LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94

Size: px
Start display at page:

Download "LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94"

Transcription

1 LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94 ROXANNE LIGI CNES POST-DOCTORAL FELLOW LABORATOIRE D ASTROPHYSIQUE DE MARSEILLE In collaboration with: ORLAGH CREEVEY (OCA) DENIS MOURARD (OCA/INSU) AURÉLIEN CRIDA (OCA) ANNE-MARIE LAGRANGE (IPAG) NICOLAS NARDETTO (OCA) KARINE PERRAUT (IPAG) MATHIAS SCHULTHEIS (OCA) ISABELLE TALLON-BOSC (CRAL) THEO TEN BRUMMELAAR (GEROGIA STATE UNIVERSITY) 1

2 CONTENT FROM INTERFEROMETRY TO ANGULAR DIAMETERS STELLAR PARAMETERS FROM DIRECT MEASUREMENTS STELLAR AGES AND MASSES PLANETARY PARAMETERS THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC 2

3 INTRODUCTION Valencia et al. (2006) : δr p = 2% Fressin et al. (2012) Goal: To obtain exoplanetary parameters accurate enough to constrain their internal structure. 3

4 INTRODUCTION Radial Velocity Transits accuracy on m p /M << 1% accuracy on R p /R << 1% m p and R p depend on M and R. However, δr 5% and δm 10%. Obtain stellar parameters with 2% accuracy Need stellar parameters to determine planetary parameters (Ligi et al. 2012a) 4

5 INTRODUCTION T. Guillot and M. Havel: CoR 3 parameters to be determined from models 3 free parameters, 3D: R, M and age A&A 527, A20 (2011) Fig. 6. Guillot & Havel (2011) 5 Age Constraints obtained for the age R /R CoRoT-2. The left panels correspond to re the effect of spots. The right panels assum

6 INTRODUCTION T. Guillot and M. Havel: CoR 2 parameters from models: M and age + 1 measured parameter: R 2 free parameters, 2D A&A 527, A20 (2011) Fig. 6. Guillot & Havel (2011) 6 Age Constraints obtained for the age R /R CoRoT-2. The left panels correspond to re the effect of spots. The right panels assum

7 INTRODUCTION T. Guillot and M. Havel: CoR The radius R is a very important parameter If we get R, we need Teff, and L to derive M and age A&A 527, A20 (2011) Fig. 6. Guillot & Havel (2011) 7 Age Constraints obtained for the age R /R CoRoT-2. The left panels correspond to re the effect of spots. The right panels assum

8 INTRODUCTION T. Guillot and M. Havel: CoR The radius R is a very important parameter If we get R, we need Teff, and L to derive M and age How? R interferometry A&A 527, A20 (2011) Teff, and L photometry (+ models) M and age models Fig. 6. Guillot & Havel (2011) 8 Age Constraints obtained for the age R /R CoRoT-2. The left panels correspond to re the effect of spots. The right panels assum

9 FROM INTERFEROMETRY TO ANGULAR DIAMETERS Selection of exoplanet host stars and potential hosts (Ligi et al. 2012b, SPIE): F, G, K 0.3 mas < θ < 3 mas m V < 6.5 and m K < < δ < +90 Spread over the H-R diagram From exoplanet.eu Result: 42 accessible stars with VEGA/CHARA. Final sample: 18 stars 10 exoplanet hosts Observations from 2010 to

10 STELLAR PARAMETERS FROM DIRECT MEASUREMENTS RADIUS R?[R ] = LD[mas] d [pc] e errors on T and R, we co. θ LD =0.724 ± θ LD =0.722 ± Spatial frequency (in 10 8 /rad) Spatial frequency (in 10 8 /rad) Examples of visibility curves from VEGA instrument Average accuracy: 1.9 % on diameters (θ LD ) and 3% on radii (R ). 10

