TIME. Astronomical time Time is defined by astronomical cycles. The day is the average time from noon to noon (the solar day).

Size: px
Start display at page:

Download "TIME. Astronomical time Time is defined by astronomical cycles. The day is the average time from noon to noon (the solar day)."

Transcription

1 ASTRONOMY READER TIME 2.1 TIME Astronomical time Time is defined by astronomical cycles. The day is the average time from noon to noon (the solar day). The month was originally based on the average time from new moon to new moon (the lunar month). The year is the amount of time from spring equinox to spring equinox (the tropical year). This time is very nearly the time it takes the Earth to orbit around the Sun. Sun time Clock time is based on the sundial, which tells the position of the Sun in the sky. True noon is the time when the Sun is highest in the sky; that is, the moment when it crosses the meridian, the line that goes north to south through the zenith. "Meridian" comes from the Latin word for "noon", meridies. Sun time is the number of hours since noon. It turns out that the Sun is an imperfect clock, however. As it moves north and south of the ecliptic, it speeds up at the equinoxes. and slows down at the solstices. For timekeeping purposes, astronomers define an imaginary sun that moves along the celestial equator at a constant rate. This is the mean sun, where "mean" means "average". Local mean time is the time defined by the mean sun; that is, the hours since the mean sun crossed the meridian. Local mean time is the true local time. Prior to 1883, clocks were set to local mean time.

2 2.2 TIME ASTRONOMY READER World Time Since the world is round, noon doesn't happen everywhere on the world at the same time. Indeed, it isn't daytime everywhere in the world at the same time. Since the Earth rotates to the east, noon occurs earlier is places to the east of where you are. It occurs later in places farther to the west. For example. every day noon occurs first in Florida, three hours later in California, and a couple of hours later in Hawaii. Recall that your location on the Earth is specified by your latitude and longitude. Your longitude is how far east or west you are. (Your latitude is how for north or south of the equator you are.) Every place at the same longitude experiences noon at the same time. Perhaps for this reason, the lines of longitude are called meridians. By international agreement, the Prime Meridian is the line of longitude that runs through the Royal Observatory in Greenwich, England (a suburb of London). Longitude is measured east or west of the Prime Meridian. Los Angeles, for example, is 118 west of the Prime Meridian. Greenwich Mean Time (GMT) s the local mean time on the Prime Meridian. It is used as a world-wide time standard. Astronomers use GMT for telling when astronomical events occur. Another word for GMT is Universal Time (UT). There are different technical ways of defining UT. The one that is currently used to define the official time is called Co-ordinated Universal Iime (UTC). The official government time is based on UTC. UT is usually expressed in 24-hour time, rather than am/pm time. For example, 1:00 am is 1:00, but 1:00 pm is expressed as 13:00. Local Time Prior to the industrial age, clocks were set to Local Mean Time in each town or city. Since LMT is later to the east and earlier to the west, every town's clock was set to a different time. Every degree of longitude you go to the east, LMT is 4 minutes later. Every degree of longitude you go to the west, LMT is 4 minutes earlier. A degree of longitude is roughly 50 miles. There was no problem because in those days travel was slow. Only if you undertook a long journey would you find that you had to reset your watch every now and then if you were wealthy enough to own a watch. The invention of the railroad changed all that. The railroad enabled people to travel from town to town in a few hours. Every time they came to a new town, they would have to reset their watches. This was a minor problem for travelers but a major source of confusion for the railroads, who needed to maintain a schedule. It was too inconvenient for railroad conductors to reset their watches every time they came to a new town. So the railroads began the use of railroad time, the use of one time standard for the railroad. This time standard was usually the LMT in the railroad's hub city. In the U.S., the major hub citites were New York, Boston, Washington,

