Photometry with Iris Photometry with Iris

Size: px
Start display at page:

Download "Photometry with Iris Photometry with Iris"

Transcription

1 Author: Daniel Duggan & Sarah Roberts

2 - Faulkes Telescope Project Introduction Photometry is the measurement of the intensity or brightness of an astronomical object, such as a star or galaxy by adding up all of the light from the object. For example, a star looks like a point of light when you look at it just with your eyes but diffraction due to the Earth s atmosphere blurs it out into something that looks like a round blob when you use a telescope to look at it. In order to measure the total light coming from the star, we must add up all of the light from the smeared out star. Photometry is generally used to generate light curves of objects such as variable stars and supernovae, where the interest is the variation of total light energy output by the system over time. It can also be used to discover exo-planets, by measuring the intensity of a stars light over a period of time. Deviations in the light output can indicate objects in orbit around the star. Loading Images Launch Iris When the program opens, you may see two windows appear. The first is the main Iris window, and the second is the Threshold window. Load your image. Go to File>Load If the threshold window does not appear, go to the File Menu and choose Threshold to open it. On the Threshold window, select Auto to scale the brightness and contrast in the image. Page 2 of 5

3 - Faulkes Telescope Project Photometry Settings Make sure that the zoom button is on x1. Next, go to Analysis>Aperture Photometry Choosing Aperture Size Aperture photometry consists of defining an aperture within which the star is centered, and then defining another circle which contains only the background sky. The intensity of light in the 2 circles can then be measured, and the background value subtracted from the star value to obtain just the value of the star s intensity. When carrying out aperture photometry in Iris, it is best to use the 3 circle option. With this method, the star or object whose light you wish to measure should be centered in the first circle, with the sky intensity being calculated from the ring between the 2nd and 3rd circles as shown in grey in the diagram below. The ring in-between is not used in measuring the intensity values - it s there just to ensure that none of the signal from the star is included in the sky background measurement or visa versa. When choosing suitable aperture sizes for objects in Iris, you should try and ensure that the first circle encompasses the whole of the star but not too much of the background. The second and third circles which define the annulus for calculating the sky background should be large enough to contain the background sky, but should ideally not overlap onto nearby stars. However, by selecting the median background option in Iris, any influence of faint stars or cosmic rays in the annulus should be eliminated in the measurement. Page 3 of 5

4 - Faulkes Telescope Project For many objects, the following values should be fine to use, but they should be altered accordingly if there are any objects nearby to the object which you are conducting the photometry on. Circle Number: 3 Median Background - selected Radius 1:8 Radius 2:12 Radius 3:20 Magnitude Constant: 0 Carrying out the photometry Click on the comparison star and record the intensity value. Next, click on the star or object of your investigation and again, make a note of the intensity value. Now, calculate the magnitudes of the comparison star and object. Page 4 of 5

5 - Faulkes Telescope Project Modified Julian Day You will also need to record the Modified Julian Day (MJD) from the FITS Headers of every image. This will be the unit of time for your light curve and is explained more in the spreadsheet instructions. To find the MJD in Iris, go to File>Image Info Exposure Times In order to calculate the magnitude of the stars, the exposure times of the images need to be known. To find the exposure times for each image, in Iris, go to File>Image info and scroll down to the EXPTIME value. Calculating the magnitude of the stars The magnitudes of the stars can be calculated either by using a spreadsheet specifically designed for the project being carried out, or from the equation below. If you would like to use the spreadsheet, it will be available from the relevant project page. For more information on how to use the apparent magnitude formula to calculate magnitudes for each project, go to the relevant project page and download the magnitude document. apparent magnitude, m = -2.5*log (counts/exp time) Page 5 of 5

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Introduction Photometry is the measurement of the intensity or brightness of an astronomical

More information

Photometry of Supernovae with Makali i

Photometry of Supernovae with Makali i Photometry of Supernovae with Makali i How to perform photometry specifically on supernovae targets using the free image processing software, Makali i This worksheet describes how to use photometry to

More information

Searching for Black Holes. Photometry in our Classrooms.

