Compact multi-band visible camera for 1m-class fast telescopes

Size: px
Start display at page:

Download "Compact multi-band visible camera for 1m-class fast telescopes"

Transcription

1 Compact multi-band visible camera for 1m-class fast telescopes Alberto Riva *a, Paolo Spanò a a INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I Merate, ITALY ABSTRACT Most of the small 1m-class telescopes designed for fast tracking of transient object, like GRBs, are equipped with infrared and visible cameras, fed through a dichroic. We studied a new concept for a fast and compact multi-band visible camera, using successive dichroics, to cover simultaneously many visible bands (U,B,V,R, and I), sampled with one more CCD detectors. This extended spectral coverage will help to observe transient faint objects. To keep envelope size, weight and overall cost at a reasonable level, a trade-off has been carried out. Keywords: Visible camera, 1m-class telescopes, multi-band, dichroic, GRB 1. INTRODUCTION This paper presents the study and design of some optical elements necessary in order to build instruments with the possibility to produce simultaneous acquisitions of the same source in different spectral customizable bands. Many astrophysical fields can benefit from such an instrument, mainly in the monitoring of fast transient sources. In particular, we can gain the possibility to measure the spectral energy distribution in one exposure. Some of the most appealing sources to be monitored with this kind of instruments will be the Gamma Ray Bursts (GRB), the Active Galactic Nuclei (AGN), variable stars, objects with peculiar spectral features. One of the pioneering instruments that use the principle of simultaneous acquisition in different bands is GROND, a seven-channel instrument installed at MPI/ESO 2.2m, at La Silla (Chile) [1]. We are proposing the translation of the principle into instruments suitable for smaller 1-m class telescopes. This idea comes from the availability of small telescopes dedicated to the monitoring of fast transient like GRB. In this paper we will present solutions for the optical arm for the two 60-cm telescopes, REM and BOOTES, respectively installed on La Silla (Chile) and Sierra Nevada (Spain). 2. SPLITTING THE BEAM The core of multi-band instruments with simultaneous acquisition stands in the definition and design of the element that splits the beam into the desired bands. This element has the function to separate the white beam into the desired number of colored arms. The splitting element has been thought to be placed in the collimated part of the system, in order to reduce at minimum the aberrations. In this paper we present two alternative solutions in order to split the beam into four channels. 2.1 Wavelength selection As a first step, we studied how to split light vs. wavelength, deriving the number of useful arms that can be observed at a time. A strong constraint comes from the telescope mirror coatings. As example, we use the case of two similar telescopes. The first is REM described in Zerbi et al. [2], and the second is BOOTES-IR described in Castro Tirado et al. [3]. The coatings of REM mirrors are made in protected Silver. This kind of coatings has a cutoff below 400 nm. * alberto.riva@brera.inaf.it; phone ; fax ; Ground-based and Airborne Instrumentation for Astronomy II, edited by Ian S. McLean, Mark M. Casali, Proc. of SPIE Vol. 7014, , (2008) X/08/$18 doi: / SPIE Digital Library -- Subscriber Archive Copy Proc. of SPIE Vol

2 IvI I I 400 S *aveteth IN NflCMETERS 900 Fig. 1. Melles-Griot typical protected Silver curve. This converts the minimum wavelength for the instrument design at 400 nm. In order to maximize observational efficiency, instead of classical Johnson Cousins filters BVRI, we can adopt a better suited Sloan filters. Due to the stated minimum wavelength, the only available filters will be g,r,i,z. 100 go o Sloan filters Xnm Fig. 2. Sloan Digital Sky Survey (SDSS) filters. Filter Table 1. SDSS filters parameters [4]. Central wavelength (nm) FWHM bandpass (nm) Peak efficiency Recipe (glass + coating) g >90% 2mm GG mm BG38 + short-pass cutoff 550 nm r >95% 4mm OG mm BK7 (**) + short-pass cutoff 700 nm i >95% 4mm RG mm BK7 (**) + short-pass cutoff 850 nm z 835 (*) - >95% 4mm RG mm BK7 (**) (*) cut-off wavelength (**) to have the same overall thickness Proc. of SPIE Vol