3 ASTRONOMY READER TIME 2.3 Chicago, St. Louis, San Francisco, and a few others. Railroads in California all used San Francisco time. Tables were devised to enable travelers to convert from one time to another. For example, travelers read that when it is 12:00 noon in Washington, it is 12:12 pm in New York and 9:02 am in Sacramento. They were then breezily told that "By an easy calculation, the difference in time between the several places above named my be ascertained." In practice, travelers would change their watches when they switched from one railroad line to another. Standard Time As the railroads continued to expand, the proliferation of different times used became more and more confusing. During the 1870s, several individuals in the U.S. and Canada proposed dividing North America into four or five standard time zones. Within each zone, all cities would observe the same time. The U.S. Naval Observatory, which was responible for keeping time for the federal government, proposed a single time zone for the entire nation, which would make every clock in the nation read Washington local mean time. If that had come to pass, noon would occur when the clock read about 3pm in California. Fortunately, the government was in a state of confusion following the assassination of President Garfield in 1881 and took no action. It was the railroads that finally implemented standard time. The railroad companies had formed an co-ordinating organization, the

4 2.4 TIME ASTRONOMY READER General Time Convention, to co-ordinate schedules and times. The president of this board, William Allen, came up with the scheme that was finally adopted. In his scheme, North America was divided into five time zones: Atlantic, Eastern, Central, Mountain, and Pacific. The boundaries between the zone, which were the most contentious part of the business, were set to minimize disruption for the railroads. That meant that for the most part the boundary was put at the points where two different railroad lines met. The time in each zone was offset by an even number of hours from GMT: Atlantic time is GMT minus 4; Eastern is GMT minus 5, and so forth up to Pacific Standard Time, which is GMT minus 8 hours. Most railroads implemented the plan on Sunday, November 18, 1883, when most of the clocks in the nation were shifted to one of the standard times. The time in each zone is the LMT on a particular meridian of longitude called the standard meridian. Since LMT changes 1 hour in 15 of longitude, the standard meridians are 15 apart. For example, the standard meridian for the Pacific Standard Time one is 120 W. This meridian forms the border between northern California and northern Nevada. In southern California it runs through Santa Barbara: PST is Santa Barbara time. Los Angeles is east of the standard meridian. Therefore, LMT is later than PST here by about 7 minutes. That is, the Sun rises and sets here about 7 minutes earlier than it does in Santa Barbara. Standard time zones are assigned an identifying letter for global use. GMT is Z (Zulu in military jargon). The zones east of the Greenwich Meridian are denoted A. B, C, etc. The zones to the west increase to the west: N, O, P, etc. In each country there are local names for the zones. Pacific Standard Time is U time. Pitcairn Island, in the South Pacific, also observes U time, but they don't call it Pacific Standard Time. Time zones in the U.S. and Canada: Code Name Time Standard meridian Q Atlantic GMT - 4 hr 60 W R Eastern GMT - 5 hr 75 W S Central GMT - 6 hr 90 W T Mountain GMT - 7 hr 105 W U Pacific GMT - 8 hr 120 W V Alaska GMT - 9 hr 135 W W Hawaii GMT - 10 hr 150 W

5 ASTRONOMY READER TIME 2.5 Daylight Saving Time Most of the U.S., Canada, and Mexica observes Daylight Saving Time (DST). This means that clocks are moved forward one hour during summer actually, for more than half the year. Currently, DST is observed from the second Sunday in March to the first Sunday in November. The purpose of DST is to provide more hours of daylight in the evening. By moving the clock forward one hour, the Sun sets one hour later by clock time. It doesn't really set any later, the LMT of sunset remains the same. DST isn't observed during the winter because it makes sunrise occur one hour later according to the clock. In winter, this would result in people gaing to school and word before sunrise. The effect of DST is to switch to the next time zone to the east. That is to say, is summer, California observs T time (Mountain Standard Time). It's called Pacific Daylight Time (PDT), but it's really MST. Contrary to popular opinion, California does not observe Pacific Standard Time in the summer; in fact, it is on PST for only about 4 months of the year. Most of the year we are on Mountain Standard Time! Not all parts of the nation observe DST. Arizona does not (except for the Navajo Indian Reservation). This means that in the summer clocks in Arizona read the same as clocks in California; in winter they agree with clocks in New Mexico. The parts of the U.S. that lie in the tropics Hawaii, Puerto Rico, the U.S. Virgin Islands, and Samoa likewise do not change their clocks. Canada as a rule follows U.S. practice. Europe, where Daylight Saving Time is simply called Summer Time, changes their clocks the last Sunday in March and the last Sunday in October. [9 sept. 2013]

