Abschätzung für unser Sonnensystem

Abschätzung für unser Sonnensystem Transit Surveys Abschätzung für unser Sonnensystem Planet Umlaufzeit Transitdauer ΔF Wahrscheinlichkeit [Jahr] [Stunde] [%] [%] Merkur 0.24 8.1 0.0012 1.19 Erde 1.00 13.0 0.0084 0.47 Jupiter 11.86 29.6

More information

Validation of Transiting Planet Candidates with BLENDER

Validation of Transiting Planet Candidates with BLENDER Validation of Transiting Planet Candidates with BLENDER Willie Torres Harvard-Smithsonian Center for Astrophysics Planet Validation Workshop, Marseille, 14 May 2013 2013 May 14 Planet Validation Workshop,

More information

arxiv: v1 [astro-ph] 7 Dec 2008

arxiv: v1 [astro-ph] 7 Dec 2008 Expected Planet and False Positive Detection Rates for the Transiting Exoplanet Survey Satellite arxiv:0812.1305v1 [astro-ph] 7 Dec 2008 Timothy M. Brown Las Cumbres Observatory Global Telescope, Goleta,

More information

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life Terrestrial Planet (and Life) Finder AST 309 part 2: Extraterrestrial Life The Drake Equation: N = N * f pl n hab f L f C f T L/T Stars? Planets? Habitable Origin Complex Intelligence, Lifetime planets?

More information

Chapter 3 Cosmology 3.1 The Doppler effect

Chapter 3 Cosmology 3.1 The Doppler effect Chapter 3 Cosmology 3.1 The Doppler effect Learning objectives Explain why the wavelength of waves from a moving source depends on the speed of the source. Define Doppler shift. Measure the velocity of

More information

Secondary Eclipse of Exoplanet TrES-1

Secondary Eclipse of Exoplanet TrES-1 Secondary Eclipse of Exoplanet TrES-1 Patrick Herfst Studentnumber 9906770 Sterrewacht Leiden, room 441 herfst@strw.leidenuniv.nl Supervised by dr. Ignas Snellen Contents 1 Summary 3 2 Introduction 4 2.1

More information

Review Chapter 10. 2) A parsec is slightly more than 200,000 AU. 2)

Review Chapter 10. 2) A parsec is slightly more than 200,000 AU. 2) Review Chapter 10 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A parsec is about 3.3 light-years. 1) 2) A parsec is slightly more than 200,000 AU. 2) 3) The nearest

More information

Answer Key Testname: MT S

Answer Key Testname: MT S Answer Key Testname: MT1-333-12S 1) B 2) A 3) E 4) C 5) C 6) C 7) C 8) A 9) E 10) C 11) A 12) C 13) C 14) C 15) C 16) D 17) A 18) D 19) A 20) C 21) B 22) A 23) A 24) C 25) B 26) C 27) A star with apparent

More information

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life?

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? The Habitability of Worlds Lecture 31 NASA: The Visible Earth In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? a) 1 (yes, definitely)

More information

High Precision Exoplanet Observations with Amateur Telescopes

High Precision Exoplanet Observations with Amateur Telescopes High Precision Exoplanet Observations with Amateur Telescopes Dennis M. Conti Chair, AAVSO Exoplanet Section Member, KELT Follow-up Team Member, TESS TFOP Working Group HAL Meeting: October 19, 2017 1

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

Designing a Space Telescope to Image Earth-like Planets

Designing a Space Telescope to Image Earth-like Planets Designing a Space Telescope to Image Earth-like Planets Robert J. Vanderbei Rutgers University December 4, 2002 Page 1 of 28 Member: Princeton University/Ball Aerospace TPF Team http://www.princeton.edu/

More information

The CoRoT Mission Pre-Launch Status

The CoRoT Mission Pre-Launch Status SP-1306 October 2006 The CoRoT Mission Pre-Launch Status Stellar Seismology and Planet Finding Publication Edited by Published and distributed by The CoRoT Mission, Pre-Launch Status, Stellar Seismology

More information

Astr As ome tr tr ome y I M. Shao

Astr As ome tr tr ome y I M. Shao Astrometry I M. Shao Outline Relative astrometry vs Global Astrometry What s the science objective? What s possible, what are fundamental limits? Instrument Description Error/noise sources Photon noise

More information

Astronomy 7A Midterm #1 September 29, 2016

Astronomy 7A Midterm #1 September 29, 2016 Astronomy 7A Midterm #1 September 29, 2016 Name: Section: There are 2 problems and 11 subproblems. Write your answers on these sheets showing all of your work. It is better to show some work without an

More information

arxiv:astro-ph/ v1 14 Mar 2002

arxiv:astro-ph/ v1 14 Mar 2002 The EXPLORE Project I: A Deep Search for Transiting Extrasolar Planets G. Mallén-Ornelas 1,2,3, S. Seager 4, H. K. C. Yee 3,5, D. Minniti 3,6, Michael D. Gladders 5,7, G. M. Mallén-Fullerton 8, T. M. Brown

More information

From Hot Jupiters to Hot Neptunes... and Below

From Hot Jupiters to Hot Neptunes... and Below Progress of Theoretical Physics Supplement No. 158, 2005 43 From Hot Jupiters to Hot Neptunes... and Below Michel Mayor, 1 Frédéric Pont 1 and Alfred Vidal-Madjar 2 1 Geneva Observatory, CH-1290 Sauverny,

More information

Searching for Extra-Solar Planets

Searching for Extra-Solar Planets Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years later,

More information

Today in Astronomy 328: binary stars

Today in Astronomy 328: binary stars Today in Astronomy 38: binary stars Binary-star systems. Direct measurements of stellar mass and radius in eclipsing binary-star systems. At right: two young binary star systems in the Taurus star-forming

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 1 Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 2 Hertzsprung-Russell Diagram Hertzsprung and Russell found a correlation between luminosity and spectral type (temperature) 10000 Hot, bright

More information

USAAAO First Round 2015

USAAAO First Round 2015 USAAAO First Round 2015 This round consists of 30 multiple-choice problems to be completed in 75 minutes. You may only use a scientific calculator and a table of constants during the test. The top 50%

More information

Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section

Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section www.astrodennis.com The Night Sky Q: Which stars have one or more planets (exoplanets) around them? A: Most

More information

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014 AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014 DO NOT open the exam until instructed to. Please read through the instructions below and fill out your details on the Scantron form. Instructions 1.

More information