Takahiro Nishimichi (IPMU)

Size: px
Start display at page:

Download "Takahiro Nishimichi (IPMU)"

Transcription

1 Accurate Modeling of the Redshift-Space Distortions based on arxiv: of Biased Tracers Takahiro Nishimichi (IPMU) with Atsushi Taruya (RESCEU) RESCEU/DENET summer school in Aso, Kumamoto, July

2 Dark Energy? Modified Gravity? observations acceleration of cosmic expansion type-1a supernova BAOs CMB... f(r), DGP,... modified gravity? G µν = 8πG c 4 T µν dark energy? SNLS3, Conley+ 11 expansion history in a DE model may be mimicked by a MG model geometrical + growth tests are essential!

3 Anisotropies in galaxy clustering distance measurements in z-space BAOs + Alcock & Paczynski test power spectrum (normalized) Blake+ 11a WiggleZ Dark Energy Survey wavenumber k [h/mpc] A. Taruya A. Taruya H(z) & DA(z) z-space distiontions f(z) d ln D(z) d ln a Blake+ 11b f σ8 redshift z space real space peculiar velocity

4 Redshift-space distortions z-space r-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

5 Redshift-space distortions z-space r-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

6 Redshift-space distortions z-space r-space z-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

7 Redshift-space distortions z-space r-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

8 Redshift-space distortions z-space r-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

9 Redshift-space distortions z-space r-space z-space r-space peculiar velocity Kaiser Effect large-scale coherent motion enhancement of clustering Finger-of-God Effect small-scale random motion suppression of clustering k μ = 1 μ = 0 k e.g., Scoccimarro 04 streaming model vel. divergence: vel. dispersion: σv

10 Redshift-space distortions (contd.): TNS model Exact formula for the z-space P(k) Taruya, Nishimichi, Saito ( 10) notice e A BC e A BC with a help of cumulant expansion theorem monopole w/o correction A term cross-bispectrum of δ & θ new terms! quadrupole B term sum of convolutions of Pδθ & Pθθ

11 Redshift-space distortions (contd.): TNS model Exact formula for the z-space P(k) Taruya, Nishimichi, Saito ( 10) notice e A BC e A BC with a help of cumulant expansion theorem monopole w/o correction w/ correction A term cross-bispectrum of δ & θ new terms! quadrupole B term sum of convolutions of Pδθ & Pθθ

12 RSDs for biased tracers? Many people are working hard on this! Okumura & Jing 11 e.g., Okumura & Jing 11 Tang, Kayo & Takada 11 Reid & White 11 Sato & Matsubara 11 biased tracer? assume δg = bδ k [h/mpc] k [h/mpc] β = f / b A term cross-bispectrum of δ & θ B term sum of convolutions of Pδθ & Pθθ Are correction terms enhanced by bias?

13 Analysis Large N-body simulations (L=1.14Gpc/h, N=1,280 3 ) starting with 2LPT initial conditions x 15 realizations 9 halo catalogs over a wide mass z=0.35 volume & number density SDSS DR7 LRGs b(k) is directly measured from r-space clustering σv is treated as a free fitting parameter mass: h -1 Msun, density: h 3 Mpc -3 k [h/mpc]

14 Result N-body simulations dark matter light halos heavy halos

15 dark matter light halos heavy halos Result TNS model dark matter light halos heavy halos

16 dark matter light halos heavy halos Result streaming TNS model model dark matter light halos heavy halos

17 dark matter light halos heavy halos Result streaming TNS model model dark matter light halos heavy halos

18 Goodness of fits best-fit values of σv: smaller for streaming model consistent with 0 for massive halos consistent with the linear theory for TNS does not depend the halo mass FoG function: Lorentzian (L), Gaussian (G) goodness of fit: worse for streaming model especially for massive halos reduced χ 2 are close to 1 for TNS independent of the halo mass

19 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

20 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

21 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

22 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

23 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

24 Recovery of f(z) 2 parameter fit to N-body data: f and σv streaming model seams OK only at kmax<0.1h/mpc typically ~5% underestimate of f TNS model gives unbiased estimate of f up to kmax ~ 0.2 h/mpc

25 Future/on-going surveys Fisher matrix analysis with 5 parameters (b, σv, H, DA, f) Assumption TNS model is true, but adopt streaming model h -3 Gpc 3 h 3 Mpc -3 h Mpc -1 f(z) = [Ω m (z)] γ γ =0.77 ± 0.04