Time Zones. Doug Fischer Geog 106 LRS

Time Zones. Doug Fischer Geog 106 LRS Time Zones Doug Fischer Geog 106 LRS Learning goals Students should be able to Explain time zones as a function of longitude Calculate time differences between different locations Demonstrate corrections

More information

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative General Physical Science Chapter 15 Place and Time Space and Time Einstein Space and time related Single entity Time is the 4 th dimension! Cartesian Coordinates Need some system to tell us where something

More information

Lesson 20: The Earth in its Orbit

Lesson 20: The Earth in its Orbit 291 Lesson 20: The Earth in its Orbit Recall that the Earth s orbit around the un is an ellipse which is almost a perfect circle. The average distance from the un to the Earth is 152,100,000 km (to the

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Heavenly Mathematics: Cultural Astronomy

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Heavenly Mathematics: Cultural Astronomy 1 GEK1506 NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION 2005 2006 GEK1506 Heavenly Mathematics: Cultural Astronomy April/May 2006 Time allowed: 2 hours 1. After taking

More information

Earth s Time Zones. Time Zones In The United States

Earth s Time Zones. Time Zones In The United States Name: Mr. DeLeo Date: Period: Earth s Time Zones Goal: Students will understand why humans have developed time zones on Earth, and how to figure out time at different positions on Earth. Background: One

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System A. Geography: mapping the earth Geometry: measure the earth! 1) The earth

More information

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS NAME(S)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ASTRONOMY 25 Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS SECTION DAY/TIME S. V. LLOYD Overview The seasonal variation in temperature is due to two changes

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY

COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY NAME ASTRONOMY 20 SECTION DAY/ S. V. LLOYD COMPUTER ACTIVITY 3: THE SEASONS: LENGTH OF THE DAY Overview Software Configuration The seasonal variation in temperature is due to two changes in the Sun's path

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated Sep 30, 2012 A. Geography: mapping the earth Geometry: measure

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated April 12, 2006 A. Geography: mapping the earth Geometry: measure

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated 2014Jan11 A. Geography: mapping the earth Geometry: measure the

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION Before the invention of GPS technology, how were people on ships far at sea, out of the sight of land, able to tell where they were? For thousands of years

More information

What Is a Time Zone? Nature doesn t have a clock; a clock is a human invention. Instead animals, plants and humans respond to the length of the day from sunrise until sunset. This is known as a natural

More information

Student Exploration: Seasons: Earth, Moon, and Sun

Student Exploration: Seasons: Earth, Moon, and Sun Name: Date: Student Exploration: Seasons: Earth, Moon, and Sun Vocabulary: altitude, axis, azimuth, equinox, horizon, latitude, revolution, rotation, solstice Prior Knowledge Questions (Do these BEFORE

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride Celestial Coordinates and the Day Aileen A. O Donoghue Priest Associate Professor of Physics Reference Points Poles Equator Prime Meridian Greenwich,

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December 22.

