Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 Name: Period: Date: Astronomy Ch. 8 The Moon and Mercury MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The best way to find the exact distance to the Moon is to: A) measure its exact size in the telescope. B) make parallax measurements from observatories on opposite sides of the Earth. C) bounce lasers off the retroreflectors left on the surface by the Apollo landings. D) use radar reflection times, about 2.56 second. E) use stellar occultations for precise timings of the moon's position. 1) 2) What is the reason that it is so difficult to view Mercury from Earth? A) Mercury is often hidden by the Moon. B) Mercury is very small. C) Mercury can't be seen at night. D) Mercury is very dim. E) Mercury is always very close to the Sun. 2) 3) Mercury is very hard to observe from Earth because: A) it always appears as only half lit from Earth. B) it never gets more than 28 degrees from the Sun's glare. C) its barren surface reflects too little sunlight; it is almost invisible always. D) its elliptical orbit causes it to change speed unpredictably. E) its very rugged surface does not allow radar to bounce back to Earth. 3) 4) From Earth, due to their motions and the fact that the Sun lights only a portion of each surface, both Mercury and the Moon: A) appear to go through phases. B) always have the same side facing Earth. C) always look full from Earth. D) pass through Earth's shadow. E) appear to be half-lit by the Sun. 4) 5) Mercury experiences extreme high and low temperatures between night and day because: A) its oceans are much hotter than ours. B) it has no atmosphere to moderate temperatures over the globe. C) it is so close to the Sun. D) its dense atmosphere creates a runaway greenhouse. E) Mercury has no axial tilt, with its equator always exposed to direct sunlight. 5) 6) In size, Mercury is intermediate between: A) Ceres and Pluto. B) Earth and Venus. C) Pluto and the Moon. D) Mars and Earth. E) the Moon and Mars. 6) 1

2 7) How do the atmospheres of the Moon and Mercury compare? A) They are about equal, each only 1% as dense as ours. B) As no spacecraft has yet landed there, no information exists about Mercury's. C) The cooler Moon retains a thicker nitrogen atmosphere. D) Mercury's is much denser, like Venus, with much carbon dioxide. E) Neither body has a permanent atmosphere. 7) 8) If the Earth's surface temperature were increased to that of Mercury's day side, then: A) we would lose most of our water vapor into space. B) little would happen, as the earth is still the same mass and surface gravity. C) the evaporating oceans would thicken the atmosphere greatly. D) the Earth would, like Mercury, lose all its atmospheric gases. E) the erupting volcanoes would greatly increase the carbon dioxide greenhouse. 8) 9) Which of the following is NOT a factor in determining whether a body in the solar system retains an atmosphere? A) axial tilt B) escape velocity C) rotation rate D) composition and weight of the gases E) distance from the Sun 9) 10) Comparing the densities of the Moon and Mercury, we find: A) that density increases as we go outward from the Sun. B) the Moon's is similar to Earth's crust, while Mercury's is similar to the entire Earth. C) the Moon is slightly denser than Mercury. D) similar in surface appearance, they are also similar in density. E) both are much denser than our water-covered planet. 10) 11) One of the effects of Mercury's very slow spin is A) extreme variations in its surface temperature. B) wind patterns that are slow, but global in size. C) large variations in the size of its polar cap. D) an intensely powerful magnetic field. E) tectonic activity. 11) 12) The lunar mare are found: A) almost entirely on Earth side, where the crust was thinner. B) almost entirely on the far side, which was more likely to be hit. C) anywhere large meteor impacts created deep basins. D) mainly in the south polar region, where the largest impact occurred. E) not at all, since no liquid water really exists on the Moon. 12) 13) The lunar highlands are: A) formed by volcanic eruptions, much like our Andes. B) made of lighter colored, younger rocks than the mare. C) brighter than the mare, since they are covered with reflective glass from the rays. D) formed by plate tectonics, like the Earth's Himalayas. E) more rugged, heavily cratered, and older than the lunar mare. 13) 2