11 STELLAR PARAMETERS FROM DIRECT MEASUREMENTS BOLOMETRIC FLUX AND LUMINOSITY Photometry from VizieR Photometry Viewer Fit from BASEL library spectra Take into account log(g), Av, [Fe/H] Average accuracy on T eff, : 57K in average T e,? = 0 B@ 4 F bol CA SB LD 2 L? = 4 d 2 F bol q 11

12 STELLAR MASSES AND AGES Recall: why deriving stellar mass and ages? Provide benchmark stars to stellar physicists (also applies to non host stars, see O. Creevey s talk) Better understand planetary formation, age of the planetary system Derive planetary parameters 12

13 STELLAR MASSES AND AGES Recall: why deriving stellar mass and ages? Provide benchmark stars to stellar physicists (also applies to non host stars, see O. Creevey s talk) Better understand planetary formation, age of the planetary system Derive planetary parameters Masses and ages usually derived from models (if no exception case like binaries ) We used PARSEC stellar models (Bressan et al. 2012). 13

14 STELLAR MASSES AND AGES Method: Interpolation Separation between 2 points of an isochrone are < σt eff, and < σl Step in log(age ) are 0.01 from 6.6 to [M/H] goes from 0.5 to -0.8 in steps of ~0.015 (not always the case!) Best fit (least square): minimizing the quantity χ 2 = (L L ) 2 σ L 2 + (T eff T eff, ) 2 σ Teff, 2 + ([M/H] [M/H] ) σ [M/H] 2 M, age? Not that easy 14

15 STELLAR MASSES AND AGES Recipe to produce a simplified map of L in the (M, age ) plane Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005) Easy to express as a function of observables: L, T eff,, [M/H] Less easy to express as a function of the physical parameters: age, M 15

16 STELLAR MASSES AND AGES Recipe to produce a simplified map of L in the (M, age ) plane Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005) Easy to express as a function of observables: L, T eff,, [M/H] Less easy to express as a function of the physical parameters: age, M L [M/H] T eff χ 2 = (L L ) 2 σ L 2 + (T eff T eff, ) 2 σ Teff, 2 + ([M/H] [M/H] ) σ [M/H] 2 { { { <1,2,3 <1,2,3 <1,2,3 16

17 STELLAR MASSES AND AGES Recipe to produce a simplified map of L in the (M, age ) plane Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005) Easy to express as a function of observables: L, T eff,, [M/H] Less easy to express as a function of the physical parameters: age, M L [M/H] T eff Least square: (M, age ) χ 2 = (L L ) 2 σ L 2 + (T eff T eff, ) 2 σ Teff, 2 + ([M/H] [M/H] ) σ [M/H] 2 { { { <1,2,3 <1,2,3 <1,2,3 17

18 STELLAR MASSES AND AGES Recipe to produce a simplified map of L in the (M, age ) plane Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005) Easy to express as a function of observables: L, T eff,, [M/H] Less easy to express as a function of the physical parameters: age, M L [M/H] T eff Least square: (M, age ) χ 2 = (L L ) 2 σ L 2 + (T eff T eff, ) 2 σ Teff, 2 + ([M/H] [M/H] ) σ [M/H] 2 { { { <1,2,3 <1,2,3 <1,2,

19 STELLAR MASSES AND AGES This corresponds to the approximate likelyhood map in the (M, age ) for which each term of the equation χ 2 = (L L ) 2 + (T eff T eff, ) 2 + ([M/H] [M/H] ) is less than 1, 2, 3. σ L 2 Then, least squares to give a value. σ Teff, 2 σ [M/H] 2 19

20 STELLAR MASSES AND AGES L shows 2 different peaks for many MS stars: an old solution: < 400 Myrs a young solution: > 400 Myrs Need additional stellar properties (gyrochronology, chromospheric activity, Lithium abundance ) to validate the age. 20

21 STELLAR MASSES AND AGES M and age are not independent Clear negative correlation for the old solution 21

22 STELLAR MASSES AND AGES How to calculate the error on ages and masses? Not easy. Monte-Carlo method? Bias on ages and masses but not on errors (see Jørgensen & Lindgren 2005) Independent Gaussian sets of T eff, and L? Erase the correlation between T eff, and L Large cloud of points 22