Searching for Black Holes. Photometry in our Classrooms. Searching for Black Holes. Photometry in our Classrooms. Abstract Chiotelis Ioannis 1, Theodoropoulou Maria 2 1 Experimental High School of University of Patras 2 University of Patras Following the main

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014)

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Context This document assumes familiarity with Image reduction and analysis at the Peter

More information

Interacting Galaxies

Interacting Galaxies Interacting Galaxies Contents Introduction... 1 Downloads... 1 Selecting Interacting Galaxies to Observe... 2 Measuring the sizes of the Galaxies... 5 Making a Colour Image in IRIS... 8 External Resources...

More information

Asteroid Investigation

Asteroid Investigation Asteroid Investigation Contents Introduction... 1 Downloads... 1 Selecting an Asteroid to Observe... 2 Finding the Asteroid... 5 Obtaining an Accurate Position... 6 Stacking Images to show the path of

More information

Light and Optics. Light and Optics. Author: Sarah Roberts

Light and Optics. Light and Optics. Author: Sarah Roberts Activity Instructions Author: Sarah Roberts - Faulkes Telescope Project Activity Instructions Introduction In this activity, you will either search the image archive on the Faulkes Telescope Project website

More information

Lecture 8. October 25, 2017 Lab 5

Lecture 8. October 25, 2017 Lab 5 Lecture 8 October 25, 2017 Lab 5 News Lab 2 & 3 Handed back next week (I hope). Lab 4 Due today Lab 5 (Transiting Exoplanets) Handed out and observing will start Friday. Due November 8 (or later) Stellar

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

Okay now go back to your pyraf window

Okay now go back to your pyraf window PHYS 391 Astronomical Image Data: Measuring the Distance and Age of a Stellar Cluster Goals This lab is designed to demonstrate basic astronomy data analysis and how extracting stellar population information

More information

Observing Asteroids. Finding Asteroids using the Asteroid Portal NEA Planner. Author: Daniel Duggan

Observing Asteroids. Finding Asteroids using the Asteroid Portal NEA Planner. Author: Daniel Duggan Finding Asteroids using the Asteroid Portal NEA Planner Author: Daniel Duggan - Faulkes Telescope Project Finding Asteroids using the Asteroid Portal NEA Planner Finding Asteroids Asteroids are awkward;

More information

Comparing Ultraviolet and Infrared Star Formation Tracers

Comparing Ultraviolet and Infrared Star Formation Tracers Comparing Ultraviolet and Infrared Star Formation Tracers George J. Bendo and Rebecca Freestone Jodrell Bank Centre for Astrophysics, The University of Manchester 15 February 2018 Overview The DS9 image

More information

Helping Henrietta Leavitt Measure Cepheid Variables

Helping Henrietta Leavitt Measure Cepheid Variables Name Homework number 6: Due October Astronomy 70B Profs. Rieke Helping Henrietta Leavitt Measure Cepheid Variables Ms. Henrietta Leavitt has invited you to join her at Harvard College Observatory to look

More information

Open Cluster Research Project

Open Cluster Research Project Open Cluster Research Project I. Introduction The observational data indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium and a trace of other elements, something triggers

More information

MEASURING DISTANCE WITH CEPHEID VARIABLES

MEASURING DISTANCE WITH CEPHEID VARIABLES Name Date Partner(s) Grade / MEASURING DISTANCE WITH CEPHEID VARIABLES Written by T. Jaeger INTRODUCTION Cepheid stars (named after the class prototype star, DELTA CEPHEI) are of great interest because

More information

Lab 4: Differential Photometry of an Extrasolar Planetary Transit

Lab 4: Differential Photometry of an Extrasolar Planetary Transit Lab 4: Differential Photometry of an Extrasolar Planetary Transit Neil Lender 1, Dipesh Bhattarai 2, Sean Lockwood 3 December 3, 2007 Abstract An upward change in brightness of 3.97 ± 0.29 millimags in

More information

The Nature of Light Answer Sheet (Introductory)

The Nature of Light Answer Sheet (Introductory) The Nature of Light Answer Sheet (Introductory) Author: Sarah Roberts - Faulkes Telescope Project What is light? 1. Arrange the following objects in the table below according to whether they are sources

More information

Making an H-R diagram Earth & Sky

Making an H-R diagram Earth & Sky Making an H-R diagram Earth & Sky Name: Introduction Astronomers have discovered relationships between the surface temperatures and luminosities (brightnesses) of stars. These relationships are often presented