3 14) The youngest features visible with telescopes on the Moon are: A) the bright polar caps of new ice. B) the darkest regions of the mare. C) the volcanoes seen erupting in the highlands. D) the scarps recently created by tectonic activity. E) the craters sitting atop the mare. 14) 15) What is true of the lunar highlands? A) They are the darker regions of the Moon seen with the naked eye. B) They are less heavily cratered than the mare. C) They are the oldest part of the lunar surface.. D) They are found on the Moon's northern hemisphere. E) They are younger than the darker mare. 15) 16) The lunar mare are radioactively dated at: A) billion years old, comparable to the adjacent highlands. B) billion years old, similar to the formation of our own oceans. C) less than a billion years old, the most recent additions to the Moon. D) 4.6 billion years old, forming first among the lunar features. E) billion years old, forming after most of the bombardment was over. 16) 17) To measure how Mercury spins, astronomers sent to Mercury and used the Doppler shift to determine how fast it was rotating. A) a satellite B) radar beams C) laser beams D) probes E) a single frequency radio signal 17) 18) What did radar astronomers find in the polar regions of Mercury? A) auroral displays much like Earth's B) polar caps of dry ice that vary seasonally, much like Mars C) water ice that never melts in the deep craters D) rift valleys E) large mare basins, such as near our Moon's south pole 18) 19) Which statement about the rotations of the Moon and Mercury is FALSE? A) On Mercury, three days exactly equal two years. B) On the Moon, each "day" lasts about 15 earth days of constant sunlight. C) Our Moon is in a 1:1 synch with the Earth, keeping the same side toward us. D) Like our Moon, Mercury does not rotate at all, keeping the same side facing the Sun. E) Mercury is in the 3:2 synch with the Sun, with the same side Sunward at perihelion. 19) 20) How does Mercury's rotation relate to the Sun? A) Its year is much shorter, only 88 days, than its slow rotation of 243 days on its axis. B) It always keeps one face tidally locked toward the Sun, as our Moon does with us. C) Its rotation rate is 2/3 as long as its year, due to tidal resonances. D) Its day is the same length as its year. E) It does not spin at all, being tidal stopped by the solar tides. 20) 3

4 21) What causes Mercury's 3:2 spin-orbit resonance? A) the planet's very eccentric orbit B) the planet's closeness to the Sun C) the planet's high density D) tidal torques operating on the planet E) All of the above are factors. 21) 22) Mercury presents the same side to the Sun A) all the time, just like our Moon. B) every other orbit. C) twice every orbit. D) every third orbit. E) every 12 hours. 22) 23) What is true of the Moon's orbital and rotational periods? A) The rotational period is longer. B) The rotational period varies with the Moon's phase. C) The orbital period is longer. D) They are equal. E) The orbital period is greatest at full moon. 23) 24) The chief erosive agent now on the Moon is: A) lava flows welling up in the mare. B) volcanic vents in the rugged highlands. C) rain from cometary debris melting as it enters the moon's atmosphere. D) lunar ice melting and refreezing in the polar regions. E) the rain of micrometeorites chewing up the regolith. 24) 25) The rate of cratering: A) has recently increased with more collisions in the asteroid belt. B) has remained constant over the last 4.6 billion years. C) fluctuates over time, with massive bodies occasionally coming in from the Oort Cloud. D) shows that most interplanetary debris was swept up soon after the formation of the solar system. E) shows that large asteroid impacts are more common now than in the past. 25) 26) The rate of cratering in the lunar highlands shows us that A) they range from billion years old, on average. B) the largest impacts are the youngest, such as Copernicus and Tycho. C) they must be younger than the older, darker mare. D) the oldest rocks are at least as old as the mare, but some craters are much younger. E) most of the asteroids must have hit the Moon, not the earth. 26) 27) The average rate of erosion on the Moon is far less than on Earth because A) the Moon's mare long ago dried up, so there is no more wave erosion there. B) the Moon's magnetic field protects it from the solar wind better than ours does. C) the Moon is much younger than the earth. D) the crust of the Moon is much denser than the earth's crust. E) the Moon lacks wind, water and an atmosphere. 27) 4

5 28) Which type of feature is the best evidence of lunar volcanism? A) vents seen erupting in the mountainous highlands B) rays around the latest eruptions C) the Orientale Basin D) craters all over the Moon E) rilles associated with lava flows accompanying the mare formation 28) 29) The spacecraft which reveal the possibility of lunar ice are: A) Lunar Orbiter and Rover. B) Lunar Ranger and Surveyor. C) Vikings 1 and 2. D) Apollos XI and XVII. E) Clementine and Lunar Prospector. 29) 30) Mercury's surface most resembles that of which other body? A) Mars B) Venus C) Earth D) Io E) Moon 30) 31) Which of these features is attributed to the shrinking of Mercury's core? A) rilles B) mare C) scarps D) rays E) craters 31) 32) Almost all we know about Mercury has come from: A) telescopic observations for Earth near greatest elongations. B) the Hubble Space Telescope's high resolution images. C) radar imaging of its rugged surface. D) the three flybys of Mariner 10. E) the messenger orbiter. 32) 33) Mercury and the Moon appear similar, but we note that: A) Mercury has "weird terrain" opposite its huge Caloris basin. B) Mercury does not always keep the same face toward the Sun, while the Moon does have the Earthside always facing us. C) the lunar mare are darker than Mercury's intercrater plains. D) Mercury has striking lobate scarps due to the shrinking of its core. E) All of the above are correct. 33) 34) The scarps on Mercury were probably caused by A) the interior cooling and shrinking. B) tectonic activity. C) volcanism. D) a tidal bulge. E) meteorite bombardment. 34) 5