3 2.2 The Quadrichroic One of the solution studied use the internal reflections of a single cube as shown in Fig. 3. The splitting scheme is shown in Fig. 4. Incoming beam Counter- disp ers or Second Ann Wedge(s) Reflected Beam (tirst ann) Fourth Ann Third Ann Fig. 3. The optical layout of the quadrichroic system. One dichroic layer is between air and glass, while the other two are inside the glass assembly > Fig. 4. Scheme of separation of light for the quadrichroic Proc. of SPIE Vol

4 The light comes from the collimator and goes on the counter-disperser prism. This prism has two functions: the first is to compensate for the dispersion introduced by the material of the cube, the second one is to present the chief ray inside the cube at a 45 degrees with respect to each face. On the first face of the wedge we assumed to place the first dichroic coating. It makes the surface reflective for the light that must go into the first arm and transmissive for the remaining part of the spectrum. Once passed in the counter-disperser, the beam goes in the cube with the proper angle. When the light comes to the first face of the cube it is split in two beams through another dichroic coating. The coating is deposed on the face of a wedge in contact with the cube. The presence of the wedge is necessary because otherwise the light coming out from the cube has a strong anamorphism. The introduction of the wedge help in the manufacturing of the system. Indeed this solution avoids the deposition of different coatings on different faces of the cube itself. The manufacturing process of deposition of a multilayer dichroic coating is performed through a massive heating of the substrate. The different multilayer coatings (due to different wavelengths cut off) are deposed in separate processes and the heating of the cube can damage the previous deposition. The light coming out from the wedge feeds the second arm of the instruments, while the other parts continue its path inside the cube going to the other face where it finds another dichroic coating deposed on the wedge attached to the face. The considerations made for the second arm are the same for the third arm, obviously except for the wavelength range. The last crossing of the light on the face of the cube is slightly different. In this case we don t need a dichroic coating but we want all the light passing and going into the wedge that has the only function of giving an acceptable angle to the outcoming beam that will form the fourth arm. Fig. 5. This figure shows different perspectives of the assembling for the quadrichroic. Proc. of SPIE Vol

5 > Fig. 6. Scheme of separation of light for the multi-cube. Fig. 7. Optical layout of the dichroic system Proc. of SPIE Vol

6 2.3 The Multicube An alternative solution studied consists in the use of multiple dichroic cubes in order to produce four arms. In this configuration, the light coming from the collimator comes to a cube-dichroic that separates the light into two arms. The difference with the previous scheme stands in the cut-wavelength. Indeed it separates the spectrum into two equal parts. In this solution each arm will pass through two dichroics, while in the other solution the number of dichroics per each arm will vary. The choice between the two configurations can be done analyzing the performances of each dichroic coating. In order to simplify the layout for the incoming and outcoming beams, three 45 total internal reflection prisms (eventually silver coated onto the hypotenuse of the triangle) has been added, one after the first dichroic, the other two after the remaining dichroics. For the reduction of costs and manufacturing issues, this dichroic train is composed by standard BK7 right angle prisms with a standard dimension (30mm, in this layout). During manufacturing only custom coatings need to be applied: dichroic coatings for splitting elements, and anti reflection (A/R) coatings on the external surfaces. Non optical surfaces can be black painted to reduce scattered light. Prisms will be cemented together to give better stability. Folding prisms are used as total internal reflection prisms if the Total Internal Reflection (TIR) condition is met. If smaller incidence angles will be present, prisms with aluminized hypotenuse can be used. 2.4 Efficiency A simple comparison between the two configurations can be performed analyzing the efficiencies. In the following table we show the results for the two alternatives.designs. The first calculation is done through parametric numbers, and then we show results for mean values. This because the efficiency curves depend from the multilayer coatings and the substrates chosen. We will use α for the reflection in air, β for the reflection into a glass and γ for the transmission. We tried to introduce some typical numbers for the mean efficiency, assuming 0.98 for reflection in air, 0.97 for reflection in glass and 0.95 for transmission. These are obviously representative numbers, but according to the formulas they can be changed depending on real numbers. Table 2. Evaluation of efficiencies for the two configurations Quadrichroic Multi-cube Parameters Numbers Parameters Numbers First channel α 0.98 β Second channel γ βγ 0.92 Third channel βγ βγ 0.92 Fourth channel β 2 γ γ A POSSIBLE INNOVATIVE SOLUTION FOR UPDATING REM-ROSS ROSS is the visible camera currently installed on the REM telescope. Its design is described in Tosti et al. [5]. The camera layout is mainly a relay 1:1 optics that matches the infrared field of view onto the visible arm. We propose an alternative solution in order to update the existing instrument. The camera is fed by an initial dichroic that separate the infrared beam for REMIR and the visible one for ROSS. After that, a focal plane is formed 150 mm Proc. of SPIE Vol