More information

Lecture 9. November 1, 2018 Lab 5 Analysis

Lecture 9. November 1, 2018 Lab 5 Analysis Lecture 9 November 1, 2018 Lab 5 Analysis News Lab 2 Handed back with solution; mean: 92.1, std dev: 5.5 Lab 3 Handed back next week (I hope). Lab 4 Due November 1 (today) News Lab 5 (Transiting Exoplanets)

More information

THE MOON. G. Iafrate (a), M. Ramella (a) e V. Bologna (b) (a) INAF - Osservatorio Astronomico di Trieste (b)

THE MOON. G. Iafrate (a), M. Ramella (a) e V. Bologna (b) (a) INAF - Osservatorio Astronomico di Trieste (b) THE MOON G. Iafrate (a), M. Ramella (a) e V. Bologna (b) (a) INAF - Osservatorio Astronomico di Trieste (b) Istituto Comprensivo S. Giovanni Sc. Sec. di primo grado M. Codermatz" - Trieste Information

More information

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets Is there life outside of Earth? Activity 2: Moving Stars and Their Planets Overview In this activity, students are introduced to the wobble-method (officially known as the radial velocity method) of detecting

More information

The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100

The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100 The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100 George J. Bendo and Rebecca Freestone Jodrell Bank Centre for Astrophysics, The University of Manchester 04 January 2018

More information

Photometry of Messier 34

Photometry of Messier 34 Photometry of Messier 34 J. Kielkopf November 12, 2012 1 Messier 34 The open cluster Messier 34 (M34) is in the solar neighborhood, lying roughly in the plane of the Milky Way galaxy in the direction of

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Assignment #12 The Milky Way

Assignment #12 The Milky Way Name Date Class Assignment #12 The Milky Way For thousands of years people assumed that the stars they saw at night were the entire universe. Even after telescopes had been invented, the concept of a galaxy

More information

I m p a c t C r a t e r s o n M a r s

I m p a c t C r a t e r s o n M a r s Asteroids, Comets and NEOs I m p a c t C r a t e r s o n M a r s Impact Craters on Mars Author: Sarah Roberts Asteroids, Comets and NEOs - Impact craters on Mars Introduction In this activity, Google Mars

More information

Measurement Tutorial. Open the opaque filter image it s called (Dark-B FITS) in MicroObservatory Image.

Measurement Tutorial. Open the opaque filter image it s called (Dark-B FITS) in MicroObservatory Image. Measurement Tutorial Now that you ve mastered finding stars in the pattern matching game, here s a new challenge. How accurate are you at measuring the brightness of a star? Test your ability against members

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

Aperture Photometry Tool

Aperture Photometry Tool Aperture Photometry Tool in a Multi-Wavelength Astronomical Observing Campaign Douglas Streat, Joel Barlow High School " Background Aperture Photometry Tool (APT): A cross-platform java-based software

More information

Question Details UNCAstro101L1 5.IL.001. [ ]

Question Details UNCAstro101L1 5.IL.001. [ ] Lab 5: Distance Ladder II: Standard Candles (T) (2628698) Due: Fri Nov 7 2014 12:00 PM EST Question 1 Instructions Lab 5: The Cosmic Distance Ladder II: Standard Candles Read the lab before attending lab.

More information

Astron 104 Laboratory #4 Orbital Motion of a Planet

Astron 104 Laboratory #4 Orbital Motion of a Planet Name: Date: Section: Astron 104 Laboratory #4 Orbital Motion of a Planet Introduction The nature of the Solar System was first derived from careful measurements of the positions of the planets in the night

More information

IN REPORT: Plate Scale and FOV of CCD for Each Telescope using Albireo Stars

IN REPORT: Plate Scale and FOV of CCD for Each Telescope using Albireo Stars USE ASTROIMAGEJ NOT AIP4WIN To download ALL the public data from Canvas, go to Files, then click the 3 dots next to the Public Data Folder and click Download. It will download all the files at once. 6.1

More information

Wikipedia - Stellar classification:

Wikipedia - Stellar classification: Stars and Hertzprung-Russell Diagram Introductory Astronomy laboratory exercise with Stellarium Mike Chu Name Stellarium is an open source and cross-platform application from www.stellarium.org. A star

More information

CLEA/VIREO PHOTOMETRY OF THE PLEIADES

CLEA/VIREO PHOTOMETRY OF THE PLEIADES CLEA/VIREO PHOTOMETRY OF THE PLEIADES Starting up the program The computer program you will use is a realistic simulation of a UBV photometer attached to a small (diameter=0.4 meters) research telescope.