01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December 22. Package Title: Testbank Course Title: Introducing Physical Geography 6e Chapter Number: 01 Question Type: Multiple Choice 01) The Sun s rays strike the surface of the Earth at 90 degrees at the on December

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

Although the changing position of the Sun throughout the day

Although the changing position of the Sun throughout the day 74 As Earth Rotates R E A D I N G Although the changing position of the throughout the day makes it look like the is moving, you now know that it is really Earth that moves. The rotation of Earth around

More information

The Earth Orbits the Sun Student Question Sheet (Advanced)

The Earth Orbits the Sun Student Question Sheet (Advanced) The Earth Orbits the Sun Student Question Sheet (Advanced) Author: Sarah Roberts - Faulkes Telescope Project Introduction This worksheet contains questions and activities which will test your knowledge

More information

Time, Seasons, and Tides

Time, Seasons, and Tides Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

More information

For most observers on Earth, the sun rises in the eastern

For most observers on Earth, the sun rises in the eastern 632 CHAPTER 25: EARTH, SUN, AND SEASONS WHAT IS THE SUN S APPARENT PATH ACROSS THE SKY? For most observers on Earth, the sun rises in the eastern part of the sky. The sun reaches its greatest angular altitude

More information

Latitude and Longitude

Latitude and Longitude Latitude and Longitude Finding Your Location on a Sphere Coordinate Systems n When you are locating a point on a flat surface you can use Cartesian coordinates of x and y. n The point 2, 3 is plotted on

More information

Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher

Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher Intro Astro - Andrea K Dobson - Chapter 3 - August 2018 1! /! 12 Chapter 3: Coordinates & time; much of this chapter is based on earlier work by Katherine Bracher celestial sphere and celestial coordinates

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

The Earth-Moon-Sun System

The Earth-Moon-Sun System chapter 7 The Earth-Moon-Sun System section 2 Time and Seasons What You ll Learn how to calculate time and date in different time zones how to distinguish rotation and revolution what causes seasons Before

More information

HNRS 227 Fall 2007 Chapter 14. Earth in Space presented by Prof. Geller 25 October 2007

HNRS 227 Fall 2007 Chapter 14. Earth in Space presented by Prof. Geller 25 October 2007 HNRS 227 Fall 2007 Chapter 14 Earth in Space presented by Prof. Geller 25 October 2007 Key Points of Chapter 14 Shape, Size and Motions of the Earth Rotation and Revolution Precession Coordinate Systems

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas INTRODUCTION Introduction to Earth Geography as a Field of Learning Geography is from two Greek words, Geo Earth, and Graphien to write. Elements/Branches of Geography

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere 23.5 tilts away from sun) 2 Solar radiation

More information

Geographic Grid -Latitudes and Longitudes

Geographic Grid -Latitudes and Longitudes GEOGRAPHY STD 9 Geographic Grid -Latitudes and Longitudes 2018-2019 Q1. Define Geographic Grid. The network of latitudes and longitudes are known as Geographic Grid. They help us to locate places on the

More information

Daylight Saving Time

Daylight Saving Time Daylight Saving Time Why have it? How is daylight saved? This lesson applies primarily to DST in the United States. History A concept similar to DST was suggested by Benjamin Franklin in the late 1700s.

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015

Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015 Why does Earth rotate and what s the evidence? (besides watching it from space ships or satellites) Week 18 January 5, 2015 The sun determines our solar time everywhere on earth as Earth rotates. Can you

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

June 15, 2006 July 19, 2009 A south facing vertical declining sundial by a barn in, Silver City, NM Using a trigon and empirical methods, and a gnomon whose sub-style was vertical True N Magnetic N Silver

More information

GEOGRAPHY STD.9 LATITUDE & LONGITUDE

GEOGRAPHY STD.9 LATITUDE & LONGITUDE GEOGRAPHY STD.9 LATITUDE & LONGITUDE 1. What is the Earth Grid? A. The complete network of meridians & parallels is called the earth Grid. 2. What is Latitude? A. The latitude of a place is the distance

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes

Module 2: Mapping Topic 2 Content: Determining Latitude and Longitude Notes Introduction In order to more easily locate points on a globe or map, cartographers designed a system of imaginary vertical lines (also called parallels) and horizontal lines (also called meridians) that

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

Seasons & Time.