26 Summary tested the clustering of halos in z-space by N-body simulations... frequently used phenomenological model is not sufficient ~5% systematic bias in f(z) correction terms in TNS model more prominent for more massive halos or more biased objects codes for our model are publicly available!! visit CPT library:

Precision Cosmology from Redshift-space galaxy Clustering

Precision Cosmology from Redshift-space galaxy Clustering 27th June-1st July, 2011 WKYC2011@KIAS Precision Cosmology from Redshift-space galaxy Clustering ~ Progress of high-precision template for BAOs ~ Atsushi Taruya RESearch Center for the Early Universe (RESCEU),

More information

New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study)

New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study) New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study) 1 Future wide-deep surveys Photometric wide-deep survey Spectroscopic wide-deep

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Consistent modified gravity analysis of anisotropic galaxy clustering using BOSS DR11

Consistent modified gravity analysis of anisotropic galaxy clustering using BOSS DR11 Consistent modified gravity analysis of anisotropic galaxy clustering using BOSS DR11 August 3 2015 APCTP-TUS Workshop arxiv:1507.01592 Yong-Seon Song with Atsushi Taruya, Kazuya Koyama, Eric Linder, Cris

More information

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Changbom Park (Korea Institute for Advanced Study) with Xiao-Dong Li, Juhan Kim (KIAS), Sungwook Hong, Cris Sabiu, Hyunbae

More information

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models Modified gravity as an alternative to dark energy Lecture 3. Observational tests of MG models Observational tests Assume that we manage to construct a model How well can we test the model and distinguish

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

Redshift Space Distortion Introduction

Redshift Space Distortion Introduction Redshift Space Distortion Introduction Yi ZHENG ( 郑逸 ) Korea Institute of Advanced Study (KIAS) Cosmology School in the Canary Islands - Fuerteventura, Sep.18-22, 2017 Outline What s RSD? Anisotropic properties

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation December, 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation December, 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation December, 2017 BAO vs RSD BAO uses the position of a large-scale feature; RSD uses the shape of the power spectrum/correlation function

More information

redshift surveys Kazuhiro Yamamoto T. Sato (Hiroshima) G. Huetsi (UCL) 2. Redshift-space distortion

redshift surveys Kazuhiro Yamamoto T. Sato (Hiroshima) G. Huetsi (UCL) 2. Redshift-space distortion Testing gravity with large galaxy redshift surveys Kazuhiro Yamamoto Hiroshima University T. Sato Hiroshima G. Huetsi UCL 1. Introduction. Redshift-space distortion 3. Measurement of quadrupole 4. Constraint

More information

Cosmological Perturbation Theory

Cosmological Perturbation Theory Cosmological Perturbation Theory! Martin Crocce! Institute for Space Science, Barcelona! Cosmology School in Canary Islands, Fuerteventura 18/09/2017 Why Large Scale Structure? Number of modes in CMB (temperature)

More information

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS Takahiro Nishimichi (Univ. of Tokyo IPMU from Apr.) Atsushi Taruya (Univ. of Tokyo) Kazuya Koyama, Cristiano Sabiu (ICG, Portsmouth)

More information

Testing General Relativity with Redshift Surveys

Testing General Relativity with Redshift Surveys Testing General Relativity with Redshift Surveys Martin White University of California, Berkeley Lawrence Berkeley National Laboratory Information from galaxy z-surveys Non-Gaussianity? BOSS Redshi' Survey

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

Beyond BAO. Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008

Beyond BAO. Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008 Beyond BAO Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008 1 Papers To Talk About Donghui Jeong & EK, ApJ, 651, 619 (2006) Donghui Jeong & EK, arxiv:0805.2632 Masatoshi Shoji, Donghui

More information

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ.