More information

About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4

About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4 About Orbital Elements Page 1 About Orbital Elements: Planning to Observe Comets and Minor Planets with Deep-Sky Planner 4 Abstract Calculating an accurate position for a comet or minor planet (asteroid)

More information

Virgo Ego Scientific Forum VESF school 2011 Optical Image Analysis Tutorial by Marica Branchesi

Virgo Ego Scientific Forum VESF school 2011 Optical Image Analysis Tutorial by Marica Branchesi Virgo Ego Scientific Forum VESF school 2011 Optical Image Analysis Tutorial by Marica Branchesi The main goal of present laboratory is to introduce the students to Optical Image Analysis processing for

More information

What does the universe look like?

What does the universe look like? EXPLORATION 2: PORTRAIT OF THE UNIVERSE What does the universe look like? The challenge It's a big universe out there. What does it look like? Use the telescope to image different kinds of objects in the

More information

Scale in the Universe and Star Life Cycles

Scale in the Universe and Star Life Cycles Scale in the Universe and Star Life Cycles Author: Richard Beare - Faulkes Telescope Project Scale in the Universe and Star Life Cycles Measuring objects in the Solar System Jupiter 2.45 arcmin 4.59 AU

More information

CHEOPS Feasibility Checker Guidelines

CHEOPS Feasibility Checker Guidelines CHEOPS Feasibility Checker Guidelines Open a terminal and run the following commands (USERNAME as provided by the SOC - UNIGE): ssh X USERNAME@isdc-nx00.isdc.unige.ch ssh X USERNAME@tichpsmps00 /cheops_sw/mps_test/bin/mps_client

More information

Name: Lab Partner: Department of Physics Gettysburg College Gettysburg, PA 17325

Name: Lab Partner: Department of Physics Gettysburg College Gettysburg, PA 17325 Name: Lab Partner: The Revolution of the Moons of Jupiter Student Manual A Manual to Accompany Software for the Introductory Astronomy Lab Exercise Edited by Lucy Kulbago, John Carroll University 11/24/2008

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

The Revolution of the Moons of Jupiter Student Manual

The Revolution of the Moons of Jupiter Student Manual The Revolution of the Moons of Jupiter Student Manual A Manual to Accompany Software for the Introductory Astronomy Lab Exercise Document SM 1: Circ.Version 1.1.1 Department of Physics Gettysburg College

More information

The Nature of Light Answer Sheet (Advanced)

The Nature of Light Answer Sheet (Advanced) The Nature of Light Answer Sheet (Advanced) Author: Sarah Roberts - Faulkes Telescope Project What is light? 1. Arrange the following objects in the table below according to whether they are sources or

More information

Using SkyTools to log Texas 45 list objects

Using SkyTools to log Texas 45 list objects Houston Astronomical Society Using SkyTools to log Texas 45 list objects You can use SkyTools to keep track of objects observed in Columbus and copy the output into the Texas 45 observation log. Preliminary

More information

Large Scale Structure of the Universe Lab

Large Scale Structure of the Universe Lab Large Scale Structure of the Universe Lab Introduction: Since the mid-1980 s astronomers have gathered data allowing, for the first time, a view of the structure of the Universe in three-dimensions. You

More information

PHYS133 Lab 4 The Revolution of the Moons of Jupiter

PHYS133 Lab 4 The Revolution of the Moons of Jupiter PHYS133 Lab 4 Goals: Use a simulated remotely controlled telescope to observe iter and the position of its four largest moons. Plot their positions relative to the planet vs. time and fit a curve to them

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

The Accuracy of WFPC2 Photometric Zeropoints

The Accuracy of WFPC2 Photometric Zeropoints The Accuracy of WFPC2 Photometric Zeropoints Inge Heyer, Marin Richardson, Brad Whitmore, Lori Lubin July 23, 2004 ABSTRACT The accuracy of WFPC2 photometric zeropoints is examined using two methods. The

More information

Data Reduction - Optical / NIR Imaging. Chian-Chou Chen Ph319

Data Reduction - Optical / NIR Imaging. Chian-Chou Chen Ph319 Data Reduction - Optical / NIR Imaging Chian-Chou Chen (T.C.) @ Ph319 Images at different wavelengths... Images at different wavelengths... However, the raw data are always not as pretty Why? The total

More information

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m. If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

More information

5-Star Analysis Tutorial!