Seasons & Time. Seasons & Time Earth s Movements Rotation Movement of Earth Around the Sun Elliptical Orbit Revolution 24 Hours (1 Day) 365 Days (1 Year) The Earth s Revolution & the Tilt of the axis cause variations

More information

Lecture 4: DM: time and Diurnal Motion

Lecture 4: DM: time and Diurnal Motion Dr. W. Pezzaglia Astronomy 10, Fall 2006 Page 8 Lecture 4: DM: time and Diurnal Motion Schedules: Aug 30, Wed (today) o Homework #2 due (see solutions below) o Web Site changed to: http://lpc1.clpccd.cc.ca.us/lpc/astronomy/course_websites/pezzaglia/index.html

More information

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ 1. When Neap tides are occurring, a. a person experiences the lowest tides close to sunset and sunrise. b. the Sun and the Moon are separated by

More information

GLOBE : LATITUDES AND LONGITUDES

GLOBE : LATITUDES AND LONGITUDES 2 Figure 2.1 : Globe Let s Do Take a big round potato or a ball. Pierce a knitting needle through it. The needle resembles the axis shown in a globe. You can now move the potato or the ball around this

More information

USING CO-ORDINATED UNIVERSAL TIME

USING CO-ORDINATED UNIVERSAL TIME USING CO-ORDINATED UNIVERSAL TIME Welcome to a discussion of UTC, Co-ordinated Universal Time. All over the world at a given moment, it is the same time UTC instead of different times determined by time

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

The Earth, Moon, and Sky. Lecture 5 1/31/2017

The Earth, Moon, and Sky. Lecture 5 1/31/2017 The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity

More information

3. The Sun s Position

3. The Sun s Position 3. The Sun s Position In order to understand how to collect energy from the sun, one must first be able to predict the location of the sun relative to the collection device. In this chapter we develop

More information

March 21. Observer located at 42 N. Horizon

March 21. Observer located at 42 N. Horizon March 21 Sun Observer located at 42 N Horizon 48 June 21 March 21 A 48 90 S 23.5 S 0 23.5 N 42 N 90 N Equator (June 21) C (March 21) B A 71.5 48 Horizon 24.5 Observer Sun 40 Observer Sun 22 Observer Sun

More information

function get_style23731 () { return "none"; } function end23731_ () { document.getelementbyid('elastomer23731').style.display = get_style23731(); }

function get_style23731 () { return none; } function end23731_ () { document.getelementbyid('elastomer23731').style.display = get_style23731(); } function get_style23731 () { return "none"; } function end23731_ () { document.getelementbyid('elastomer23731').style.display = get_style23731(); } EarthSky Late dawn. Early sunset. Short day. Long night.

More information

Sunlight and its Properties II. EE 446/646 Y. Baghzouz

Sunlight and its Properties II. EE 446/646 Y. Baghzouz Sunlight and its Properties II EE 446/646 Y. Baghzouz Solar Time (ST) and Civil (clock) Time (CT) There are two adjustments that need to be made in order to convert ST to CT: The first is the Longitude

More information

The position of the Sun on the celestial sphere at the solstices and the equinoxes.

The position of the Sun on the celestial sphere at the solstices and the equinoxes. 1 2 3 4 5 6 7 8 9 10 11 12 13 EARTH IN SPACE Tillery, Chapter 18 Artist's concept of the solar system. Shown are the orbits of the planets, Earth being the third planet from the Sun, and the other planets

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

ASTR-1010: Astronomy I Course Notes Section II

ASTR-1010: Astronomy I Course Notes Section II ASTR-1010: Astronomy I Course Notes Section II Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) AST326, 2010 Winter Semester Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) Practical Assignment: analyses of Keck spectroscopic data from the instructor (can

More information

LEARNING GOALS. Chapter S1: Celestial Timekeeping and Navigation. Supplementary Chapter