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ. Theoretical developments for BAO Surveys Takahiko Matsubara Nagoya Univ. Baryon Acoustic Oscillations Photons and baryons are strongly coupled by Thomson & Coulomb scattering before photon decoupling (z

More information

Results from the Baryon Oscillation Spectroscopic Survey (BOSS)

Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Beth Reid for SDSS-III/BOSS collaboration Hubble Fellow Lawrence Berkeley National Lab Outline No Ly-α forest here, but very exciting!! (Slosar

More information

Redshift space distortions and The growth of cosmic structure

Redshift space distortions and The growth of cosmic structure Redshift space distortions and The growth of cosmic structure Martin White UC Berkeley/LBNL with Jordan Carlson and Beth Reid (http://mwhite.berkeley.edu/talks) Outline Introduction Why, what, where, The

More information

Elise Jennings University of Chicago

Elise Jennings University of Chicago Pacific 2014 Testing gravity with large scale structure dynamics Elise Jennings University of Chicago THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE EJ, B. Li, C.M. Baugh, G. Zhao, K. Kazuya 2013

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

What do we really know about Dark Energy?

What do we really know about Dark Energy? What do we really know about Dark Energy? Ruth Durrer Département de Physique Théorique & Center of Astroparticle Physics (CAP) ESTEC, February 3, 2012 Ruth Durrer (Université de Genève ) Dark Energy ESTEC

More information

HOW MUCH SHOULD WE RELY ON PERTURBATION THEORIES / SIMULATIONS TAKAHIRO NISHIMICHI (KAVLI IPMU, JST CREST)

HOW MUCH SHOULD WE RELY ON PERTURBATION THEORIES / SIMULATIONS TAKAHIRO NISHIMICHI (KAVLI IPMU, JST CREST) HOW MUCH SHOULD WE RELY ON PERTURBATION THEORIES / SIMULATIONS TAKAHIRO NISHIMICHI (KAVLI IPMU, JST CREST) 2016/09/08 KASI; Cos-KASI-ICG-NAOC-YITP Workshop 2016 ON THE RSD D(T) TERM Taruya, Nishimichi

More information

Chapter 3. Perturbation Theory Reloaded: analytical calculation of the non-linear matter power spectrum in real and redshift space

Chapter 3. Perturbation Theory Reloaded: analytical calculation of the non-linear matter power spectrum in real and redshift space Chapter 3 Perturbation Theory Reloaded: analytical calculation of the non-linear matter power spectrum in real and redshift space How accurately can we model the non-linear evolution of the density and

More information

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Yun Wang Univ. of Oklahoma II Jayme Tiomno School of Cosmology August 6-10, 2012 Plan of the Lectures Lecture I: Overview

More information

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016 Fundamental cosmology from the galaxy distribution John Peacock Subaru @ Hiroshima 1 Dec 2016 What we learn from LSS Fundamental: Astrophysical: Matter content (CDM, baryons, neutrino mass) Properties

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

From Far East to Far Infra-Red: galaxy clustering and Galactic extinction map

From Far East to Far Infra-Red: galaxy clustering and Galactic extinction map From Far East to Far Infra-Red: galaxy clustering and Galactic extinction map redshift 2.0 1.6 1.2 4000 3000 0.8 0.4 2000 1000 distance [h -1 Mpc] 0.2 0.15 0.1 0.05 100 500 400 200 300 [h -1 Mpc] 0.05

More information

Testing gravity on Large Scales

Testing gravity on Large Scales EPJ Web of Conferences 58, 02013 (2013) DOI: 10.1051/ epjconf/ 20135802013 C Owned by the authors, published by EDP Sciences, 2013 Testing gravity on Large Scales Alvise Raccanelli 1,2,a 1 Jet Propulsion

More information

Redshift Space Distortions

Redshift Space Distortions Overview Redshift Space Distortions It is important to realize that our third dimension in cosmology is not radial distance but redshift. The two are related by the Hubble expansion but also affected by

More information

Probing Cosmic Origins with CO and [CII] Emission Lines

Probing Cosmic Origins with CO and [CII] Emission Lines Probing Cosmic Origins with CO and [CII] Emission Lines Azadeh Moradinezhad Dizgah A. Moradinezhad Dizgah, G. Keating, A. Fialkov arxiv:1801.10178 A. Moradinezhad Dizgah, G. Keating, A. Fialkov (in prep)

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. majority of its surface area is only about 10 feet

More information

The Zel dovich Approximation. Large-scale structure goes ballistic

The Zel dovich Approximation. Large-scale structure goes ballistic The Zel dovich Approximation Large-scale structure goes ballistic Martin White UCB/LBNL Built on work done with Lile Wang (undergrad), Jordan Carlson (grad) and Beth Reid (postdoc). Yakov Borisovich Zel