6 35) Mercury's surface most resembles which of these? A) Venus' polar regions B) the earth's deserts C) the lunar far side D) Mars' deserts E) the lunar mare 35) 36) Mercury's Caloris basin is aptly named, since: A) it is the region on Mercury looking much like our own "painted desert". B) it is the largest impact basin found in the solar system. C) it is the hottest region, turning to face the Sun when Mercury is at perihelion. D) it is always pointed directly at the Sun. E) it is the only such large basin on Mercury. 36) 37) The Moon's huge Mare Orientale basin has a twin on Mercury named: A) Mare Marineris. B) Valhalla. C) Caloris. D) the weird terrain. E) Galileo. 37) 38) Moonquakes on the Moon were detected by: A) seismographs attached to the Russian Lunar rovers. B) telescopic observations of lunar landslides. C) the radar observations over time from earth. D) laser beams reflected off mirrors left on the Moon by Apollo missions. E) the seismographs left these by the Apollo astronauts. 38) 39) What do moonquakes reveal about the Moon? A) It has a differentiated core, displaced away from us by the Moon's rotation. B) Its small, partially molten core has been pulled toward us by tidal forces. C) The Moon has been geologically dead throughout its entire history. D) The Moon is quite active, almost as much so as Jupiter's moon Io. E) It has a strong magnetic field generated by a large molten core. 39) 40) How does Mercury's magnetic field compare to our own? A) Like Mars and the Earth, it too has undergone polarity reversals. B) It is amazingly strong, comparable to our own. C) Like Venus, Mercury has no detectable magnetic field. D) It was predicted from Mercury's rapid rotation and molten core. E) It is 1/100th as strong as ours, but does deflect the solar wind to some degree. 40) 41) What two properties of Mercury imply that it is differentiated? A) its large average density and its surface features B) its magnetic field and its surface features C) its surface features and its size D) its size and magnetic field E) its large average density and its magnetic field 41) 6

7 42) The presence of a Mercurian magnetic field surprised the planetary scientists on the Mariner 10 team because A) Mercury is low in iron. B) Mercury lacks an iron core. C) Mercury spins to rapidly to produce a stable dynamo. D) it's still too hot for its core to have differentiated. E) the dynamo theory predicted that Mercury was spinning too slowly for one. 42) 43) Which of these theories seems to best explain the Moon's origin? A) Impact Theory B) Coformation Theory C) Capture Theory D) Fusion Theory E) Fission Theory 43) 44) What are the major factors that rule out the co-formation theory for the Moon-Earth system? A) Each body has a different density and a different chemical composition. B) Each body has different surface features and different atmospheric content. C) Each body has a different chemical composition and different atmospheric content. D) Each body has different chemical composition and different surface features. E) Each body has different atmospheric content and a different density. 44) 45) Which of these would support the capture theory of the Moon's origin? A) the retrograde orbit and large orbital inclination of Neptune's moon Triton B) the rings of all the jovians lying around their equators C) the Caloris basin on Mercury D) the Pluto-Charon system E) the four large moons of Jupiter orbit its equator 45) 46) The cratering of the lunar highlands shows us: A) they are like the Earth's continents, removed from the tectonic cycle of the mare. B) they are younger than the maria. C) they were made of more rigid lavas than the basalts that made the maria. D) they are older than the smoother maria. E) they have been unchanged for the last 4.6 billion years. 46) 47) How are the polar regions of Mercury and the Moon similar? A) Both seem to have ice pockets in the deepest, darkest crater floors. B) Both have bright dry ice polar caps, like Mars. C) Both have been hit by large comets that melted there. D) Both are covered by huge mare-type basins from impacts. E) Both have lakes of liquid water under their regolith. 47) 48) Mercury's evolution was different from the Moon's because: A) Mercury developed a dense atmosphere while the Moon never did. B) Mercury was subject to more intense asteroid bombardment than the Moon. C) dense Mercury had an iron core that shrank, creating the lobate scarps. D) Mercury was located farther from Earth, so experienced no tidal forces. E) Mercury developed a strong magnetic field to protect it from solar radiation. 48) 7