7 from the REMIR optical axis. Then a collimator with two identical doublets creates a collimated beam with a diameter of 14mm. To optimize image quality and reduce chromatic effects within the selected wavelength range ( nm), doublets are made with S-FPL53/S-LAL14 (Ohara preferred glasses). Then light passes through the multi-cube dichroic system, being split into four similar beams. To focus light onto the detector, four very similar cameras (only distances between elements can vary, to optimize image quality) are used, made by two doublets and a singlet. Doublets are again in S- FPL53/S-LAL14, while the S-BSM14 can control residual chromatism. Some surfaces are flat to reduce the number of manufacturing steps. Finally, to send light towards the same detector, four displacing prisms are used, made by two right angle prisms. In order to maximize the effective field of view, we need to reduce the dead gaps between the four images. This can be achieved with a proper size of these prisms, and a rotation of them with respect to axes defined by the 2 by 2 matrix camera system. This, in turn, requires a rotation of the dichroic system of the same angle. Table 3 Estimated final paremeters for ROSS2 FoV: 9.1 x 9.1 arcmin 2 Plate scale: 0.56 arcsec/pixel CCD: 2048 x 2048, 13 micron Wavelength: nm Channels: 4 (Sloan g, r, i, z ) Fig. 8. Optical layout of the unfolded collimator-camera system Image quality is diffraction-limited over the whole field of view. Proc. of SPIE Vol

8 Fig. 9. Spot diagrams of the overall system. Boxes are two pixels wide. Disks show the Airy disk. The different configurations refer to different wavelength range because the four cameras will see different bands. Configuration 2 refers to two channels with identical cameras. Ii Fig. 10. Layout of the ROSS2 camera with the REM telescope layout Proc. of SPIE Vol

9 Dichroic system /4 a REM focal plane Cameras 4- collimator Folding prisms CCD Fig. 11. Layout of the ROSS2 camera. Fig. 12. Layout of folding prisms to recollect light from different cameras to the same detector REFERENCES [1] [2] [3] [4] [5] Greiner J., Borrenmann W., Clemens C., Deuter M., Hasinger G., et al., GROND - a 7-channel imager, The PASP Vol 120, Issue 866, Zerbi F.M., Chincarini G., Ghisellini G., Rodonò S., et al, REM telescope, a robotic facility to monitor the prompt afterglow of Gamma Ray Bursts, Proc. SPIE 4841, (2003). Castro Tirado A.J., et al., "BOOTES-IR: a robotic nir astronomical observatory devoted to follow up of transient phenomena", Proc. SPIE 6267, 62670I (2006). Fukugita M., et al, The Sloan Digital Sky Survey Photometric System, AJ 111, 1748 Tosti G., et al, The REM optical slitless spectrograph (ROSS), Proc. SPIE 5492, (2004). Proc. of SPIE Vol

Multi-frequency. Observations Using REM at la Silla. Filippo Maria Zerbi INAF Osservatorio di Brera On behalf of the REM/ROSS team

Multi-frequency. Observations Using REM at la Silla. Filippo Maria Zerbi INAF Osservatorio di Brera On behalf of the REM/ROSS team Multi-frequency Observations Using REM at la Silla Filippo Maria Zerbi INAF Osservatorio di Brera On behalf of the REM/ROSS team A fast moving telescope Alt-az 60 cm f/8 RC silver-coated 2 Nasmyth foci

More information

Our astronomical filters have been supplied or installed in the followings.

