Volusia County Schools. Astronomy. Curriculum Map. Regular and Honors

Size: px
Start display at page:

Download "Volusia County Schools. Astronomy. Curriculum Map. Regular and Honors"

Transcription

1 Volusia County Schools Curriculum Map Regular and Honors

2 Parts of the Curriculum Map The curriculum map defines the curriculum for each course taught in Volusia County. They have been created by teachers from Volusia Schools on curriculum mapping and assessment committees. The following list describes the various parts of each curriculum map: Units: the broadest organizational structure used to group content and concepts within the curriculum map created by teacher committees. Topics: a grouping of standards and skills that form a subset of a unit created by teacher committees. Learning Targets and Skills: the content knowledge, processes, and skills that will ensure successful mastery of the NGSSS as unpacked by teacher committees according to appropriate cognitive complexities. Standards: the Next Generation Sunshine State Standards (NGSSS) required by course descriptions posted on CPALMS by FLDOE. Pacing: recommended time frames created by teacher committees and teacher survey data within which the course should be taught in preparation for the EOC. Vocabulary: the content-specific vocabulary or phrases both teachers and students should use, and be familiar with, during instruction and assessment. Maps may also contain other helpful information, such as: Resources: a listing of available, high quality and appropriate materials (strategies, lessons, textbooks, videos and other media sources) that are aligned to the standards. Teacher Hints: a listing of considerations when planning instruction, including guidelines to content that is inside and outside the realm of the course descriptions on CPALMS in terms of state assessments. Sample FOCUS Questions: sample questions aligned to the standards and in accordance with EOC style, rigor, and complexity guidelines; they do NOT represent all the content that should be taught, but merely a sampling of it. Labs: The NSTA and the District Science Office recommend that all students experience and participate in at least one hands-on, inquiry-based, lab per week were students are collecting data and drawing conclusions. The district also requires that at least one (1) lab per grading period should have a written lab report with analysis and conclusion. Common Labs (CL): Each grade level has one common Lab (CL) for each nine week period. These common labs have been designed by teachers to allow common science experiences that align to the curriculum across the district. Science Literacy Connections (SLC): Each grade level has one common Science Literacy Connection (Common SLC) for each nine week period. These literacy experiences have been designed by teachers to provide complex text analysis that aligns to the curriculum across the district. Additional SLCs are provided to supplement district textbooks and can be found on the Edmodo page. DIA: (District Interim Assessments) content-specific tests developed by the district and teacher committees to assist in student progress monitoring. The goal is to prepare students for the 8 th grade SSA or Biology EOC using rigorous items developed using the FLDOE Item Specifications Documents. The last few pages of the map form the appendix that includes information about methods of instruction, cognitive complexities, and other Florida-specific standards that may be in the course descriptions. Appendix Contents 1. Volusia County Science E Instructional Model 2. FLDOE Cognitive Complexity Information 3. Florida ELA and Math Standards Page 3

3 Instructional Calendar Week Dates Days Quarter Week Dates Days Quarter August - 18 August 21 August - 2 August 28 August - 1 September September - 8 September 11 September - 1 September 18 September - 22 September 2 September - 29 September 2 October - 6 October 9 October - 13 October 1 st Quarter (9 weeks) January 12 January 16 January 19 January 22 January 26 January 29 January 2 February February 9 February 12 February 16 February 20 February 23 February 26 February 2 March March 8 March 3 rd Quarter (9 weeks) October - 20 October 23 October 27 October 30 October - 3 November 6 November - 9 November 13 November - 17 November 20 November - 21 November 27 November - 1 December December - 8 December 11 December - 1 December 18 December 20 December 2 3 *See school-based testing schedule for the course EOC administration time 2 nd Quarter (10 weeks) March 23 March 26 March 30 March 2 April 6 April 9 April 13 April 16 April 20 April 23 April 27 April 30 April May 7 May 11 May 1 May 18 May Start Review and Administer EOC* 21 May 2 May 29 May 30 May 2 th Quarter (11 weeks) Expectations: Lab Information Safety Contract: The National Science Teacher Association, NSTA, and the district science office recommend that all students experience and participate in at least one handson-based lab per week. At least one (1) lab per grading period should have a written lab report with analysis and conclusion. Safety, Cleanup, and Laws: Page

4 Full Instructional Calendar August September District PD Day October W8 2 3 ER Preplan begins W 6 ER Labor Day 8 W ER End 1 st qtr 13 W1 1 1 st day of school 1 16 ER W ER W10 16 Teacher Duty Day ER W2 21 Solar Eclipse ER W ER W ER W ER 31 2 W ER W November ER 2 3 W13 12 W1 19 W1 26 W ER 9 10 Veterans Day ER Thanksgiving Thanksgiving Break Begins 27 Return to school ER 30 December W17 10 W18 17 W19 2 Winter Break Week 31 6 ER ER ER 21 End 2 nd qtr Teacher Duty Day January W20 1 W21 21 W22 28 W23 1 Winter Break 8 Return to school 1 No School MLK 9 10 ER ER ER Regional Science Fair ER Page

5 Full Instructional Calendar (continued) February March April W ER 6 7 W2 6 7 ER Envirothon W End 3 rd qtr 9 Teacher Duty Day 10 8 W W ER SPRING BREAK W W26 2 W27 19 Presidents Day No School ER ER 18 W29 2 W30 19 Classes Resume W3 29 W May W36 13 W37 20 W38 27 W ER ER Memorial Day ER Last Day of School for Students 31 June Last Day for Teachers Legend and Contacts: ER Indicates an Early Release Day Follow each other and post on twitter using: - Contact Mike Cimino (386) x2029 for questions about the science Canvas sites, DIAs and resources - For questions about Project IBIS, Envirothon, and other inquiries contact Louise Chapman at (386) STEM Questions and concerns can be directed to the Volusia STEM Specialist, Amy Monahan x2031 For office related questions contact Felecia Martinez at x20686 Jeremy Blinn, the District Science Specialist can be reached at x203 Page 6