5-Star Analysis Tutorial! 5-Star Analysis Tutorial This tutorial was originally created by Aaron Price for the Citizen Sky 2 workshop. It has since been updated by Paul York to reflect changes to the VStar software since that time.

More information

Physics Lab #3:! Starry Night! Observations of the Sun and Moon!

Physics Lab #3:! Starry Night! Observations of the Sun and Moon! Physics 10293 Lab #3: Starry Night Observations of the Sun and Moon Introduction Today, we are going to use the Starry Night software to learn about motion of the stars, sun and moon on the celestial sphere.

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

More information

Students will explore Stellarium, an open-source planetarium and astronomical visualization software.

Students will explore Stellarium, an open-source planetarium and astronomical visualization software. page 22 STELLARIUM* OBJECTIVE: Students will explore, an open-source planetarium and astronomical visualization software. BACKGROUND & ACKNOWLEDGEMENTS This lab was generously provided by the Red Rocks

More information

Color-Magnitude Diagram Lab Manual

Color-Magnitude Diagram Lab Manual Color-Magnitude Diagram Lab Manual Due Oct. 21, 2011 1 Pre-Lab 1.1 Photometry and the Magnitude Scale The brightness of stars is represented by its value on the magnitude scale. The ancient Greek astronomer

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

Make Your Own Radio Image Large Public Venue Edition

Make Your Own Radio Image Large Public Venue Edition Make Your Own Radio Image Large Public Venue Edition Adapted from the NRAO s Make Your Own Radio Image Background This Activity has been adapted from the NRAO s Make Your Own Radio Image. Radio telescopes

More information

Paper Reference. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01. Friday 15 May 2009 Morning Time: 2 hours

Paper Reference. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01. Friday 15 May 2009 Morning Time: 2 hours Centre No. Candidate No. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01 Friday 15 May 2009 Morning Time: 2 hours Materials required for examination Calculator Items included with question papers

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY NAME ASTRONOMY 20 SECTION DAY/ S. V. LLOYD COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY Overview Software Configuration The seasonal variation in temperature is due to two changes in the Sun's path

More information

CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946

CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946 CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946 G. Iafrate and M. Ramella INAF - Astronomical Observatory of Trieste 1 Introduction Suddenly a star runs out its nuclear fuel. Its life as a normal star

More information

PoleMaster User Manual (Northern Hemisphere)

PoleMaster User Manual (Northern Hemisphere) PoleMaster User Manual (Northern Hemisphere) 1. Hardware Installation 1.1 Attach the PoleMaster camera unit to the quick install plate using the three bolts supplied. In the case of the AZ EQ5-GT and Mesu

More information

Can we communicate with an alien star system?

Can we communicate with an alien star system? EXPLORATION 5: TO THE STARS! Can we communicate with an alien star system? The challenge R ecently, astronomers have discovered more than 100 stars, in addition to our own Sun, that are orbited by planets!

More information

1. Go the Kepler and K2 Science Center:

1. Go the Kepler and K2 Science Center: INSTRUCTIONS FOR USING THE KEPLER FITS v2.0 FILE VStar PLUG IN This contains instructions for first time use. After that you can skip directly to the URL for the Kepler (or K2) Data Search and Retrieval

More information

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

IncuCyte ZOOM NeuroTrack Fluorescent Processing

IncuCyte ZOOM NeuroTrack Fluorescent Processing IncuCyte ZOOM NeuroTrack Fluorescent Processing The NeuroTrack TM Software Module (Cat No 9600-0011) is used to measure the processes of neurons in monoculture or with fluorescent labeling in co-culture.