More information

THE PAU (BAO) SURVEY. 1 Introduction

THE PAU (BAO) SURVEY. 1 Introduction THE PAU (BAO) SURVEY E. Fernández Department of Physics, Universitat Autònoma de Barcelona/IFAE, Campus UAB, Edif. Cn, 08193 Bellaterra, Barcelona, Spain In this talk we present a proposal for a new galaxy

More information

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013 Structure Formation: à la recherche de paramètre perdu Séminaires de l'iap Shant Baghram IPM-Tehran 13 September 013 Collaborators: Hassan Firoujahi IPM, Shahram Khosravi Kharami University-IPM, Mohammad

More information

BAO analysis from the DR14 QSO sample

BAO analysis from the DR14 QSO sample BAO analysis from the DR14 QSO sample Héctor Gil-Marín (on behalf of the eboss QC WG) Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE) Institut Lagrange de Paris (ILP) Understanding Cosmological

More information

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Baryon acoustic oscillations A standard ruler method to constrain dark energy Baryon acoustic oscillations A standard ruler method to constrain dark energy Martin White University of California, Berkeley Lawrence Berkeley National Laboratory... with thanks to Nikhil Padmanabhan

More information

BAO: Where We Are Now, What To Be Done, and Where We Are Going. Eiichiro Komatsu The University of Texas at Austin UTAP Seminar, December 18, 2007

BAO: Where We Are Now, What To Be Done, and Where We Are Going. Eiichiro Komatsu The University of Texas at Austin UTAP Seminar, December 18, 2007 BAO: Where We Are Now, What To Be Done, and Where We Are Going Eiichiro Komatsu The University of Texas at Austin UTAP Seminar, December 18, 2007 Dark Energy Everybody talks about it... What exactly do

More information

arxiv: v2 [astro-ph.co] 25 Mar 2016

arxiv: v2 [astro-ph.co] 25 Mar 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 8 March 016 (MN LATEX style file v.) Fingers-of-God effect of infalling satellite galaxies arxiv:1506.01100v [astro-ph.co] 5 Mar 016 Chiaki Hikage

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Large Scale Structure with the Lyman-α Forest

Large Scale Structure with the Lyman-α Forest Large Scale Structure with the Lyman-α Forest Your Name and Collaborators Lecture 1 - The Lyman-α Forest Andreu Font-Ribera - University College London Graphic: Anze Slozar 1 Large scale structure The

More information

Cosmology with Peculiar Velocity Surveys

Cosmology with Peculiar Velocity Surveys Cosmology with Peculiar Velocity Surveys Simulations Fest, Sydney 2011 Morag I Scrimgeour Supervisors: Lister Staveley-Smith, Tamara Davis, Peter Quinn Collaborators: Chris Blake, Brian Schmidt What are

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

The Galaxy Dark Matter Connection. Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass)

The Galaxy Dark Matter Connection. Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass) The Galaxy Dark Matter Connection Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass) Introduction PARADIGM: Galaxies live in extended Cold Dark Matter Haloes. QUESTION: What Galaxy lives in

More information

Right by Oxford University Press on behal Astronomical Society.

Right by Oxford University Press on behal Astronomical Society. On the systematic errors of Titleusing redshift-space distortion: cosmolo no bias Author(s) Ishikawa, T.; Totani, T.; Nishimich Yoshida, N.; Tonegawa, M. Citation Monthly Notices of the Royal Astron 443(4):

More information

BAO and Lyman-α with BOSS

BAO and Lyman-α with BOSS BAO and Lyman-α with BOSS Nathalie Palanque-Delabrouille (CEA-Saclay) BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass

More information

Redshift-space distortions

Redshift-space distortions 369, 5058 5067 doi:10.1098/rsta.2011.0370 REVIEW Redshift-space distortions BY WILL J. PERCIVAL*, LADO SAMUSHIA, ASHLEY J. ROSS, CHARLES SHAPIRO AND ALVISE RACCANELLI Institute of Cosmology and Gravitation,

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

arxiv: v2 [astro-ph.co] 5 Jan 2012

arxiv: v2 [astro-ph.co] 5 Jan 2012 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 28 October 2018 (MN LATEX style file v2.2) Using galaxy-galaxy weak lensing measurements to correct the Finger-of-God arxiv:1106.1640v2 [astro-ph.co]

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Bispectrum measurements & Precise modelling