6 Volusia County Science E Instructional Model Engage Description Students engage with an activity that captures their attention, stimulates their thinking, and helps them access prior knowledge. A successful engagement activity will reveal existing misconceptions to the teacher and leave the learner wanting to know more about how the problem or issue relates to his/her own world. Implementation The diagram below shows how the elements of the E model are interrelated. Although the E model can be used in linear order (engage, explore, explain, elaborate and evaluate), the model is most effective when it is used as a cycle of learning. Explore Students explore common, hands-on experiences that help them begin constructing concepts and developing skills related to the learning target. The learner will gather, organize, interpret, analyze and evaluate data. Engage Explore Explain Students explain through analysis of their exploration so that their understanding is clarified and modified with reflective activities. Students use science terminology to connect their explanations to the experiences they had in the engage and explore phases. Discuss and Evaluate Elaborate Students elaborate and solidify their understanding of the concept and/or apply it to a real-world situation resulting in a deeper understanding. Teachers facilitate activities that help the learner correct remaining misconceptions and generalize concepts in a broader context. Elaborate Explain Evaluate Teachers and Students evaluate proficiency of learning targets, concepts and skills throughout the learning process. Evaluations should occur before activities, to assess prior knowledge, after activities, to assess progress, and after the completion of a unit to assess comprehension. *Adapted from The BSCS E Instructional Model: Origins, Effectiveness, and Applications, July 2006, Bybee, et.al, pp Each lesson begins with an engagement activity, but evaluation occurs throughout the learning cycle. Teachers should adjust their instruction based on the outcome of the evaluation. In addition, teachers are encouraged to differentiate at each state to meet the needs of individual students. Page 7

7 Cognitive Complexity The benchmarks in the Next Generation Sunshine State Standards (NGSSS) identify knowledge and skills students are expected to acquire at each grade level, with the underlying expectation that students also demonstrate critical thinking. The categories low complexity, moderate complexity, high complexity form an ordered description of the demands a test item may make on a student. Instruction in the classroom should match, at a minimum, the complexity level of the learning target in the curriculum map. Low Moderate High This category relies heavily on the recall and recognition of previously learned concepts and principles. Items typically specify what the student is to do, which is often to carry out some procedure that can be performed mechanically. It is not left to the student to come up with an original method or solution. This category involves more flexible thinking and choice among alternatives than low complexity items. They require a response that goes beyond the habitual, is not specified, and ordinarily has more than a single step or thought process. The student is expected to decide what to do using formal methods of reasoning and problem-solving strategies and to bring together skill and knowledge from various domains. This category makes heavy demands on student thinking. Students must engage in more abstract reasoning, planning, analysis, judgment, and creative thought. The items require that the student think in an abstract and sophisticated way often involving multiple steps. retrieve information from a chart, table, diagram, or graph recognize a standard scientific representation of a simple phenomenon complete a familiar single-step procedure or equation using a reference sheet interpret data from a chart, table, or simple graph determine the best way to organize or present data from observations, an investigation, or experiment describe examples and non-examples of scientific processes or concepts specify or explain relationships among different groups, facts, properties, or variables differentiate structure and functions of different organisms or systems predict or determine the logical next step or outcome apply and use concepts from a standard scientific model or theory analyze data from an investigation or experiment and formulate a conclusion develop a generalization from multiple data sources analyze and evaluate an experiment with multiple variables analyze an investigation or experiment to identify a flaw and propose a method for correcting it analyze a problem, situation, or system and make long-term predictions interpret, explain, or solve a problem involving complex spatial relationships *Adapted from Webb s Depth of Knowledge and FLDOE Specification Documentation, Version 2. Page 8

8 Body of Knowledge: The Nature of Science Week 1 2 Topics Learning Targets and Skills Benchmarks Vocabulary as a Science explain that science is the study of the natural world explain what astronomers study differentiate between science and non science explain why something would fail to meet the criteria for science identify which questions can be answered through science and which questions cannot explain that scientific knowledge is both durable and robust and open to change. Scientific knowledge can change because it is often examined and re examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability. explain that scientific laws are descriptions of specific relationships under given conditions in nature, but do not offer explanations for those relationships. recognize that theories do not become laws, nor do laws become theories but theories are well supported explanations and laws are well supported descriptions. design a controlled experiment on a physics topic use tools (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs) collect, analyze, and interpret data from the experiment to draw conclusions determine an experiment s validity and justify its conclusions based on: o control group o limiting variables and constants o multiple trials (repetition) or large sample sizes o bias o method of data collection, analysis, and interpretation o communication of results describe the difference between an observation and inference SC.912.N.2.1 SC.912.N.2.2 SC.912.N.2.3 SC.912.N.2. SC.912.N.3.3 SC.912.N.3. SC.912.N.1.1 SC.912.N.1.2 SC.912.N.1.3 SC.912.N.1. SC.912.N.1.6 Precession Sidereal Ecliptic Angular diameter Zenith Minutes of arc Seconds of arc Circumpolar Perihelion Aphelion Milankovich cycles Node Apogee Perigee Saros cycle Path of totality Synodic Penumbra Eclipse Umbra Parallax Heliocentric Geocentric Eccentricity use appropriate evidence and reasoning to justify explanations to others Page 9