More information

LAB: Photometry of the Pleiades Cluster

LAB: Photometry of the Pleiades Cluster LAB: Photometry of the Pleiades Cluster ASTR 203 - Instructors Olszewski & Rigby Due IN CLASS on Oct. 30 You may work with 1 partner. If you do, only turn in 1 assignment with both your names on it! You

More information

The Nature of Light Student Question Sheet (Advanced)

The Nature of Light Student Question Sheet (Advanced) The Nature of Light Student Question Sheet (Advanced) Author: Sarah Roberts - Faulkes Telescope Project Introduction This worksheet contains questions and activities which will test your knowledge and

More information

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION

I. Introduction. II. An Introduction to Starry Night NAME: ORBITAL MOTION NAME: ORBITAL MOTION What will you learn in this Lab? You will be using some special software to simulate the motion of planets in our Solar System and across the night sky. You will be asked to try and

More information

Go to Click on the first animation: The north pole, observed from space

Go to  Click on the first animation: The north pole, observed from space IDS 102 The Seasons on a Planet like Earth As the Earth travels around the Sun, it moves in a giant circle 300 million kilometers across. (Well, it is actually a giant ellipse but the shape is so close

More information

OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION

OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION Name: OCN 201 LAB FALL 2003 POLYNESIAN AND WESTERN NAVIGATION INTRODUCTION People have been sailing the seas for thousands of years, during most of which time they relied on the sun and the stars to navigate

More information

High Precision Exoplanet Observations with Amateur Telescopes

High Precision Exoplanet Observations with Amateur Telescopes High Precision Exoplanet Observations with Amateur Telescopes Dennis M. Conti Chair, AAVSO Exoplanet Section Member, KELT Follow-up Team Member, TESS TFOP Working Group HAL Meeting: October 19, 2017 1

More information

Introduction: Objectives: (a) To understand how to compile a list of objects for imaging with a CCD.

Introduction: Objectives: (a) To understand how to compile a list of objects for imaging with a CCD. Texas Tech University Department of Physics Astronomy 2401 Observational Astronomy Lab 2:- Planning Observations Introduction: Observing time at the telescope is generally very limited. Therefore, in order

More information

Prelab 4: Revolution of the Moons of Jupiter

Prelab 4: Revolution of the Moons of Jupiter Name: Section: Date: Prelab 4: Revolution of the Moons of Jupiter Many of the parameters astronomers study cannot be directly measured; rather, they are inferred from properties or other observations of

More information

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Student s Guide

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Student s Guide Jupiter Mass Calculating a planet s mass from the motion of its moons Student s Guide 2 Table of Contents The... Error! Marcador no definido. Kepler s Three Laws... 4 Activity 1: Properties of the Galilean

More information

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 26: Telescopes Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 26 17 Apr 2007 Read: Ch. 6,26 Astronomy 114 1/17 Announcements Quiz #2: we re aiming

More information

Detection of Exoplanets Using the Transit Method

Detection of Exoplanets Using the Transit Method Detection of Exoplanets Using the Transit Method De nnis A fanase v, T h e Geo rg e W a s h i n g t o n Un i vers i t y, Washington, DC 20052 dennisafa@gwu.edu Abstract I conducted differential photometry

More information

Challenge: HOW FAR ARE THE STARS?

Challenge: HOW FAR ARE THE STARS? Challenge: HOW FAR ARE THE STARS? TEACHERÕS NOTES In this investigation, students are challenged to determine the distance to a star using only the telescope and a simple software tool for measuring the

More information

Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC

Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC - 20111130 1. Fetch and install the software packages needed a. Get the MSP_WCT, MSP_CCS, MSP_SXC packages from the Mimir/Software web site: http://people.bu.edu/clemens/mimir/software.html

More information

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Physics 344 Lab 4 Observing with a CCD: Photometry of the Galaxies M31 and M32

Physics 344 Lab 4 Observing with a CCD: Photometry of the Galaxies M31 and M32 Physics 344 Lab 4 Observing with a CCD: Photometry of the Galaxies M31 and M32 Take Data: October 12 17 (weather permitting) Report Due: Thursday, October 25 Text Reference: Chapters 9 & 10 Purpose: This

More information

ASTERICS - H Abell 1656: the Coma Cluster of Galaxies

ASTERICS - H Abell 1656: the Coma Cluster of Galaxies ASTERICS - H2020-653477 Abell 1656: the Coma Cluster of Galaxies Massimo Ramella & Giulia Lafrate INAF - Osservatorio Astronomico di Trieste Caroline Bot & Thomas Boch updated for the doctoral day in Paris