Our astronomical filters have been supplied or installed in the followings. Astronomical Filters Asahi Spectra has supplied astronomical filters with science-grade to world famous observatories, institutes or universities for over 15 years. Unlike cheap astronomical filters for

More information

Atmospheric dispersion correction for the Subaru AO system

Atmospheric dispersion correction for the Subaru AO system Atmospheric dispersion correction for the Subaru AO system Sebastian Egner a, Yuji Ikeda b, Makoto Watanabe c,y.hayano a,t.golota a, M. Hattori a,m.ito a,y.minowa a,s.oya a,y.saito a,h.takami a,m.iye d

More information

Study of Physical Characteristics of High Apogee Space Debris

Study of Physical Characteristics of High Apogee Space Debris Study of Physical Characteristics of High Apogee Space Debris Yongna Mao, Jianfeng Wang, Xiaomeng Lu, Liang Ge, Xiaojun Jiang (National Astronomical Observatories, Beijing, 100012, China) Abstract Date

More information

The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies

The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies Dae-Sik Moon* a, Luc Simard b, Dafna Sussman a, David Crampton b, Max Millar-Blanchaer a, Raymond

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

A very versatile, large A-omega, fibre-fed spectrograph design. Ian Parry IoA, Cambridge

A very versatile, large A-omega, fibre-fed spectrograph design. Ian Parry IoA, Cambridge A very versatile, large A-omega, fibre-fed spectrograph design Ian Parry IoA, Cambridge 1 But first a quick diversion to support Alvio s case NIR multi-object spectroscopy with fibres works! CIRPASS was

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph Lecture 7: Optical Spectroscopy Outline 1 Astrophysical Spectroscopy 2 Broadband Filters 3 Fabry-Perot Filters 4 Interference Filters 5 Prism Spectrograph 6 Grating Spectrograph 7 Fourier Transform Spectrometer

More information

Hanle Echelle Spectrograph (HESP)

Hanle Echelle Spectrograph (HESP) Hanle Echelle Spectrograph (HESP) Bench mounted High resolution echelle spectrograph fed by Optical Fiber Second generation instrument for HCT The project is a technical collaboration between Indian Institute

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Grand Canyon 8-m Telescope 1929

Grand Canyon 8-m Telescope 1929 1 2 Grand Canyon 8-m Telescope 1929 3 A World-wide Sample of Instruments 4 Instrumentation Details Instrument name Observing Modes Start of operations Wavelength Coverage Field of View Instrument cost

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

High-Resolution Imagers

High-Resolution Imagers 40 Telescopes and Imagers High-Resolution Imagers High-resolution imagers look at very small fields of view with diffraction-limited angular resolution. As the field is small, intrinsic aberrations are

More information

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS MATHEMATICAL TRIPOS Part III Monday, 12 June, 2017 1:30 pm to 3:30 pm PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS Attempt no more than TWO questions. There are THREE questions

More information

Astro 500 A500/L-15 1

Astro 500 A500/L-15 1 Astro 500 A500/L-15 1 Lecture Outline Spectroscopy from a 3D Perspective ü Basics of spectroscopy and spectrographs ü Fundamental challenges of sampling the data cube Approaches and example of available

More information

X- & γ-ray Instrumentation

X- & γ-ray Instrumentation X- & γ-ray Instrumentation Used nuclear physics detectors Proportional Counters Scintillators The Dark Ages Simple collimators HEAO A1 & A2: 2 x 8 degree field of view Confusion limit is about 200 sources

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope The Large Synoptic Survey Telescope Philip A. Pinto Steward Observatory University of Arizona for the LSST Collaboration 17 May, 2006 NRAO, Socorro Large Synoptic Survey Telescope The need for a facility

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg Classical Interferometric Arrays Andreas Quirrenbach Landessternwarte Heidelberg The VLT Interferometer Tucson 11/14/2006 Andreas Quirrenbach 2 Optical / Infrared Interferometry Today Access to milliarcsecond-scale

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

A very wide field focusing telescope for Synoptic studies in the soft X-ray band

A very wide field focusing telescope for Synoptic studies in the soft X-ray band A very wide field focusing telescope for Synoptic studies in the soft X-ray band Paul Gorenstein Harvard-Smithsonian Center for Astrophysics Cambridge, MA 02138 Synoptic Telescopes, (Broad Coverage of

More information

Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations

Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations Mem. S.A.It. Suppl. Vol. 2, 125 c SAIt 2003 Memorie della Supplementi Mid-Infrared Astronomy with IRAIT at Dome C: performances and simulations M. Fiorucci 1,3, P. Persi 2, M. Busso 1, S. Ciprini 1,3,