9 Body of Knowledge: Astronomical History Week 3 6 Topics Learning Targets and Skills Benchmarks Vocabulary History of relate the history of and explain the justification for future space exploration and continuing technology development Recognize the role of creativity in constructing scientific questions, methods and explanations. analyze the broad effects of space exploration on the economy and culture of Florida describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of new, testable ideas that have the potential to add new evidence to support one or another of the explanations. describe the measurable properties of waves and explain the relationships among them and how these properties change when the wave moves from one medium to another qualitatively describe the shift in frequency in sound or electromagnetic waves due to the relative motion of a source or a receiver SC.912.E..7 SC.912.N.1.7 SC.912.E..9 SC.912.N.2. SC.912.P SC.912.P Nanometer Telescope Observatory Focal point Light ray Adaptive optics Radio x ray infrared refracting telescope reflecting telescope UV Visible Microwave Spectrograph Diffraction Diffraction grating Resolving power Diffraction fringe Seeing Light pollution Light and Waves describe the quantization of energy at the atomic level Explain how scientific knowledge and reasoning provide an empirically based perspective to inform society's decision making Honors: 1. explore the theory of electromagnetism by comparing and contrasting the different parts of the electromagnetic spectrum in terms of wavelength, frequency, and energy, and relate them to phenomena and applications SC.912.P.10.9 SC.912.N..1 HONORS SC.912.P explain that all objects emit and absorb electromagnetic radiation and distinguish between objects that are blackbody radiators and those that are not SC.912.P Page

10 Body of Knowledge: Astronomical Tools Week 7 9 Topics Learning Targets and Skills Benchmarks Vocabulary Astronomical Tools connect the concepts of radiation and the electromagnetic spectrum to the use of historical and newly developed observational tools distinguish the various methods of measuring astronomical distances and apply each in appropriate situations construct ray diagrams and use thin lens and mirror equations to locate the images formed by lenses and mirrors. Honors: 1. identify examples of technologies, objects, and processes that have been modified to advance society, and explain why and how they were modified. Discuss ethics in scientific research to advance society (e.g. global climate change, historical development of medicine and medical practices). SC.912.E..8 SC.912.E..11 SC.912.P HONORS SC.912.N..2 Blackbody radiation Wavelength Frequency Absorption spectrum Emission spectrum Emission lines Transition series Helium alpha Lyman series Balmer series Paschen series Redshift Blueshift Radial velocity Transverse velocity Excited state Ground state Primary Mirror Primary Lens Objective lens Chromatic aberration Interferometry Newtonian focus Cassegrain focus Polar axis 2. discuss how scientists determine the location of constellations, celestial spheres, and sky maps. Compare and contrast the celestial coordinate system (equatorial system) to the use of latitude and longitude to specify locations on Earth. Recognize the use of right ascension and declination in the location of objects in space, including stars and constellations. SC.912.E..10 Page

11 Body of Knowledge: Systems outside the Earth Week Topics Learning Targets and Skills Benchmarks Vocabulary Comparative Planetology explain the formation of planetary systems based on our knowledge of our Solar System and apply this knowledge to newly discovered planetary systems connect surface features to surface processes that are responsible for their formation Describe the function of models in science, and identify the wide range of models used in science. Describe and provide examples of how similar investigations conducted in many parts of the world result in the same outcome. Explain how scientific knowledge and reasoning provide an empirically based perspective to inform society's decision making develop logical connections through physical principles, including Kepler's and Newton's Laws about the relationships and the effects of Earth, Moon, and Sun on each other analyze the motion of an object in terms of its position, velocity, and acceleration (with respect to a frame of reference) as functions of time describe how the gravitational force between two objects depends on their masses and the distance between them qualitatively apply the concept of angular momentum identify, analyze, and relate the internal (Earth system) and external (astronomical) conditions that contribute to global climate change Honors: 1. interpret and apply Newton s three laws of motion. 2. recognize that Newton s laws are a limiting case of Einstein s Special Theory of Relativity at speeds that are much smaller than the speed of light. 3. recognize time, length, and energy depend on the frame of reference. SC.912.E.. SC.912.E.6.2 SC.912.N.3. SC.912.N.1. SC.912.N..1 SC.912.E..6 SC.912.P.12.2 SC.912.P.12. SC.912.P.12.6 SC.912.E.7.7 HONORS SC.912.P.12.3 SC.912.P.12.8 SC.912.P.12.9 Magnetic field Basalt Atmosphere Rift valley Ozone layer Seismic waves Magnetosphere Bowshock Van allen belts Primeval atmosphere Secondary atmosphere Albedo Greenhouse effect Global warming Gravitational collapse Differentiation Protoplanet Heavy bombardment Outgassing Nebular hypothesis Extrasolar planets Asteroid Comet Dwarf planet Roche limit Tidal forces Shearing Angular momentum problem Accretion Regolith Occultation Radiant Kirkwood gaps Page

12 Body of Knowledge: The Sun Week Topics Learning Targets and Skills Benchmarks Vocabulary The Sun Stellar Evolution explain the physical properties of the Sun and its dynamic nature and connect them to conditions and events on Earth differentiate among the four states of matter explore the scientific theory of atoms (also known as atomic theory) by describing the structure of atoms in terms of protons, neutrons and electrons, and differentiate among these particles in terms of their mass, electrical charges and locations within the atom describe the function of models in science, and identify the wide range of models used in science. Honors: 1. compare the magnitude and range of the four fundamental forces (gravitational, electromagnetic, weak nuclear, and strong nuclear) 2. describe heat as the energy transferred by convection, conduction, and radiation, and explain the connection of heat to change in temperature or states of matter 3. explain and compare nuclear reactions (radioactive decay, fission and fusion), the energy changes associated with them and their associated safety issues SC.912.E.. SC.912.P.8.1 SC.912.P.8. SC.912.N.3. HONORS SC.912.P SC.912.P.10. SC.912.P describe and predict how the initial mass of a star determines its evolution SC.912.E..3 Maunder minimum Zeeman effect Proton proton chain Reconnection Dynamo effect Coulomb barrier Stellar parallax Parsec Proper motion Flux Absolute visual magnitude Magnitude distance formula Distance modulus Binary stars Light curve Giant Supergiant Red dwarf White dwarf Luminosity class Neutron star Black hole Magnetostar Spectroscopic class Interstellar medium Nebula Emission nebula Reflection nebula HII region Forbidden line 21 cm radiation molecular cloud Page