8 49) Both the Moon and Mercury are geologically inactive and have been that way for most of the history of the solar system. However, about 4 billion years ago, it is thought that A) the Moon's atmosphere dissipated. B) both bodies were covered in ice. C) the Moon differentiated. D) the Moon had more frequent and violent volcanic activity than Mercury. E) Mercury had more common volcanic activity than the Moon. 49) 50) Astronomers believe that the Moon did not differentiate to the same degree as Earth because: A) the meteors that hit the moon were lighter than those that hit us, so did not generate as much heat on the surface. B) the Moon was made of solid debris, not liquids like our hydrosphere. C) the less dense and smaller moon did not have as much radioactivity as the larger Earth in its core. D) the Moon was made of very different materials than our mantle and crust. E) the Moon was formed after the Earth was, so its radioactivity was less. 50) 8

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

Lecture 11 Earth s Moon January 6d, 2014

Lecture 11 Earth s Moon January 6d, 2014 1 Lecture 11 Earth s Moon January 6d, 2014 2 Moon and Earth to Scale Distance: a = 385,000 km ~ 60R Eccentricity: e = 0.055 Galileo Spacecraft Dec. 1992 3 [Review question] Eclipses do not occur each month

More information

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field? Mercury and Venus Learning Objectives! Contrast the Earth, the Moon, Venus and Mercury. Do they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?!

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 10 Astronomy Today 8th Edition Chaisson/McMillan Chapter 10 Mars Units of Chapter 10 10.1 Orbital Properties 10.2 Physical Properties 10.3 Long-Distance Observations of Mars 10.4

More information

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1)

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1) Chapter 5 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Our Earth is about four times larger than the Moon in diameter. 1) 2) The Earth's hotter, inner

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

Astronomy I Exam 2 Sample

Astronomy I Exam 2 Sample NAME: Part I: Multiple Choice (2 points. ea.) Read carefully, choose the best answer 1. Which of the following occurs because of the orbital motion of the Earth about the Sun and cannot be accounted for

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 27, 2017 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon The Moon Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon Earth Moon Semi-major Axis 1 A.U. 384 x 10 3 km Inclination 0 Orbital period 1.000 tropical year 27.32

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 9 Lecture The Cosmic Perspective Seventh Edition Planetary Geology: Earth and the Other Terrestrial Worlds Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors

More information

Image of the Moon from the Galileo Space Craft

Image of the Moon from the Galileo Space Craft Image of the Moon from the Galileo Space Craft Moon: Overview Due to its size (diameter 3476 km, Mercury s diameter is 4880 km) and composition, the moon is sometimes considered as a terrestrial planet

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Mars: The Red Planet Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Property Earth Mars Radius 6378km 3394km ~ 0.51R E Mass 5.97x10 24 kg 6.42x10 23 kg =

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2.

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2. TopHat quizzes for astro 111 Lecture week 1 1. If you multiply 2 x 10 4 by itself, what do you get? A. 4 x 10 4 B. 4 x 10 8 C. 2 x 10 4 D. 4 x 10 16 2. Jupiter's maximum distance from the sun is approximately

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Evolution of the Solar System

Evolution of the Solar System DATE DUE: Name: Ms. Terry J. Boroughs Geology 305 Section: Evolution of the Solar System Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary where

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

PHYS101 Sec 001 Hour Exam No. 2 Page: 1

PHYS101 Sec 001 Hour Exam No. 2 Page: 1 PHYS101 Sec 001 Hour Exam No. 2 Page: 1 1 The angle between the rotation axis of a planet and the perpendicular to the plane of its orbit is called its axial tilt. Which of these planets has an axial tilt

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

SOLAR SYSTEM EXAMPLE EXAM B DIVISION

SOLAR SYSTEM EXAMPLE EXAM B DIVISION SOLAR SYSTEM EXAMPLE EXAM B DIVISION 2017-2018 TEAM NUMBER: TEAM NAME: STUDENT NAMES: Do not open the test packet until instructed by the event supervisor. Ensure that you have all 6 pages of the test,

More information

Astronomy Study Guide Answer Key

Astronomy Study Guide Answer Key Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric

More information

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B.