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

arxiv: v1 [astro-ph] 5 Mar 2008

arxiv: v1 [astro-ph] 5 Mar 2008 X-shooter: a medium-resolution, wide-band spectrograph for the VLT arxiv:0803.0609v1 [astro-ph] 5 Mar 2008 L. Kaper 1, S. D Odorico 2, F. Hammer 3, R. Pallavicini 4, P. Kjaergaard Rasmussen 5, H. Dekker

More information

Optics and Telescopes

Optics and Telescopes Optics and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

BV R photometry of comparison stars in selected blazar fields

BV R photometry of comparison stars in selected blazar fields ASTRONOMY & ASTROPHYSICS JUNE I 1998, PAGE 305 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 305 310 (1998) BV R photometry of comparison stars in selected blazar fields I. Photometric sequences

More information

Chapter 5 Telescopes

Chapter 5 Telescopes Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

More information

Characterisation & Use of Array Spectrometers

Characterisation & Use of Array Spectrometers Characterisation & Use of Array Spectrometers Mike Shaw, Optical Technologies & Scientific Computing Team, National Physical Laboratory, Teddington Middlesex, UK 1 Overview Basic design and features of

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Spectrographs & Spectroscopy Spectroscopy What is spectroscopy? A little history. What can we learn from spectroscopy? Play with simple spectrographs. Basic optics of a spectrograph.

More information

The REM (Rapid Eye Mount) telescope: an Observatory for GRBs and other transient sources

The REM (Rapid Eye Mount) telescope: an Observatory for GRBs and other transient sources Eliana Palazzi INAF/OAS Bologna On behalf of GRAWITA The REM (Rapid Eye Mount) telescope: an Observatory for GRBs and other transient sources WHAT is REM composed of? and an Optical Camera: ROS2 0.58"

More information

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus Light and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

Stray Light Rejection in Array Spectrometers

Stray Light Rejection in Array Spectrometers Stray Light Rejection in Array Spectrometers Mike Shaw, Optical Technologies & Scientific Computing Team, National Physical Laboratory, Teddington, Middlesex, UK 1 Overview Basic optical design of an array

More information

Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope

Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope Manuel A. Quijada a, Catherine Trout Marx b, Richard G. Arendt c and S. Harvey Moseley

More information

Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

More information

OCTOCAM: A fast multichannel imager and spectrograph for the 10.4m GTC

OCTOCAM: A fast multichannel imager and spectrograph for the 10.4m GTC OCTOCAM: A fast multichannel imager and spectrograph for the 10.4m GTC Antonio de Ugarte Postigo* a, Javier Gorosabel b, Paolo Spanò a, Marco Riva a, Ovidio Rabaza b, Vincenzo de Caprio c, Ronan Cuniffe

More information

Prompt GRB Optical Follow-up Experiments

Prompt GRB Optical Follow-up Experiments Prompt GRB Optical Follow-up Experiments Lawrence Livermore National Laboratory Livermore, CA USA Upper Limits on the Prompt Optical Emission From G. G. William s PhD thesis (2000) Experimental Goal &

More information

Research Article Design, Manufacturing, and Commissioning of BIRCAM (Bootes InfraRed CAMera)

Research Article Design, Manufacturing, and Commissioning of BIRCAM (Bootes InfraRed CAMera) Advances in Astronomy Volume 2010, Article ID 760416, 8 pages doi:10.1155/2010/760416 Research Article Design, Manufacturing, and Commissioning of BIRCAM (Bootes InfraRed CAMera) Alberto Riva, 1 Paolo

More information

Telescopes: Portals of Discovery

Telescopes: Portals of Discovery Telescopes: Portals of Discovery How do light and matter interact? Emission Absorption Transmission Transparent objects transmit light Opaque objects block (absorb) light Reflection or Scattering Reflection

More information

Common questions when planning observations with DKIST Jan 30, 2018

Common questions when planning observations with DKIST Jan 30, 2018 Common questions when planning observations with DKIST Jan 30, 2018 1. Can the DKIST instruments work together? All instruments except Cryo-NIRSP can work together and with Adaptive Optics (AO). All can

More information

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

More information

3/7/2018. Light and Telescope. PHYS 1411 Introduction to Astronomy. Topics for Today s class. What is a Telescopes?