Bispectrum measurements & Precise modelling Discussion on Bispectrum measurements & precise modelling Héctor Gil-Marín Laboratoire de Physique Nucleaire et de Hautes Energies Institut Lagrange de Paris CosKASI-ICG-NAOC-YITP Workshop 8th September

More information

Enhanced constraints from multi-tracer surveys

Enhanced constraints from multi-tracer surveys Enhanced constraints from multi-tracer surveys or How to beat cosmic variance Raul Abramo Physics Institute, USP & LabCosmos @ USP & J-PAS / Pau-Brasil Collaboration J-PAS Galaxy surveys are evolving We

More information

Large Scale Structure I

Large Scale Structure I Large Scale Structure I Shirley Ho Lawrence Berkeley National Laboratory/ UC Berkeley/ Carnegie Mellon University With lots of materials borrowed from Martin White (Berkeley) 3 ime Motivations z~0 z~6

More information

RESPONSE FUNCTION OF THE COSMIC DENSITY POWER SPECTRUM AND RECONSTRUCTION

RESPONSE FUNCTION OF THE COSMIC DENSITY POWER SPECTRUM AND RECONSTRUCTION RESPONSE FUNCTION OF THE COSMIC DENSITY POWER SPECTRUM AND RECONSTRUCTION Takahiro Nishimichi (Kavli IPMU) w/ Francis Bernardeau (IAP) Atsushi Taruya (YITP) Based on PLB 762 (2016) 247 and arxiv:1708.08946

More information

arxiv: v4 [astro-ph.co] 24 Mar 2015

arxiv: v4 [astro-ph.co] 24 Mar 2015 Constraints on f (R) Gravity through the Redshift Space Distortion Lixin Xu 1,2 1 Institute of Theoretical Physics, School of Physics&Optoelectronic Technology, Dalian University of Technology, Dalian,

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

Three ways to measure cosmic distances. Chris Blake, Swinburne

Three ways to measure cosmic distances. Chris Blake, Swinburne Three ways to measure cosmic distances Chris Blake, Swinburne The WiggleZ Dark Energy Survey 1000 sq deg, 0.2 < z < 1.0 200,000 redshifts blue star-forming galaxies Aug 2006 - Jan 2011 Sky coverage Redshift

More information

Cosmology from Topology of Large Scale Structure of the Universe

Cosmology from Topology of Large Scale Structure of the Universe RESCEU 2008 Cosmology from Topology of Large Scale Structure of the Universe RESCEU Symposium on Astroparticle Physics and Cosmology 11-14, November 2008 Changbom Park (Korea Institute for Advanced Study)

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor

More information

The flickering luminosity method

The flickering luminosity method The flickering luminosity method Martin Feix in collaboration with Adi Nusser (Technion) and Enzo Branchini (Roma Tre) Institut d Astrophysique de Paris SSG16 Workshop, February 2nd 2016 Outline 1 Motivation

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

POWER SPECTRUM ESTIMATION FOR J PAS DATA

POWER SPECTRUM ESTIMATION FOR J PAS DATA CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CEFCA) POWER SPECTRUM ESTIMATION FOR J PAS DATA Carlos Hernández Monteagudo, Susana Gracia (CEFCA) & Raul Abramo (Univ. de Sao Paulo) Madrid, February

More information

Precise measures of growth rate from RSD in the void-galaxy correlation

Precise measures of growth rate from RSD in the void-galaxy correlation Precise measures of growth rate from RSD in the void-galaxy correlation Seshadri Nadathur Moriond Cosmology, La Thuile Based on work with Paul Carter and Will Percival SN & Percival, arxiv:1712.07575 SN,

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

BAO from the DR14 QSO sample

BAO from the DR14 QSO sample BAO analysis from the DR14 QSO sample Héctor Gil-Marín (on behalf of the eboss QC WG) Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE) Institut Lagrange de Paris (ILP) COSMO17 @ Paris 28th

More information

The Zel dovich Approximation. Large-scale structure goes ballistic

The Zel dovich Approximation. Large-scale structure goes ballistic The Zel dovich Approximation Large-scale structure goes ballistic Martin White Built on work done with Lile Wang (undergrad), Jordan Carlson (grad) and Beth Reid (postdoc). Yakov Borisovich Zel dovich

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Cosmic Acceleration from Modified Gravity: f (R) A Worked Example. Wayne Hu