13 Body of Knowledge: The Universe and Matter Week Topics Learning Targets and Skills Benchmarks Vocabulary The Universe cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe identify patterns in the organization and distribution of matter in the universe and the forces that determine them recognize that nothing travels faster than the speed of light in vacuum which is the same for all observers no matter how they or the light source are moving recognize the role of creativity in constructing scientific questions, methods and explanations. explain how scientific knowledge and reasoning provide an empirically based perspective to inform society's decision making explain that a scientific theory is the culmination of many scientific investigations drawing together all the current evidence concerning a substantial range of phenomena thus, a scientific theory represents the most powerful explanation scientists have to offer. describe the role consensus plays in the historical development of a theory in any one of the disciplines of science. describe and provide examples of how similar investigations conducted in many parts of the world result in the same outcome. describe instances in which scientists' varied backgrounds, talents, interests, and goals influence the inferences and thus the explanations that they make about observations of natural phenomena and describe that competing interpretations (explanations) of scientists are a strength of science as they are a source of new, testable ideas that have the potential to add new evidence to support one or another of the explanations. describe the function of models in science, and identify the wide range of models used in science. SC.912.E..1 SC.912.E..2 SC.912.P.12.7 SC.912.N.1.7 SC.912.N..1 SC.912.N.3.1 SC.912.N.3.2 SC.912.N.1. SC.912.N.2. SC.912.N.3. CNO Cycle Variable star Cepheid variable Nova Supernova Planetary Nebula Chandrasekhar Limit Lagrangian Point Accretion Disk Super Nova Type I/II Pulsar Singularity Event horizon Schwarzschild Radius Gamma Ray Burst Density Wave Theory Population I/II star Globular Clusters Spiral Galaxy Elliptical galaxy Irregular Galaxy Hubble Constant Olber s Paradox Steady state Theory Isotropy / Anistrophy Open universe Closed universe Dark Matter (Hot/Cold) Dark Energy Supercluster Void Filament Sloan Wall Gravitational Lens Radiogalaxy Quasar Page 10

14 LAFS.910.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of the explanations or descriptions. LAFS.910.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. LAFS.910.RST.2. Determine the meaning of symbols, key terms, and other domain specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9 10 texts and topics. LAFS.910.RST.2. Analyze the structure of the relationship among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy.) LAFS.910.RST.3.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematical (e.g., in an equation) into words. LAFS.910.RST..10 by the end of grade 10, read and comprehend science / technical texts in the grades 9 10 text complexity band independently and proficiently. MAFS.912.A CED.1. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. MAFS.912.S IC.2.6 Evaluate reports based on data. Grades 9 10 ELA Florida Standards Grades 9 12 Math Florida Standards (select courses) LAFS.910.WHST.3.9 Draw evidence from informational texts to support analysis, reflection, and research. LAFS.910.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. a. Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. b. Develop the topic with well chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience s knowledge of the topic. c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts. d. Use precise language and domain specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers. e. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing. f. Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic). MAFS.912.N VM.1.1 Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes. MAFS.912.N VM.1.2 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point. MAFS.912.N VM.1.3 Solve problems involving velocity that can be represented as vectors. Page 1

15 LAFS.1112.RST.1.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and any gaps or inconsistencies in the account. LAFS.1112.RST.1.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text. LAFS.1112.RST.2. Determine the meaning of symbols, key terms, and other domain specific words and phrases as they are used in a specific scientific or technical context relevant to grades texts and topics. LAFS.1112.RST.3.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. LAFS.1112.RST..10 By the end of grade 12, read and comprehend science / technical texts in grades text complexity band independently and proficiently. Grades ELA Florida Standards LAFS.1112.WHST.3.9 Draw evidence from information texts to support analysis, reflection, and research. Grades 9 12 Math Florida Standards (all courses) MAFS.912.F IF.3.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. LAFS.1112.WHST.1.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. b. Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience s knowledge of the topic. c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts. d. Use precise language, domain specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers. e. Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic). MAFS.912.N Q.1.1 Use units as a way to understand problems and to guide the solution of multi step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. MAFS.912.N Q.1.3 Choose a level of accuracy appropriate to limitations measurement when reporting quantities. Page 16

16 Page 17

Volusia County Schools. Physical Science. Curriculum Map. Regular and Honors

Volusia County Schools. Physical Science. Curriculum Map. Regular and Honors Physical Science Curriculum Map Regular and Honors Parts of the Curriculum Map The curriculum map defines the curriculum for each course taught in Volusia County. They have been created by teachers from

More information

Earth Science (Tarbuck/Lutgens), Tenth Edition 2003 Correlated to: Florida Course Descriptions Earth/Space Science, Honors (Grades 9-12)

Earth Science (Tarbuck/Lutgens), Tenth Edition 2003 Correlated to: Florida Course Descriptions Earth/Space Science, Honors (Grades 9-12) LA.1112.1.6.2: The student will listen to, read, and discuss familiar and conceptually challenging text; SE: Text: 2-16, 20-35, 40-63, 68-93, 98-126, 130-160, 164-188, 192-222, 226-254, 260-281, 286-306,

More information

Physical Science. Curriculum Map Volusia County Schools. Regular and Honors

Physical Science. Curriculum Map Volusia County Schools. Regular and Honors Volusia County Schools Curriculum Mapping Committee: Kristie Long Mary Mathis Max Saylor Physical Science Regular and Honors Curriculum Map Parts of the Curriculum Map The curriculum map defines the curriculum

More information

Physical Science Curriculum Map

Physical Science Curriculum Map Curriculum Map Alignment Committee Robert Hernandez Christopher Broomall Mike Cimino Jeremy Blinn Physical Science Curriculum Map Regular and Honors Parts of the Curriculum Map The curriculum map defines

More information

Volusia County Schools. Physical Science. Curriculum Map

Volusia County Schools. Physical Science. Curriculum Map 2012-2013 Volusia County Schools Curriculum Map Parts of the Curriculum Map Body of Knowledge: the broadest organizational structure used to group content and concepts within the curriculum map Pacing:

More information

Giancoli Chapter 0: What is Science? What is Physics? AP Ref. Pgs. N/A N/A 1. Giancoli Chapter 1: Introduction. AP Ref. Pgs.