3/7/2018. Light and Telescope. PHYS 1411 Introduction to Astronomy. Topics for Today s class. What is a Telescopes? PHYS 1411 Introduction to Astronomy Light and Telescope Chapter 6 Topics for Today s class Optical Telescopes Big Telescopes Advances in Telescope Designs Telescopes Mountings Problems with Mirrors and

More information

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017 Lecture 7: Real Telescopes & Cameras Stephen Eikenberry 05 October 2017 Real Telescopes Research observatories no longer build Newtonian or Parabolic telescopes for optical/ir astronomy Aberrations from

More information

Wideband Infrared Spectrometer for Characterization of Transiting Exoplanets with Space Telescopes

Wideband Infrared Spectrometer for Characterization of Transiting Exoplanets with Space Telescopes Wideband Infrared Spectrometer for Characterization of Transiting Exoplanets with Space Telescopes Keigo Enya Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Chuou-ku,

More information

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC

CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC Astronomical Polarimetry: Current Status and Future Directions ASP Conference Series, Vol. 343, 2005 Adamson, Aspin, Davis, and Fujiyoshi CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC

More information

Photometric Studies of GEO Debris

Photometric Studies of GEO Debris Photometric Studies of GEO Debris Patrick Seitzer Department of Astronomy, University of Michigan 500 Church St. 818 Dennison Bldg, Ann Arbor, MI 48109 pseitzer@umich.edu Heather M. Cowardin ESCG/Jacobs

More information

EXPOSURE TIME ESTIMATION

EXPOSURE TIME ESTIMATION ASTR 511/O Connell Lec 12 1 EXPOSURE TIME ESTIMATION An essential part of planning any observation is to estimate the total exposure time needed to satisfy your scientific goal. General considerations

More information

Astronomical imagers. ASTR320 Monday February 18, 2019

Astronomical imagers. ASTR320 Monday February 18, 2019 Astronomical imagers ASTR320 Monday February 18, 2019 Astronomical imaging Telescopes gather light and focus onto a focal plane, but don t make perfect images Use a camera to improve quality of images

More information

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA E-mail: shahzaman@ph1.uni-koeln.de A.Eckart E-mail: eckart@ph1.uni-koeln.de G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA 90095-1547, USA N. Sabha M. Zamaninasab

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

The Telescopes and Activities on Exoplanet Detection in China. ZHOU Xu National Astronomical Observatories

The Telescopes and Activities on Exoplanet Detection in China. ZHOU Xu National Astronomical Observatories The Telescopes and Activities on Exoplanet Detection in China ZHOU Xu National Astronomical Observatories Cloudage Xinglong Station of National Astronomical Observatories Altitude:~900M; Weather:220 clear

More information

POSITION SENSITIVE DETECTORS - 8. Dept. Physics & Astronomy

POSITION SENSITIVE DETECTORS - 8. Dept. Physics & Astronomy POSITION SENSITIVE DETECTORS - 8 Optical and IR Applications in Astronomy and Astrophysics Ian S. McLean Dept. Physics & Astronomy University it of California, i Los Angeles INTRODUCTION 400 th anniversary

More information

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS)

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) Application note Materials Authors Travis Burt, Chris Colley,

More information

FUV Grating Performance for the Cosmic Origins Spectrograph

FUV Grating Performance for the Cosmic Origins Spectrograph FUV Grating Performance for the Cosmic Origins Spectrograph Steve Osterman a, Erik Wilkinson a, James C. Green a, Kevin Redman b a Center for Astrophysics and Space Astronomy, University of Colorado, Campus

More information

arxiv: v1 [astro-ph.im] 13 Mar 2009

arxiv: v1 [astro-ph.im] 13 Mar 2009 Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study arxiv:0903.2483v1 [astro-ph.im] 13 Mar 2009 G. Tagliaferri, S. Basso, G. Borghi, W. Burkert, O. Citterio,, M. Civitani, P.