23 STELLAR MASSES AND AGES How to calculate the error on ages and masses? Not easy. Instead: 1500 quadruplets {F bol, d, θ, [M/H]} (independent random Gaussian variables) Combine them into triplets {L, T eff,, [M/H] } Apply the least square procedure 1500 {M,age } pairs Compute the standard deviation of the masses and ages = errors 23

24 STELLAR MASSES AND AGES [M/H] ±0.1 dex R ±1σ 24

25 STELLAR MASSES AND AGES Accuracy on ages: Myrs and Gyrs Average accuracy on masses: 7.6% for old solutions 10% for young solutions [M/H] ±0.1 dex R ±1σ 25

26 STELLAR MASSES AND AGES Photometry V 2 VEGA/CHARA Iterations via BASEL LITpro F bol θ LD T eff, PARSEC M, âge R Distance Hipparcos

27 CONTENT FROM INTERFEROMETRY TO ANGULAR DIAMETERS STELLAR PARAMETERS FROM DIRECT MEASUREMENTS STELLAR AGES AND MASSES PLANETARY PARAMETERS THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC 27

28 PLANETARY PARAMETERS Usually: Radial Velocity (RV) detections Thus we obtain m p sin(i) from RV and stellar masses: m p sin(i) = M2/3? P1/3 K(1 e 2 ) 1/2 (2 G) 1/3 Habitable Zone (HZ) (Jones et al. 2006) L /T eff, 2 Semi-major axis M 1/3 New estimations of HZ, semi-major axis (au) and m p sin(i) from our measurements. 28

29 PLANETARY PARAMETERS Usually: Radial Velocity (RV) detections Thus we obtain m p sin(i) from RV and stellar masses: m p sin(i) = M2/3? P1/3 K(1 e 2 ) 1/2 (2 G) 1/3 Habitable Zone (HZ) (Jones et al. 2006) L /T eff, 2 Semi-major axis M 1/3 New estimations of HZ, semi-major axis (au) and m p sin(i) from our measurements. 29

30 PLANETARY PARAMETERS 30

31 THE MULTIPLANETARY SYSTEM 55 CNC 55 Cnc: 5 exoplanets 55 Cnc e transits its star, and is a super-earth (Winn et al. 2011, Demory et al. 2011) Solar system e b c d 55 Cnc system f 31

32 THE MULTIPLANETARY SYSTEM 55 CNC Well studied star Photometry (transit) + the direct estimate of R (this work) direct estimate of R p Maxted et al. (2015) measured the stellar density ρ of 55 Cnc from photometry: density of the ρ = P 3 T 3 π 2 G. R + ρ = direct estimate of the stellar mass! direct estimate of m p Direct estimate of the planetary density! p = 3 1/3 2 2/3 2/3 G1/3? R? 1 TD 3/2 P 1/3 K (1 e 2 ) 1/2 ere TD refers to the transit depth caused by the pl 32

33 THE MULTIPLANETARY SYSTEM 55 CNC Stellar Results Using the stellar density: M = 0.96 ± M From isochrones: Young solution: M = ± M, 30.0 ± Myrs Old solution: M = ± M, ± 1.18 Gyrs 33

34 THE MULTIPLANETARY SYSTEM 55 CNC Planetary results Planet a m p sin(i) [au] [M Jup ] b ± ± c ± ± d 5.58 ± ± 0.17 e ± ± 0.50 f 0.789± ± M 55 Cnc e R p [R ] M p [M ] ± p [g.cm 3 ] Super-Earth All stellar parameters come from direct measurements better accuracy Better accuracy on the density: compared to Winn et al. (2011) and Demory et al. (2011) ~25% 12% error on ρ p dominated by error on TD. 55 Cnc e has a terrestrial density! Credits: NASA 34

35 TOWARD A BAYESIAN APPROACH Add hypothesis on the distribution of the parameters: add a «prior» to the distribution Take into account the physics of the parameters In the case of 55 Cnc «prior» on M and age 35