Giancoli Chapter 0: What is Science? What is Physics? AP Ref. Pgs. N/A N/A 1. Giancoli Chapter 1: Introduction. AP Ref. Pgs. DEVIL PHYSICS PHYSICS I HONORS/PRE-IB PHYSICS SYLLABUS Lesson 0 N/A Giancoli Chapter 0: What is Science? What is Physics? Day One N/A N/A 1 Giancoli Chapter 1: Introduction 1-1 to 1-4 2-10 even 1-11 odd,

More information

St. Johns County School District School Year Course: th Grade Science 8/4/2013 2:25 PM

St. Johns County School District School Year Course: th Grade Science 8/4/2013 2:25 PM St. Johns County School District 2013-2014 School Year Course: 2002100 8 th Grade Science 1 Curriculum Map Terms and Use Text: Pearson Interactive Science Course 3. Supplement with additional materials.

More information

Physics Curriculum Map school year

Physics Curriculum Map school year Physics Curriculum Map- 2014-2015 school year. Quarter Page 1 2-6 2 7-9 3 10-12 4 13-16 This map is a result of surveys and the physics committee- we will implement for the 2013 school year. Please keep

More information

International Olympiad on Astronomy and Astrophysics (IOAA)

International Olympiad on Astronomy and Astrophysics (IOAA) Syllabus of International Olympiad on Astronomy and Astrophysics (IOAA) General Notes 1. Extensive contents in basic astronomical concepts are required in theoretical and practical problems. 2. Basic concepts

More information

ASTR2050: Introductory Astronomy and Astrophysics Syllabus for Spring 1999 January 4, 1999

ASTR2050: Introductory Astronomy and Astrophysics Syllabus for Spring 1999 January 4, 1999 ASTR2050: Introductory Astronomy and Astrophysics Syllabus for Spring 1999 January 4, 1999 This is a working document and will change periodically. It outlines the topics that will be covered during the

More information

The School District of Palm Beach County ALGEBRA 1 REGULAR / HONORS (REVISED ) Section 1: Expressions

The School District of Palm Beach County ALGEBRA 1 REGULAR / HONORS (REVISED ) Section 1: Expressions MAFS.912.A APR.1.1 MAFS.912.A SSE.1.1 MAFS.912.A SSE.1.2 MAFS.912.N RN.1.1 MAFS.912.N RN.1.2 MAFS.912.N RN.2.3 LAFS.910.SL.1.1 LAFS.910.SL.2.4 LAFS.910.RST.1.3 The School District of Palm Beach County

More information

Physics. Curriculum Map Volusia County Schools. Regular and Honors

Physics. Curriculum Map Volusia County Schools. Regular and Honors Volusia County Schools Created For Teachers By Teachers Contributing Teachers: John Clark Jim Clements Mike Ernst Drew Hilburn Patrick Monaghan Physics I Curriculum Map Regular and Honors Parts of the

More information

2. Linear Forces 3. Rotational Motion 4. Forces in fluids. 2. Sound Waves 3. Light Waves

2. Linear Forces 3. Rotational Motion 4. Forces in fluids. 2. Sound Waves 3. Light Waves Scope And Sequence Timeframe Unit Instructional Topics 6 Week(s) 6 Week(s) 6 Week(s) Ongoing Course The emphasis is on the role physics plays in everyday life, thus helping the student to better understand

More information

Kutztown Area School District Curriculum (Unit Map) High School Physics Written by Kevin Kinney

Kutztown Area School District Curriculum (Unit Map) High School Physics Written by Kevin Kinney Kutztown Area School District Curriculum (Unit Map) High School Physics Written by Kevin Kinney Course Description: This introductory course is for students who intend to pursue post secondary studies.

More information

DMPS Earth. Science Curriculum

DMPS Earth. Science Curriculum DMPS Earth 2012 Science Curriculum Iowa Core Statements 1. Understand and apply knowledge of energy in the earth system. Principles that underlie the concept and/or skill include but are not limited to:

More information

Course: Physics 1 Course Code:

Course: Physics 1 Course Code: Course: Physics 1 Course Code: 2003380 SEMESTER I QUARTER 1 UNIT 1 Topic of Study: Scientific Thought and Process Standards: N1 Scientific Practices N2 Scientific Knowledge Key Learning: ~Scientists construct

More information

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion). ASTRONOMY TERMS Albedo Aphelion Apogee A measure of the reflectivity of an object and is expressed as the ratio of the amount of light reflected by an object to that of the amount of light incident upon

More information

Physics 1 Honors (# )

Physics 1 Honors (# ) Physics 1 Honors (#2003390) This document was generated on CPALMS - www.cpalms.org Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Course Number: 2003390

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Exam Board Edexcel There are 2 exams, each is worth 50% of the GCSE

Exam Board Edexcel There are 2 exams, each is worth 50% of the GCSE GCSE Astronomy 2018 19 Course Guide. Sessions will take place each Thursday after school from 3.30 until 5.00. This is a 30 week course running from the 13 th of September 2018 until the 6 th of June 2019.