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B. Part II: Solar System Planetology 2 A. Structure of Solar System B. Planetology Lecture: Planetology C. The Planets and Moons Updated: 2012Feb10 A. Components of Solar System 3 Orbits of Planets 4 1. Planets

More information

Red Planet Mars. Chapter Thirteen

Red Planet Mars. Chapter Thirteen Red Planet Mars Chapter Thirteen ASTR 111 003 Fall 2006 Lecture 11 Nov. 13, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch7: Comparative Planetology

More information

PLATO - 5. Planetary atmospheres

PLATO - 5. Planetary atmospheres PLATO - 5 Planetary atmospheres 1 Mercury Smallest planet! 0.38 Earth radii! 0.055 Earth masses! 0.39 AU orbit (eccentric)! 350K surface temperature (ranges from 100K-700K)! Slow 59 day rotation (2/3 orbital

More information

ASTRONOMY 1010 Exam 2 October 19, 2007

ASTRONOMY 1010 Exam 2 October 19, 2007 ASTRONOMY 1010 Exam 2 October 19, 2007 Name Please write and mark your name and student number in the Scantron answer sheet. FILL THE BUBBLE IN THE "TEST FORM" BOX CORRESPONDING TO YOUR TEST VERSION (listed

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

Part 1: the terrestrial planets

Part 1: the terrestrial planets Mercury close up Part 1: the terrestrial planets The weird day on Mercury Weirdness is due to the fact that the rota:on period is comparable to period of revolu:on, and that they are related by the ra:o

More information

22. What came out of the cracks or fissures?

22. What came out of the cracks or fissures? PACKET #6 EARTH S MOON Reading Guide: Chapter 28.1 (read text pages 719-724) 1b. Know the evidence from Earth and moon rocks indicates that the solar system was formed from a nebular cloud of dust and

More information

1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles

1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles Earth Science Chapter 20: Observing the Solar System Match the observations or discoveries with the correct scientist. Answers may be used more than once. Answers that cannot be read will be counted as

More information

Chapter 3 The Solar System

Chapter 3 The Solar System Name: Date: Period: Chapter 3 The Solar System Section 1 Observing the Solar System (pp. 72-77) Key Concepts What are the geocentric and heliocentric systems? How did Copernicus, Galileo, and Kepler contribute

More information

Chapter 19 Exploring Space. I. Fill in the blank

Chapter 19 Exploring Space. I. Fill in the blank Chapter 19 Exploring Space 1. All radiation is classified by wavelength in the electromagnetic spectrum. 2. Two types of telescopes that collect visible light are refractors and reflectors. 3. An uncrewed

More information

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science Earth Science Review Ch 1 & 2 Chapter 1 - Introduction to Earth Science Lesson I - What is Earth Science Topic 1- Branches of Earth Science Earth Science - the study of Earth, its oceans, atmosphere, and

More information

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like? 9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

More information

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Earth Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Semi-major Axis 1 A.U. Inclination 0 Orbital period 1.000 tropical year Orbital eccentricity 0.017 Rotational period 23 h 56 min 4.1 s Tilt

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Effective August 2007 All indicators in Standard / 14

Effective August 2007 All indicators in Standard / 14 8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 10. Geology and life. Part 1 (Page 99-123)

More information

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer

More information

The Moon and Eclipses

The Moon and Eclipses Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System 23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

Astronomy Ch. 6 The Solar System: Comparative Planetology

Astronomy Ch. 6 The Solar System: Comparative Planetology Name: Period: Date: Astronomy Ch. 6 The Solar System: Comparative Planetology MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid,

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

The Universe and Galaxies

The Universe and Galaxies The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus

More information

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Observing Jupiter and Saturn The disk of Jupiter at opposition appears about two times larger than

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

The Outermost Planets. The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish!

The Outermost Planets. The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish! The Outermost Planets The 7 Wanderers known since Antiquity. Uranus and Neptune distinctly Blue-ish! Uranus Uranus and 3 of its moons, barely visible from Earth. Discovered by William Herschel 1781. (Accidentally!)