36 CONCLUSIONS Direct observables (especially the radius) are necessary to improve the accuracy of stellar ages and masses. In any case, the estimation of the error is very important, and can be obtained with MC. Bayesian approach to be compared to interpolation. Taking [M/H] it into account increases the error on M and age, but leads to more realistic results. 36

37 CONCLUSIONS Stellar parameters are needed to derive planetary parameters. Direct stellar density gives a direct estimates of stellar masses (ex.: 55 Cnc). Extend to HD189733, HD Cnc system new estimation of stellar masses and ages new and more accurate estimations of planetary radius, mass and density for the transiting planet 55 Cnc e. 37

38 Thank you! 38

arxiv: v2 [astro-ph.sr] 14 Feb 2016

arxiv: v2 [astro-ph.sr] 14 Feb 2016 Astronomy & Astrophysics manuscript no. FinalVersion ESO 2018 September 5, 2018 Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters R.Ligi 1,,

More information

Delicious Diameters of Dwarfs (in particular, the juicy red ones)

Delicious Diameters of Dwarfs (in particular, the juicy red ones) Delicious Diameters of Dwarfs (in particular, the juicy red ones) Tabetha Boyajian GSU / Hubble Fellow In collaboration with a whole bunch of y all Radical Radii of Red Stars Tabetha Boyajian GSU / Hubble

More information

A complete CHARActerization of the HD and the HD systems

A complete CHARActerization of the HD and the HD systems A complete CHARActerization of the HD189733 and the HD209458 systems Tabetha Boyajian Kaspar von Braun, Gregory A. Feiden, Daniel Huber, Sarbani Basu, Pierre Demarque, Debra A. Fischer, Gail Schaefer,

More information

VEGA: Status and Future Plans

VEGA: Status and Future Plans VEGA: Status and Future Plans Denis Mourard and Philippe Bério, Daniel Bonneau, Jean-Michel Clausse, Olivier Chesneau, Omar Delaa (PhD), Roxanne Ligi (PhD), Florentin Millour, Nicolas Nardetto, Karine

More information

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

Classical Methods for Determining Stellar Masses, Temperatures, and Radii Classical Methods for Determining Stellar Masses, Temperatures, and Radii Willie Torres Harvard-Smithsonian Center for Astrophysics 2010 Sagan Exoplanet Summer Workshop 1 Outline Basic properties of stars

More information

Recent results from VEGA Perspective of a 6T visible combiner

Recent results from VEGA Perspective of a 6T visible combiner Recent results from VEGA Perspective of a 6T visible combiner Denis Mourard O. Creevey, N.Nardetto, K. Perraut And the VEGA group 2014 Statistics 17 proposals (13 from Nice, 3 from Grenoble, 1 from Paris)

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France What is to expect from the transit method M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France Transit - method Occurrence: only if the planet orbital plane is close to

More information

Fundamental stellar parameters & the fine structure of the Low Main Sequence

Fundamental stellar parameters & the fine structure of the Low Main Sequence Fundamental stellar parameters & the fine structure of the Low Main Sequence Luca Casagrande MPA: I. Ramírez, M. Asplund CAUP: J. Meléndez ANU: M. Bessell Casagrande et al. (2010, A&A - in press; arxiv:1001.3142)

More information

Interior Structure of Rocky and Vapor Worlds

Interior Structure of Rocky and Vapor Worlds Interior Structure of Rocky and Vapor Worlds Diana Valencia, 4 April 2011 NASA Sagan Fellow, MIT Exploring Strange New Worlds: From Giant Planets to Super-Earths Super-Earths in the context of exoplanets

More information

CURRICULUM VITAE. Italy Tel : Professional Experience. Research Interests

CURRICULUM VITAE.   Italy Tel : Professional Experience. Research Interests CURRICULUM VITAE Roxanne LIGI AstroFit2 Post-doctorate/ Marie Skłodowska-Curie Fellow Born the 5 th February 1987 in San Diego (USA) INAF-Osservatorio Astronomico di Brera Nationality : French via E. Bianchi