More information

Astronomy 1143 Final Exam Review Answers

Astronomy 1143 Final Exam Review Answers Astronomy 1143 Final Exam Review Answers Prof. Pradhan April 24, 2015 What is Science? 1. Explain the difference between astronomy and astrology. 2. What number is the metric system based around? What

More information

Dublin City Schools Science Graded Course of Study Physical Science

Dublin City Schools Science Graded Course of Study Physical Science I. Content Standard: Students demonstrate an understanding of the composition of physical systems and the concepts and principles that describe and predict physical interactions and events in the natural

More information

Survey of Astronomy ASTRO 110-5

Survey of Astronomy ASTRO 110-5 Survey of Astronomy ASTRO 110-5 Prof. Istvan Szapudi Institute for Astronomy IfA B204/WAT 401 Phone: 956 6196 Email: szapudi@ifa.hawaii.edu Class meets TTh 12:00 to 13:15 WAT 112 Office Hours after class

More information

Mapping Document. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Mapping Document. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Mapping Document GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) GCSE (9-1) Astronomy Mapping document This document is designed to help you compare the existing 2011

More information

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens Exam# 1 Review Exam is Wednesday October 11 h at 10:40AM, room FLG 280 Bring Gator 1 ID card Bring pencil #2 (HB) with eraser. We provide the scantrons No use of calculator or any electronic device during

More information

Chemistry Curriculum Guide Semester 2 (Reactions) 2015/2016

Chemistry Curriculum Guide Semester 2 (Reactions) 2015/2016 Chemistry Curriculum Guide Semester 2 (Reactions) 2015/2016 UNIT 1 Rxn - Chem (4 Weeks) Standard Physical Science Standard 1 Graduate Competence Apply an understanding of atomic and molecular structure

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

GCSE Astronomy Course Guide. Each Tuesday after school

GCSE Astronomy Course Guide. Each Tuesday after school GCSE Astronomy 2016 17 Course Guide Each Tuesday after school 3.30 5.00 Exam Board Edexcel Controlled Assessment Deadline - 4 th April 2017. Exam Wednesday 7 th June 2017, 1.30pm Edexcel GCSE Astronomy

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Treasure Coast Science Scope and Sequence

Treasure Coast Science Scope and Sequence Course: Earth/ Space Science Honors Course Code: 2001320 Quarter: 2A Topic(s) of Study Energy and the Atmosphere Bodies of Knowledge: Earth and Space, Nature of Science Standard(s): Earth Systems and Patterns

More information

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science Physics Curriculum Physics Overview Course Description Physics is the study of the physical world and is a mathematical application of science. The study includes an investigation of translational and

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter C. High School

Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter C. High School Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter C. High School Statutory Authority: The provisions of this Subchapter C issued under the Texas Education Code, 7.102(c)(4), 28.002,

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

STANDARD 1: ACHIEVE A SOLID BASELINE OF SCIENTIFIC KNOWLEDGE IN ASTRONOMY CONTENT TO MAKE DETERMINATIONS ABOUT HOW THE WORLD WORKS GRAVITY AND MOTION

STANDARD 1: ACHIEVE A SOLID BASELINE OF SCIENTIFIC KNOWLEDGE IN ASTRONOMY CONTENT TO MAKE DETERMINATIONS ABOUT HOW THE WORLD WORKS GRAVITY AND MOTION FCPS POS FOR ASTRO- SOLAR SYSTEM & UNIVERSE STANDARD 1: ACHIEVE A SOLID BASELINE OF SCIENTIFIC KNOWLEDGE IN ASTRONOMY CONTENT TO MAKE DETERMINATIONS ABOUT HOW THE WORLD WORKS GRAVITY AND MOTION 1.1.1 BENCHMARK:

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Conceptual Chemistry & Physics Curriculum Guide 2016/2017

Conceptual Chemistry & Physics Curriculum Guide 2016/2017 Conceptual Chemistry & Physics Curriculum Guide 2016/2017 UNIT 1 (5Weeks) Standard Physical Science Standard 1 Graduate Competence Apply an understanding of atomic and molecular structure to explain the

More information

Advanced Astronomy, C.P.

Advanced Astronomy, C.P. East Penn School District Secondary Curriculum A Planned Course Statement for Advanced Astronomy, C.P. Course # 422 Grade(s) 10, 11,12 Department: Science ength of Period (mins.) 40 Total Clock Hours:

More information

Contributing Teachers: Donna Alvator Michael Ernst. Judy Ngying

Contributing Teachers: Donna Alvator Michael Ernst. Judy Ngying 2014 2015 Volusia County Schools Contributing Teachers: Donna Alvator Michael Ernst Norma Faria F Judy Ngying Chemistry I Regular and Honors Curriculum Map Parts of the Curriculum Map The curriculum map

More information

SC101 Physical Science A

SC101 Physical Science A SC101 Physical Science A Science and Matter AZ 1.1.3 Formulate a testable hypothesis. Unit 1 Science and Matter AZ 1.1.4 Predict the outcome of an investigation based on prior evidence, probability, and/or

More information

HS AP Physics 1 Science

HS AP Physics 1 Science Scope And Sequence Timeframe Unit Instructional Topics 5 Day(s) 20 Day(s) 5 Day(s) Kinematics Course AP Physics 1 is an introductory first-year, algebra-based, college level course for the student interested

More information

Chemistry-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS

Chemistry-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS Chemistry-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS FIRST SEMESTER FIRST/SECOND SECOND SEMESTER Unit 1 Motion and Matter Unit 2 Atomic Trends and Behavior Unit 3 Chemical Reactions Unit

More information

Universe Now. 12. Revision and highlights

Universe Now. 12. Revision and highlights Universe Now 12. Revision and highlights Practical issues about the exam The exam is on Monday 6.5. (12.00-16.00), lecture hall B121 (Exactum). Paper will be provided. You have 4 hours to finish the exam,

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

ES - Astronomy Part 2 Post-Test

ES - Astronomy Part 2 Post-Test ES - Astronomy Part 2 Post-Test True/False Indicate whether the statement is true or false. 1. Compared to the human eye, telescopes can collect light over longer periods of time. 2. The inner planets

More information

New Mexico Public Education Department

New Mexico Public Education Department New Mexico Public Education Department Assessment Blueprint Physics End-of-Course (EoC) Exam SY 2016-17 Purpose Statement Physics The Physics End-of-Course assessment is designed to measure student proficiency

More information

Directions: For numbers 1-30 please choose the letter that best fits the description.