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune Summer 2015 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Which letter on the timeline best represents the time when scientists estimate that the Big Bang occurred? A) A B) B C) C D) D

Which letter on the timeline best represents the time when scientists estimate that the Big Bang occurred? A) A B) B C) C D) D 1. The red shift of light from most galaxies is evidence that A) most galaxies are moving away from Earth B) a majority of stars in most galaxies are red giants C) the light slows down as it nears Earth

More information

Astronomy. Uranus Neptune & Remote Worlds

Astronomy. Uranus Neptune & Remote Worlds Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Uranus Neptune & Remote Worlds Uranus and Neptune Orbits and Atmospheres Internal Structure Magnetic Fields Rings Uranus's

More information

Galilean Moons of Jupiter

Galilean Moons of Jupiter Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Satellites of Jupiter & Saturn Galilean satellites Similarities and differences among the Galilean satellites How the Galilean

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen ASTR 111 003 Fall 2006 Lecture 12 Nov. 20, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap.

More information

DeAnza College Fall 2017 Third Midterm Exam. 1. Use only a #2 pencil on your Parscore sheet, and fill in the bubbles darkly and completely.

DeAnza College Fall 2017 Third Midterm Exam. 1. Use only a #2 pencil on your Parscore sheet, and fill in the bubbles darkly and completely. FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Fall 2017 Third Midterm Exam Instructions: 1. Use only a #2 pencil on your Parscore sheet, and fill in the

More information

THE GAS GIANTS JUPITER VENUS MARS EARTH

THE GAS GIANTS JUPITER VENUS MARS EARTH THE GAS GIANTS JUPITER SATURN URANUS NEPTUNE VENUS The temperature at the cloud tops is 200 C while the interior temperatures reach tens of thousands of degrees. The churning of the atmosphere causes temperatures

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

Jovian planets, their moons & rings

Jovian planets, their moons & rings Jovian planets, their moons & rings The Moons of the Jovian Planets The terrestrial planets have a total of 3 moons. The jovian planets have a total of 166 moons. Each collection of moons orbiting the

More information

D. most intense and of longest duration C. D.

D. most intense and of longest duration C. D. Astronomy Take Home Test Answer on a separate sheet of paper In complete sentences justify your answer Name: 1. The Moon s cycle of phases can be observed from Earth because the Moon 4. The accompanying

More information

Chapter. Origin of Modern Astronomy

Chapter. Origin of Modern Astronomy Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

Name Class Date. Chapter 30. Moons and Rings. Review Choose the best response. Write the letter of that choice in the space provided.

Name Class Date. Chapter 30. Moons and Rings. Review Choose the best response. Write the letter of that choice in the space provided. Moons and Rings Review Choose the best response. Write the letter of that choice in the space provided. 1. Dark areas on the moon that are smooth and reflect little light are called a. rilles. b. maria.

More information

Astronomy Unit Notes Name:

Astronomy Unit Notes Name: Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)

More information

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust Tectonics Planets, Moons & Rings 9/11/13 movements of the planet s crust Planetary History Planets formed HOT Denser materials fall to center Planet cools by conduction, convection, radiation to space

More information

known since prehistoric times almost 10 times larger than Jupiter

known since prehistoric times almost 10 times larger than Jupiter Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune 40.329407-74.667345 Sun Mercury Length of rotation Temperature at surface 8 official planets large number of smaller objects including Pluto, asteroids,

More information

Astronomy Part 1 Regents Questions

Astronomy Part 1 Regents Questions Regents Questions 1. The Sun revolves around the center of A) Polaris B) Aldebaran C) Earth D) the Milky Way Galaxy 4. In which sequence are the items listed from least total mass to greatest total mass?

More information

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c,

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c, ASTRONOMY S6E1 a, b, c, d, e, f S6E2 a, b, c, UNIVERSE Age 13.7 billion years old The Big Bang Theory Protons and Neutrons formed hydrogen and helium. This created heat that formed the stars. Other elements

More information

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up Jason Reed/Photodisc/Getty Images What natural phenomena do the motions of Earth and the Moon

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Name. Physical Science Astronomy Exam III

Name. Physical Science Astronomy Exam III Name Physical Science 113 - Astronomy Exam III For the following questions deal with the Jovian planets, choose the correct answer from the list below A) Jupiter B) Saturn C) Uranus D) Neptune 1. This

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

Solar System Formation/The Sun

Solar System Formation/The Sun Solar System Formation/The Sun Objective 4 Examine the orbital paths of planets and other astronomical bodies (comets and asteroids). Examine the theories of geocentric and heliocentric models and Kepler

More information

AST Section 2: Test 2

AST Section 2: Test 2 AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

More information

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets Earth s Place in the Universe outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets the big bang the universe is expanding

More information