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information

The Star Formation Observatory (SFO)

The Star Formation Observatory (SFO) Beyond JWST... STScI, Mar 26 27 2009 Slide 1 The Star Formation Observatory (SFO) From Cosmic Dawn to Our Solar System: A Next-Generation UV Optical Space Facility for the Study of Star Formation Rolf

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

More information

The TV3 ground calibrations of the WFC3 NIR grisms

The TV3 ground calibrations of the WFC3 NIR grisms The TV3 ground calibrations of the WFC3 NIR grisms H. Kuntschner, H. Bushouse, J. R. Walsh, M. Kümmel July 10, 2008 ABSTRACT Based on thermal vacuum tests (TV3; March/April 2008), the performance of the

More information

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory The GMT Consortium Large Earth Finder Sagi Ben-Ami Smithsonian Astrophysical Observatory The Giant Magellan Telescope The GMT is one of the three next generation optical telescope. Segmented Gregorian

More information

SALT s Venture into Near Infrared Astronomy with RSS NIR

SALT s Venture into Near Infrared Astronomy with RSS NIR SALT s Venture into Near Infrared Astronomy with RSS NIR Marsha Wolf University of Wisconsin Madison IUCAA RSS VIS future RSS NIR 5 June 2015 SALT Science Conference 2015 2 Robert Stobie Spectrograph 5

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

The Imaging Chain for X-Ray Astronomy

The Imaging Chain for X-Ray Astronomy The Imaging Chain for X-Ray Astronomy Pop quiz (1): Which is the X-ray Image? B. A. Answer: B!!! (But You Knew That) Pop quiz (2): Which of These is the X-Ray Image? A. B. C. B. A. The dying star ( planetary

More information

ADAPTIVE PHASE MASK CORONAGRAPH

ADAPTIVE PHASE MASK CORONAGRAPH Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13183 ADAPTIVE PHASE MASK CORONAGRAPH Pierre Haguenauer 1,a, Pierre Bourget 1, Dimitri Mawet 1, and Nicolas Schuhler 1 1 European

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Fourier Transform Spectrograph Development Project

Fourier Transform Spectrograph Development Project Fourier Transform Spectrograph Development Project NARIT Research Colloquium / Research Project Evaluation 2018 August 2 nd, Flora Creek Hotel, Chiangmai C. Buisset 1, P. Artsang 2, P. Meemon 2, 1 National

More information

Federico Landini. INAF Osservatorio Astrofisico di Arcetri

Federico Landini. INAF Osservatorio Astrofisico di Arcetri Federico Landini INAF Osservatorio Astrofisico di Arcetri Outline METIS and its occulting system Theoretical estimate of the diffraction pattern on the primary mirror plane Occulter optimization concept

More information

1 HeNe Laser Profile

1 HeNe Laser Profile Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices. ASP Conference Series, Vol. xxx, 2000 W. van Breugel & J. Bland-Hawthorn (eds.) Adaptive Optics High

More information

Modern Observational/Instrumentation Techniques Astronomy 500

Modern Observational/Instrumentation Techniques Astronomy 500 Modern Observational/Instrumentation Techniques Astronomy 500 Andy Sheinis, Sterling 5520,2-0492 sheinis@astro.wisc.edu MW 2:30, 6515 Sterling Office Hours: Tu 11-12 Hardware 1 Telescopes What parameters

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Astronomical "color"

Astronomical color Astronomical "color" What color is the star Betelgeuse? It's the bright star at upper left in this picture of Orion taken by a student at the RIT Observatory. Orange? Red? Yellow? These are all reasonable

More information

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Calibration of ACS Prism Slitless Spectroscopy Modes

Calibration of ACS Prism Slitless Spectroscopy Modes The 2005 HST Calibration Workshop Space Telescope Science Institute, 2005 A. M. Koekemoer, P. Goudfrooij, and L. L. Dressel, eds. Calibration of ACS Prism Slitless Spectroscopy Modes S. S. Larsen, M. Kümmel

More information

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya Telescopes Physics 113 Goderya Chapter(s): 6 Learning Outcomes: Optical Telescopes Astronomers use telescopes to gather more light from astronomical objects. The larger the telescope, the more light it

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018

Spectroscopy. Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018 Spectroscopy Stephen Eikenberry (U. Florida) Dunlap Institute Summer School 25 July 2018 Observational Astronomy What? Astronomy gathers the vast majority of its information from the LIGHT emitted by astrophysical

More information

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan Southern African Large Telescope Prime Focus Imaging Spectrograph Instrument Acceptance Testing Plan Eric B. Burgh University of Wisconsin Document Number: SALT-3160AP0003 Revision 1.0 18 February 2003