Directions: For numbers 1-30 please choose the letter that best fits the description. Directions: For numbers 1-30 please choose the letter that best fits the description. 1. The main force responsible for the formation of the universe is: a. Gravity b. Frictional force c. Magnetic force

More information

MATH - Fourth Course

MATH - Fourth Course CUSD 303 Year: 2012-2013 Content Cluster Standard Standard Skill Statement Resources The Complex Number System Perform arithmetic operations with complex numbers 4th.NCN3 Find the conjugate of a complex

More information

PHYS1118 Astronomy II

PHYS1118 Astronomy II PHYS1118 Astronomy II Course Description: This course is designed for non-science students. A study of astronomy as related to humans and society. Topics include elements of Newtonian physics, Relativity,

More information

Physics Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS

Physics Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS MONTGOMERY COUNTY PUBLIC SCHOOLS Physics Curriculum Pacing Guide 1 st 9 Weeks SOL Objectives Vocabulary 2 Days INTRODUCTION: PH.1 The student will plan and conduct investigations using experimental design

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

More information

Final Exam. Sample Questions. Final Exam. Which of the following statement is true? THE FINAL IS DECEMBER 15 th : 7-10pm!

Final Exam. Sample Questions. Final Exam. Which of the following statement is true? THE FINAL IS DECEMBER 15 th : 7-10pm! THE FINAL IS DECEMBER 15 th : 7-10pm! Review Session Final Exam Date: Monday, Dec 15 th Place and Time: In the Greg 100 classroom 7pm until 10pm. The test is designed for 2 hours. Format: 80 multiple choice

More information

Pennsylvania State Standards in Physics Education

Pennsylvania State Standards in Physics Education Pennsylvania State Standards in Physics Education According to academic standards set forth by the Pennsylvania Department of Education, in the physics sciences, chemistry and physics students receive

More information

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014 AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014 DO NOT open the exam until instructed to. Please read through the instructions below and fill out your details on the Scantron form. Instructions 1.

More information

Student Review Investigations in Earth and Space Science Semester A 2015 Examination

Student Review Investigations in Earth and Space Science Semester A 2015 Examination Investigations in Earth and Space Science Semester A Examination Test Description Length: 2 hours Items: 56 SR (85%), 2 BCRs (15%) Unit Approximate Number of Selected Response Items IESS Skills and Processes

More information

Earth and Space Science Quarter 4. Sun-Earth-Moon System (Duration 2 Weeks)

Earth and Space Science Quarter 4. Sun-Earth-Moon System (Duration 2 Weeks) HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT Earth and Space Science Quarter 4 Sun-Earth-Moon System (Duration 2 Weeks) Big Idea: Essential Questions: 1. Describe the lunar surface 2. Explain

More information

INSTRUCTIONAL FOCUS DOCUMENT High School Courses Science/Chemistry

INSTRUCTIONAL FOCUS DOCUMENT High School Courses Science/Chemistry State Resources: Texas Education Agency STAAR Chemistry Reference Materials. Retrieved from http://www.tea.state.tx.us/student.assessment/staar/science/ (look under "Specific STAAR Resources," "Science").

More information

A.P. Chemistry II Students Will Be Able To Do Standards

A.P. Chemistry II Students Will Be Able To Do Standards A.P. Chemistry II Students Will Be Able To Do Standards Quarter 1 (Approx. 3 Weeks) Students Will Be Able to Standard The student can justify the observation that the ratio of the masses of the constituent

More information

Astronomy: The Evolving Universe 9/e

Astronomy: The Evolving Universe 9/e Astronomy: The Evolving Universe 9/e Chapter 1 Key Terms angular diameter angular distance angular speed celestial pole circumpolar stars conjunction constellation eclipse (lunar/solar) ecliptic equinox

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

Astrophysics. Introduction

Astrophysics. Introduction Astrophysics Objectives: 00UV Discipline: Physics Ponderation: 3-2-3 Course Code: 203-BZA-05 Prerequisite: 00UT (Waves, Optics and Modern Physics) Course Credit: 2 2/3 Corequisite Semester: 4 Introduction

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

CHAPTER 28 STARS AND GALAXIES

CHAPTER 28 STARS AND GALAXIES CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

AST 301, Introduction to Astronomy Course Description and Syllabus Fall 2012

AST 301, Introduction to Astronomy Course Description and Syllabus Fall 2012 AST 301, Introduction to Astronomy Course Description and Syllabus Fall 2012 Instructor: Dr. Edward L. Robinson Dept. of Astronomy, UT Unique Number: 47705 Lecture Time MWF 10 11 AM Lecture Location: WEL

More information

RHHS Unit Template Unit Name: Astronomy

RHHS Unit Template Unit Name: Astronomy RHHS Unit Template Unit Name: Astronomy Grade: 10th Content Area: Science Duration: -8 Days Essential Question(s): How can we explain Earth s position and motions in space? How can we differentiate between

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU 1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

More information

Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3. Chapter 5 : Review & Discussion Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Course: Physics 1 Honors Course Number:

Course: Physics 1 Honors Course Number: Course: Physics 1 Honors - 2003390 Course Number: 2003390 Course Path: Section: Grades PreK to 12 Education Courses» Grade Group: Grades 9 to 12 and Adult Education Courses» Subject: Science» SubSubject:

More information

Conceptual Integrated Science Explorations

Conceptual Integrated Science Explorations A Correlation of Conceptual Integrated Science Explorations Florida Edition 2012 To the Florida Integrated Science Level 2 Course 2002430 Grades 9-12 INTRODUCTION This document demonstrates how Explorations,

More information

Chemistry Curriculum Guide Semester /2017

Chemistry Curriculum Guide Semester /2017 Chemistry Curriculum Guide Semester 2 2016/2017 UNIT 1 Chemistry Sem. 2 (4 Weeks) Standard Physical Science Standard 1 Graduate Competence Apply an understanding of atomic and molecular structure to explain