LEARNING GOALS. Chapter S1: Celestial Timekeeping and Navigation. Supplementary Chapter 9/6/05 10:12 AM Chapter S1: Celestial Timekeeping and Navigation Supplementary Chapter LEARNING GOALS S1.1 Astronomical Time Periods Why isn't the Earth's rotation period exactly equal to the 24 hours

More information

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN ANNOUNCEMENTS Homework #1 due today at end of class. HW #2 due next Thursday. Homework #1 question #1 and Homework #2 meridian slice questions will be discussed in the course of the lecture today. Observing

More information

Geography Class 6 Chapters 3 and

Geography Class 6 Chapters 3 and CHAPTER 3 MOTIONS OF THE EARTH The Earth is always travelling in Space. That makes each person on Earth, a Space Traveller. No one feels the movement of the Earth because humans are too tiny when compared

More information

THE EARTH. MERIDIANS AND PARALLELS

THE EARTH. MERIDIANS AND PARALLELS THE EARTH. MERIDIANS AND PARALLELS 1=Circle of latitude 2=Meridian (geography) A circle of latitude, on the Earth, is an imaginary east-west circle connecting all locations (not taking into account elevation)

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Chapter 4 Earth, Moon, and Sky 107

Chapter 4 Earth, Moon, and Sky 107 Chapter 4 Earth, Moon, and Sky 107 planetariums around the world. Figure 4.4 Foucault s Pendulum. As Earth turns, the plane of oscillation of the Foucault pendulum shifts gradually so that over the course

More information

2. Knowing the Heavens

2. Knowing the Heavens 2. Knowing the Heavens Ancient naked-eye astronomy Eighty-eight constellations The sky s ever-changing appearance The celestial sphere Celestial coordinates Seasons: Earth s axial tilt Precession of Earth

More information

Gnomon (a thin, round stick at least a foot long and capable of being put into the ground or stood up vertically)

Gnomon (a thin, round stick at least a foot long and capable of being put into the ground or stood up vertically) Name: Partner(s): Lab #3 Celestial Navigation Due 7/2 Objectives In this lab you will take measurements of the sun s motion around noon and the north star s position in the sky. You will use this data

More information

ME 476 Solar Energy UNIT THREE SOLAR RADIATION

ME 476 Solar Energy UNIT THREE SOLAR RADIATION ME 476 Solar Energy UNIT THREE SOLAR RADIATION Unit Outline 2 What is the sun? Radiation from the sun Factors affecting solar radiation Atmospheric effects Solar radiation intensity Air mass Seasonal variations

More information

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE To the naked eye, stars appear fixed on the sky with respect to one another. These patterns are often grouped into constellations. Angular measurements

More information

A2 Principi di Astrofisica. Coordinate Celesti

A2 Principi di Astrofisica. Coordinate Celesti A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.

More information

Summer solstice June 21, 2014

Summer solstice June 21, 2014 function get_style19370 () { return "none"; } function end19370_ () { document.getelementbyid('elastomer19370').style.display = get_style19370(); } Differences in amount of daylight on solstices for Liberal

More information

Astronomy 100 Section 2 MWF Greg Hall

Astronomy 100 Section 2 MWF Greg Hall Astronomy 100 Section 2 MWF 1200-1300 100 Greg Hall Leslie Looney Phone: 217-244-3615 Email: lwl @ uiuc. edu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment Class Web Page

More information

PHAS 1511: Foundations of Astronomy

PHAS 1511: Foundations of Astronomy PHAS 1511: Foundations of Astronomy Dr Roger Wesson Research interests: deaths of stars. Planetary nebulae, novae and supernovae. Astronomy: some maths You can see that distances in astronomy are huge.

More information

THE EARTH AND ITS REPRESENTATION

THE EARTH AND ITS REPRESENTATION UNIT 7 THE EARTH AND ITS REPRESENTATION TABLE OF CONTENTS 1 THE EARTH AND THE SOLAR SYSTEM... 2 2 THE EARTH S MOVEMENTS... 2 2.1 Rotation.... 2 2.2 The revolution of the Earth: seasons of the year....