More information

Astronomy 102 Lab: Stellar Parallax and Proper Motion

Astronomy 102 Lab: Stellar Parallax and Proper Motion Name: Astronomy 102 Lab: Stellar Parallax and Proper Motion If you own a laptop, please bring it to class. You will use Stellarium again. The Stellarium shortcuts you used in the first lab are on the inside

More information

Multi-instrument, multiwavelength. energy sources with the Virtual Observatory

Multi-instrument, multiwavelength. energy sources with the Virtual Observatory Multi-instrument, multiwavelength study of high energy sources with the Virtual Observatory Caroline Bot 1,2, François Bonnarel 1,2, René Goosmann 2 and Françoise Genova 1,2 1: Centre de Données astronomiques

More information

Sea Ice and Satellites

Sea Ice and Satellites Sea Ice and Satellites Overview: Students explore satellites: what they are, how they work, how they are used, and how to interpret satellite images of sea ice using Google Earth. (NOTE: This lesson may

More information

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself.

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself. IDS 102 Intensity of Light and Heat When talking about a light source, most people are more comfortable with the word brightness than they are with the word intensity. Scientists generally prefer the word

More information

COLOR MAGNITUDE DIAGRAMS

COLOR MAGNITUDE DIAGRAMS COLOR MAGNITUDE DIAGRAMS What will you learn in this Lab? This lab will introduce you to Color-Magnitude, or Hertzsprung-Russell, Diagrams: one of the most useful diagnostic tools developed in 20 th century

More information

How Do I Create a Hubble Diagram to show the expanding universe?

How Do I Create a Hubble Diagram to show the expanding universe? How Do I Create a Hubble Diagram to show the expanding universe? An extremely important topic in astronomy is the expansion of the universe. Although the expanding universe is nearly always discussed in

More information

Don t focus on the problem

Don t focus on the problem Cause Mapping Problem Solving Incident Investigation Root Cause Analysis Hubble Space Telescope Don t focus on the problem Find the best solutions by controlling the causes. Angela Griffith, P.E. webinars@thinkreliability.com

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

Chapter 6: Transforming your data

Chapter 6: Transforming your data Why is transformation necessary? Chapter 6: Transforming your data The AAVSO International Database is composed of data collected from many different observers, at different times, from around the globe.

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Transiting Exoplanet in the Near Infra-red for the XO-3 System

Transiting Exoplanet in the Near Infra-red for the XO-3 System Transiting Exoplanet in the Near Infra-red for the XO-3 System Nathaniel Rodriguez August 26, 2009 Abstract Our research this summer focused on determining if sufficient precision could be gained from

More information

Measuring the Milky Way

Measuring the Milky Way Printed: Mar/01/2013 Milky Way Lab Page MW- 13 NAME Name Group NAME Name Date Measuring the Milky Way References B Carroll and D. Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley, 1996),

More information

Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9)

Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9) 1 Tyler James Metivier Professor Whitaker Undergrad. Research February 26, 2017 Python Tutorial on Reading in & Manipulating Fits Images and Creating Image Masks (with brief introduction on DS9) Abstract:

More information

Time Dependence of ACS WFC CTE Corrections for Photometry and Future Predictions

Time Dependence of ACS WFC CTE Corrections for Photometry and Future Predictions Time Dependence of ACS WFC CTE Corrections for Photometry and Future Predictions Adam Riess, Jennifer Mack May 5, 2004 ABSTRACT We present measurements of photometric losses due to imperfect parallel and

More information

TELESCOPE OBSERVING. EQUIPMENT: Observatory telescopes, observing forms, and a pencil. Be sure to dress warmly - the observing deck is not heated!

TELESCOPE OBSERVING. EQUIPMENT: Observatory telescopes, observing forms, and a pencil. Be sure to dress warmly - the observing deck is not heated! ASTR 1030 Astronomy Lab 161 Telescope Observing TELESCOPE OBSERVING SYNOPSIS: You will view and sketch a number of different astronomical objects through the SBO telescopes. The requirements for credit

More information

NICMOS Status and Plans

NICMOS Status and Plans 1997 HST Calibration Workshop Space Telescope Science Institute, 1997 S. Casertano, et al., eds. NICMOS Status and Plans Rodger I. Thompson Steward Observatory, University of Arizona, Tucson, AZ 85721

More information