More information

SC102 Physical Science B

SC102 Physical Science B SC102 Physical Science B NA NA 1 Define scientific thinking. 1.4.4. Support conclusions with logical scientific arguments. 1 Describe scientific thinking. Identify components of scientific thinking. Describe

More information

Astronomy 1504/15014 Section 20

Astronomy 1504/15014 Section 20 1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

More information

Deep Sky Astronomy page James E. Kotoski

Deep Sky Astronomy page James E. Kotoski page 1 2001 James E. Kotoski Part II: What is? Have you ever wondered where our solar system came from, or... what is going to happen to it when it dies? Have you ever wondered what a galaxy was, and where

More information

COURSE OUTLINE Descriptive Astronomy

COURSE OUTLINE Descriptive Astronomy Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2008 Implemented Spring 2009 Textbook Update Fall 2013 COURSE OUTLINE Descriptive Astronomy Course

More information

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets?

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets? This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Activitydevelop Hunting for Planets How

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

Course Descriptions. Appendix F

Course Descriptions. Appendix F Appendix F Course Descriptions Seven new courses are required to implement the Space Physics program, and their course descriptions are contained in this appendix. 51 F.1 Course Description: Physics II

More information

INTRODUCTION TO ASTRONOMY LAB

INTRODUCTION TO ASTRONOMY LAB INTRODUCTION TO ASTRONOMY LAB Course Design 2002-2003 Course Information Organization: Division: Course Number: PHY 102 Title: Credits: 1 Developed by: Lecture/Lab Ratio: Transfer Status: Extended Registration

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 1 TEST VERSION 1 ANSWERS NOTE: Question 20 Fixed

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 1 TEST VERSION 1 ANSWERS NOTE: Question 20 Fixed AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 1 TEST VERSION 1 ANSWERS NOTE: Question 20 Fixed Multiple Choice. In the blanks provided before each question write the letter for the phrase

More information

Unlocking the Solar System

Unlocking the Solar System Unlocking the Solar System Grade 5 Pre-Visit Activities Howard B. Owens Science Center Unlocking the Solar System (5 th grade) DESCRIPTION What *IS* a solar system? What does it look like? What SHOULD

More information

Universe Review. 3. The light emitted from a star is studied by astronomers to determine which of the following properties?

Universe Review. 3. The light emitted from a star is studied by astronomers to determine which of the following properties? Name: Universe Review Period: 1. Which type of telescope uses mirrors to focus visible light? A. reflecting telescope B. radio telescope C. infrared telescope D. refracting telescope 2. Which type of telescope

More information

Conceptual Integrated Science Explorations Florida Edition 2012

Conceptual Integrated Science Explorations Florida Edition 2012 A Correlation of Conceptual Integrated Science Explorations To the Florida Integrated Science 1 Honors Course #2002410 Grades 9-12 INTRODUCTION This document demonstrates how, Florida Edition 2012, meets

More information

8 th Grade Science Curriculum Guide 2015/2016

8 th Grade Science Curriculum Guide 2015/2016 8 th Grade Science Curriculum Guide 2015/2016 UNIT 1 (6 Weeks) Standard Physical Science Standard 1 Graduate Competence Apply an understanding of atomic and molecular structure to explain the properties

More information

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star.

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star. Stars, Galaxies, Use Target Reading Skills Check student definitions for accuracy. 1. Electromagnetic radiation is energy that can travel through space in the form of waves. 2. visible light 3. wavelength

More information

Honors Physics. Grade 11 and 12. Hopatcong Board of Education

Honors Physics. Grade 11 and 12. Hopatcong Board of Education Honors Physics Grade 11 and 12 Hopatcong Board of Education August 2006 Honors Physics Revised August 2006 COURSE DESCRIPTION: (The course description sets the parameters, scope and sequence for the course:

More information

Pine Hill Public Schools Curriculum

Pine Hill Public Schools Curriculum Content Area: Pine Hill Public Schools Curriculum Science Course Title/ Grade Level: Honors Physics / Gr. 11 & 12 Unit 1: Unit 2: Unit 3: Unit 4: Unit 4: Introduction, Measurement, Estimating Duration:

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

Astronomy Part 1 Regents Questions

Astronomy Part 1 Regents Questions Regents Questions 1. The Sun revolves around the center of A) Polaris B) Aldebaran C) Earth D) the Milky Way Galaxy 4. In which sequence are the items listed from least total mass to greatest total mass?

More information

1st 9 Weeks SOL Objectives Vocabulary Safety

1st 9 Weeks SOL Objectives Vocabulary Safety Course Name: Pre-AP physics Team Names: Jon Collins 1st 9 Weeks SOL Objectives Vocabulary Safety Math Kinematics a) linear motion; 1 DAY 1 WEEK Unit conversion Scientific notation displacement velocity

More information

USAAAO First Round 2015

USAAAO First Round 2015 USAAAO First Round 2015 This round consists of 30 multiple-choice problems to be completed in 75 minutes. You may only use a scientific calculator and a table of constants during the test. The top 50%

More information

Science & Tech. Subjects, Grade 6-8 (RST.6-8.1) Cite specific textual evidence to support analysis of science and technical texts.

Science & Tech. Subjects, Grade 6-8 (RST.6-8.1) Cite specific textual evidence to support analysis of science and technical texts. Alignment of Alien Rescue with the Common Core Alien Rescue was designed to meet the learning goals set out in the Common Core English Language Arts & Literacy in Science and Technical Subjects, Grade

More information

Grade 8 Science Curriculum Maps

Grade 8 Science Curriculum Maps Grade 8 Science Curriculum Maps Unit 1: Chemical Bonding Unit 2: Chemical Reactions Unit 3: Chemical Compounds Unit 4: Atomic Energy Unit 5: Studying Space Unit 6: Stars, Galaxies, and the Universe Unit

More information

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

More information