More information

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night

More information

HOWEVER, ONLY ONE CAN BE YOURS.

HOWEVER, ONLY ONE CAN BE YOURS. HOWEVER, ONLY ONE CAN BE YOURS. GEOCHRON - THE ULTIMATE TIME KEEPING DEVICE MAN S NATURAL TIMEPIECE From the first crude sundials that divided the days into vague and irregular intervals to the finest

More information

OBSERVING PROJECT PARTNER ELECTION

OBSERVING PROJECT PARTNER ELECTION ASTRONOMY 25 NOON SUN PROJECT P. P. 1 Name(s) Section Day/Time Fill in either Part 1 or Part 2. OBSERVING PROJECT PARTNER ELECTION Part I. SOLO OBSERVER I will do the observing project by myself. I will

More information

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise A Warm Up Exercise The Motion of the Sun Which of the following is NOT true of a circumpolar star? a) It rises and sets from my latitude b) Its direction can be far North c) Its direction can be far South

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

PHSC 1053: Astronomy Time and Coordinates

PHSC 1053: Astronomy Time and Coordinates PHSC 1053: Astronomy Time and Coordinates Astronomical Clocks Earth s Rotation on its Axis Time between two successive meridian transits of the sun 1 solar day (our adopted clock time) 24 hours (86,400

More information

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles. Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?

More information

Section. 1 Our Planet, Earth. Prepare to Read

Section. 1 Our Planet, Earth. Prepare to Read 1 Section Step-by-Step Instruction Objectives Social Studies 1. Learn about Earth s movement in relation to the sun. 2. Explore seasons and latitude. Reading/Language Arts Use context clues from surrounding

More information

A. Spatial Sense (Working with Maps, Globes, and Other Geographic Tools)

A. Spatial Sense (Working with Maps, Globes, and Other Geographic Tools) A. Spatial Sense (Working with Maps, Globes, and Other Geographic Tools) Measuring Distance Using Map Scale All maps are drawn to scale; that is, they are smaller than the things they represent. Scale

More information

ClassAction: Coordinates and Motions Module Instructor s Manual

ClassAction: Coordinates and Motions Module Instructor s Manual ClassAction: Coordinates and Motions Module Instructor s Manual Table of Contents Section 1: Warm-up Questions...3 The Sun s Path 1 4 Section 2: General Questions...5 Sledding or Going to the Beach...6

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

ESSENTIALS of GEOGRAPHY. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ESSENTIALS of GEOGRAPHY. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ESSENTIALS of GEOGRAPHY Physical Geography (Geog. 300) Prof. Hugh Howard American River College GEOGRAPHY GEOGRAPHY Earth description, or study of Earth Describes the natural environment and human interaction

More information

Lecture #03. January 20, 2010, Wednesday

Lecture #03. January 20, 2010, Wednesday Lecture #03 January 20, 2010, Wednesday Causes of Earth s Seasons Earth-Sun geometry Day length Solar angle (beam spread) Atmospheric beam depletion Shape and Size of the Earth North Pole E Geoid: not

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1 Tonight {01} The map What makes a map Measuring the Earth Map Interpretation & GPS Spring 2010 M. Pesses What does a map do? Shows where things are Shows spatial (topological) relationships Shows patterns,

More information

What Is the Relationship Between Earth s Tilt and the Seasons?

What Is the Relationship Between Earth s Tilt and the Seasons? Learning Set 2 Why Are There Differences in Temperature? Review Images and Graphics While reading about Earth s tilt and the seasons, pay particular attention to the graphics included. How do they help

More information

The Measurement of Time

The Measurement of Time CHAPTER TWO The Measurement of Time Solar Time In antiquity the time of day was measured by the direction of a shadow cast in sunlight. This resulted in the development of a wide variety of sophisticated

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information