Cosmic Acceleration from Modified Gravity: f (R) A Worked Example. Wayne Hu Cosmic Acceleration from Modified Gravity: f (R) A Worked Example Wayne Hu Aspen, January 2009 Outline f(r) Basics and Background Linear Theory Predictions N-body Simulations and the Chameleon Collaborators:

More information

Énergie noire Formation des structures. N. Regnault C. Yèche

Énergie noire Formation des structures. N. Regnault C. Yèche Énergie noire Formation des structures N. Regnault C. Yèche Outline Overview of DE probes (and recent highlights) Hubble Diagram of supernovae Baryon accoustic oscillations Lensing Matter clustering (JLA)

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

Non-linear structure in the Universe Cosmology on the Beach

Non-linear structure in the Universe Cosmology on the Beach Non-linear structure in the Universe Cosmology on the Beach Puerto Vallarta January, 2011 Martin White UC Berkeley/LBNL (http://mwhite.berkeley.edu/talks) Non-linearities and BAO Acoustic oscillations

More information

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011

The Principal Components of. Falsifying Cosmological Paradigms. Wayne Hu FRS, Chicago May 2011 The Principal Components of Falsifying Cosmological Paradigms Wayne Hu FRS, Chicago May 2011 The Standard Cosmological Model Standard ΛCDM cosmological model is an exceedingly successful phenomenological

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

FastSound project: A galaxy redshift survey at z~1.4 with Subaru/FMOS

FastSound project: A galaxy redshift survey at z~1.4 with Subaru/FMOS FastSound project: A galaxy redshift survey at z~1.4 with Subaru/FMOS Motonari Tonegawa (KIAS research fellow) and FastSound team 2017/01/10 Subaru Users Meeting FY2016 @ NAOJ Dark energy Accelerating

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

arxiv:astro-ph/ v1 4 Jan 2007

arxiv:astro-ph/ v1 4 Jan 2007 IMPROVED FORECASTS FOR THE BARYON ACOUSTIC OSCILLATIONS AND COSMOLOGICAL DISTANCE SCALE Hee-Jong Seo & Daniel J. Eisenstein Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson,

More information

Neutrinos and cosmology

Neutrinos and cosmology Neutrinos and cosmology Yvonne Y. Y. Wong RWTH Aachen LAUNCH, Heidelberg, November 9--12, 2009 Relic neutrino background: Temperature: 4 T,0 = 11 Origin of density perturbations? 1 /3 T CMB, 0=1.95 K Number

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009 Dark Energy and Dark Matter Interaction f (R) A Worked Example Wayne Hu Florence, February 2009 Why Study f(r)? Cosmic acceleration, like the cosmological constant, can either be viewed as arising from

More information

arxiv: v2 [astro-ph.co] 28 Feb 2014

arxiv: v2 [astro-ph.co] 28 Feb 2014 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 23 July 2018 (MN LATEX style file 2.2) Constraining Halo Occupation Distribution and Cosmic Growth Rate using Multipole Power Spectrum arxi:1401.12462

More information

Parameterizing. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu Ann Arbor, May 2008

Parameterizing. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu Ann Arbor, May 2008 Parameterizing Modified Gravity Models of Cosmic Acceleration Wayne Hu Ann Arbor, May 2008 Parameterizing Acceleration Cosmic acceleration, like the cosmological constant, can either be viewed as arising

More information

Calibrating the Planck Cluster Mass Scale with CLASH

Calibrating the Planck Cluster Mass Scale with CLASH Calibrating the Planck Cluster Mass Scale with CLASH Mariana Penna-Lima Centro Brasileiro de Pesquisas Físicas - CBPF in collaboration with J. Bartlett, E. Rozo, J.-B. Melin, J. Merten, A. Evrard, M. Postman,

More information

Higher Order Statistics in Cosmology

Higher Order Statistics in Cosmology Higher Order Statistics in Cosmology and István Szapudi Institute for Astronomy University of Hawaii Statistical Frontiers of Astrophysics, Kashiwa, U. of Tokyo Outline Introduction 1 Introduction Definitions

More information

arxiv:astro-ph/ v1 11 Jan 2001

arxiv:astro-ph/ v1 11 Jan 2001 Can Geometric Test Probe the Cosmic Equation of State? Kazuhiro YAMAMOTO and Hiroaki NISHIOKA Department of Physics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan arxiv:astro-ph/0101172v1 11