More information

Characterizing Closure-phase Measurements at IOTA

Characterizing Closure-phase Measurements at IOTA Characterizing Closure-phase Measurements at IOTA Ragland, S. 1,2,3, Traub, W. 1, Berger, J.-P. 4, Millan-Gabet, R. 5, Monnier, J. D. 6, Pedretti, E. 6, Schloerb, F. P. 7, Carleton, N. P. 1, Haguenauer,

More information

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

More information

Notes on the Design of the PISCO ADC

Notes on the Design of the PISCO ADC Notes on the Design of the PISCO ADC Antony A. Stark Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 Abstract. The Atmospheric Dispersion Compensator for the Parallel Imager for

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-I-G0057 Principles Behind the Gemini Instrumentation Program M. Mountain, F. Gillett, D. Robertson, D. Simons GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona

More information

HERSCHEL/UVCI ALIGNMENT PLAN

HERSCHEL/UVCI ALIGNMENT PLAN DIPARTIMENTO DI ASTRONOMIA E SCIENZA DELLO SPAZIO HERSCHEL/UVCI ALIGNMENT PLAN M. Romoli (a), G. Corti (a), F. Landini (a) (a) Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze (Italy)

More information

Bringing Real-time Astronomical Observations into the Classroom

Bringing Real-time Astronomical Observations into the Classroom Bringing Real-time Astronomical Observations into the Classroom Prof. Lynn Cominsky Sonoma State University Department of Physics and Astronomy and NASA Education and Public Outreach Group Why do astronomical

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-PS-G0065 The Gemini Instrumentation Program F. C. Gillett, D. A. Simons March 25, 1996 GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona 85719 Phone: (520) 318-8545

More information

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA Optical Spectroscopy with a Near Single-mode Fiber Feed and Adaptive Optics Jian Ge a, Roger Angel a, Chris Shelton b a Steward Observatory, The University of Arizona, Tucson, AZ 85721 USA b Keck Observatory,

More information

SOXS. Son Of X-Shooter at ESO/NTT. Sergio Campana Osservatorio astronomico di Brera On behalf of a large collaboration

SOXS. Son Of X-Shooter at ESO/NTT. Sergio Campana Osservatorio astronomico di Brera On behalf of a large collaboration SOXS Son Of X-Shooter at ESO/NTT Sergio Campana Osservatorio astronomico di Brera On behalf of a large collaboration Monteporzio Catone CNOC IX 24 sttembre 2015 What is SOXS ESO call for new instruments

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope

Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope Masahiro Konishi a, Kentaro Motohara a, Mamoru Doi a, Shigeyuki Sako a,kojitoshikawa a, Natsuko Mitani a,tsutomuaoki

More information

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane.

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane. Instruments 1. Basic Optics 1. Rays of Light 2. Waves of light 3. Basic Imaging Systems 4. A Basic Telescope 5. Aberrations 6. Mirrors 2. Some Real Instruments 1. Galileo's Telescope 2. Keplerian Optics

More information

Spectroscopy at 8-10 m telescopes: the GTC perspective. Romano Corradi GRANTECAN

Spectroscopy at 8-10 m telescopes: the GTC perspective. Romano Corradi GRANTECAN Spectroscopy at 8-10 m telescopes: the GTC perspective Romano Corradi GRANTECAN Spectroscopy from large ground-based telescope At the vanguard of observational astronomy is a growing family of >8m telescopes:

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

Spectropolarimetry for Earth observations: a novel method for characterisation of aerosols and clouds

Spectropolarimetry for Earth observations: a novel method for characterisation of aerosols and clouds Spectropolarimetry for Earth observations: a novel method for characterisation of aerosols and clouds Oana van der Togt, Ad Verlaan, Kees Moddemeijer TNO Delft, The Netherlands oana.vandertogt@tno.nl Martijn

More information

The J-PAS Survey. Silvia Bonoli

The J-PAS Survey. Silvia Bonoli The J-PAS Survey The Javalambre-PAU Astrophysical Survey A Spanish-Brazilian collaboration, the J-PAS survey will scan ~8500 deg2 of the northern sky with 54 narrow-band filters covering the whole optical

More information

Optics Optical Testing and Testing Instrumentation Lab

Optics Optical Testing and Testing Instrumentation Lab Optics 513 - Optical Testing and Testing Instrumentation Lab Lab #6 - Interference Microscopes The purpose of this lab is to observe the samples provided using two different interference microscopes --

More information