More information

N-body Simulations and Dark energy

N-body Simulations and Dark energy N-Body Simulations and models of Dark Energy Elise Jennings Supported by a Marie Curie Early Stage Training Fellowship N-body Simulations and Dark energy elise jennings Introduction N-Body simulations

More information

arxiv: v2 [astro-ph.co] 27 May 2016

arxiv: v2 [astro-ph.co] 27 May 2016 Mon. Not. R. Astron. Soc., () Printed 3 May 26 (MN LATEX style file v2.2) The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power

More information

Measuring the Cosmic Distance Scale with SDSS-III

Measuring the Cosmic Distance Scale with SDSS-III Measuring the Cosmic Distance Scale with SDSS-III Daniel Eisenstein (Harvard University) Motivation & Outline Dark Energy pushes us to measure the cosmic distance scale and the behavior of gravity to high

More information

EUCLID Cosmology Probes

EUCLID Cosmology Probes EUCLID Cosmology Probes Henk Hoekstra & Will Percival on behalf of the EUCLID The presented document is Proprietary information of the. This document shall be used and disclosed by the receiving Party

More information

The large scale structure of the universe

The large scale structure of the universe The large scale structure of the universe Part 1: Deciphering the large scale structure (LSS) With statistics and physics Part 2: Tracers of LSS Broadband power spectrum, BAO, redshift distortion, weak

More information

Science with EUCLID. 30 Avril 2014

Science with EUCLID. 30 Avril 2014 Françoise Combes On behalf of Euclid Consortium Science with EUCLID 30 Avril 2014 1 Cosmology, Dark energy Kowalski et al 2008 Concordance model, between CMB, Supernovae Ia, Large-scale structure (weak

More information

Testing GR with environmentdependent

Testing GR with environmentdependent Testing GR with environmentdependent measures of growth Seshadri Nadathur GR Effects in LSS workshop, Sexten, July 2018 aaab83icbvdlssnafl2prxpfvzdubovgqiqi6lloxowlcvybbsityaqdopmemruhlh6ew7stt36p+ddo2yy09cda4zxzmxtpmelh0po+ndlg5tb2tnnx3ds/odyqhj+0tjprxpsslanuhnrwkrrvokdjo5nmnaklb4ej+7nffuhaifq94zjjquihssscubrsu/dooxhtv6pezvuarbo/ifuo0ohxvnpryvkek2ssgtp1vqydcduomortt5cbnle2ogpetvtrhjtgslh3si6sepe41fypjav198sejsamk9ame4pds+rnxf+8bo7xbtarksurk7b8km4lwztmbyer0jyhhftcmrz2v8kgvfogtigxwli2cx/17nxsuqr5xs1/uq7w74poynag53ajptxahr6gau1gmijxeiozkzsz5935wezltjfzcn/gfp4a0gcqbq==

More information

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy EUCLID Spectroscopy Andrea Cimatti University of Bologna Department of Astronomy & the EUCLID-NIS Team Observing the Dark Universe with EUCLID, ESA ESTEC, 17 November 2009 DARK Universe (73% Dark Energy

More information

Cosmic Tides. Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC. October 23, Introduction Tides Cosmic Variance Summary

Cosmic Tides. Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC. October 23, Introduction Tides Cosmic Variance Summary Cosmic Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC October 23, 2013 U. Pen Cosmic Overview What is a tide? and large scale structure Overcoming cosmic variance Neutrinos and more U.

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on Precision Cosmology With Large Scale Structure, Ohio State University ICTP Cosmology Summer School 2015 Lecture 3: Observational Prospects I have cut this lecture back to be mostly about BAO because I

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Title space distortion( Dissertation_ 全文 )

Title space distortion( Dissertation_ 全文 ) Title Systematic errors of cosmological g space distortion( Dissertation_ 全文 ) Author(s) Ishikawa, Takashi Citation Kyoto University ( 京都大学 ) Issue Date 2015-03-23 URL https://doi.org/10.14989/doctor.k18

More information

Anisotropic Clustering Measurements using Fourier Space Wedges

Anisotropic Clustering Measurements using Fourier Space Wedges Anisotropic Clustering Measurements using Fourier Space Wedges and the status of the BOSS DR12 analysis Jan Niklas Grieb Max-Planck-Institut für extraterrestrische Physik, Garching bei München Universitäts-Sternwarte

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information