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry N. Nardetto, D. Mourard, contribution from the VEGA group ($)"*$%+",*-".% /01(1%1--23%!"#$%&'% Mode 4T http://www-n.oca.eu/vega/en/publications/index.htm Mourard+ 2009, 2011 ; Ligi et al. 2013 1 Already

More information

NPOI Current Status and Recent Science

NPOI Current Status and Recent Science NPOI Current Status and Recent Science Ellyn Baines Naval Research Laboratory Navy Precision Optical Interferometer Joint project between NRL, Lowell Observatory, and USNO Observes in visible wavelengths

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information

Interferometry & Asteroseismology of Solar-like Stars

Interferometry & Asteroseismology of Solar-like Stars Interferometry & Asteroseismology of Solar-like Stars (+ their Connection to Exoplanets) Daniel Huber NASA Ames Research Center Feb 11 2014 Supergiants Giants Hot Dwarfs White Dwarfs Cool Dwarfs Griffith

More information

Diameters and Temperatures of Main Sequence Stars

Diameters and Temperatures of Main Sequence Stars Diameters and Temperatures of Main Sequence Stars Tabetha Boyajian (GSU / Hubble Fellow) and a whole lot of y all Interest and motivation Fundamental properties of stars Radius: f (θ, π) Temperature: f

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, give the prediction of the

More information

EXOPLANETS. Aurélien CRIDA

EXOPLANETS. Aurélien CRIDA EXOPLANETS Aurélien CRIDA EXOPLANETS Giordano Bruno said that the many stars are like our Sun, with planets like our Earth, inhabited as well (in de l'infinito universo e mondi (1574) ). He was burnt alive

More information

ECLIPSING BINARIES IN OPEN CLUSTERS

ECLIPSING BINARIES IN OPEN CLUSTERS ECLIPSING BINARIES IN OPEN CLUSTERS John Southworth Jens Viggo Clausen Niels Bohr Institute Københavns Universitet Eclipsing binaries in open clusters Get absolute dimensions of the two EB stars Spectroscopic

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Earth-like planets in habitable zones around L (and T) dwarfs

Earth-like planets in habitable zones around L (and T) dwarfs Earth-like planets in habitable zones around L (and T) dwarfs David Montes José A. Caballero Departamento de Astrofísica Universidad Complutense de Madrid Detecting planets around lowmass stars (and brown

More information

Updates on Characterization of Stars (with and without Planets)

Updates on Characterization of Stars (with and without Planets) Updates on Characterization of Stars (with and without Planets) Kaspar von Braun (Lowell Observatory) with T. Boyajian, A. Mann, G. van Belle, S. Kane, D. Ciardi, G. Schaefer, J. Jones, C. Farrington,

More information

Michaël Gillon (Université de Liège, Belgium)

Michaël Gillon (Université de Liège, Belgium) 12th Meeting of the FNRS Contact Group Astronomie & Astrophysique 17 May 2011 Planetarium, Brussels Michaël Gillon (Université de Liège, Belgium) michael.gillon@ulg.ac.be ~1% pour Soleil + Jupiter Brown

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

Research paper assignment

Research paper assignment Research paper assignment Review of research that interests you, more focused than discussions in class Include references and figures Final format should be PDF (try LaTeX!) Concise! < 5000 words Steps:

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

BD b: Chronicle of an exoplanetary discovery

BD b: Chronicle of an exoplanetary discovery BD +2 179 b: Chronicle of an exoplanetary discovery M. Hernán Obispo, M. C. Gálvez, G. Anglada Escudé, S. R. Kane, E. de Castro, and M. Cornide Citation: AIP Conference Proceedings 194, 441 (29); doi:

More information

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions Astronomy 141 Life in the Universe Autumn Quarter 008 Prof Gaudi Homework #4 Solutions These questions concern the concept of targets for searches for extrasolar planets specifically (a) the number of

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Statistical validation of PLATO 2.0 planet candidates

Statistical validation of PLATO 2.0 planet candidates Statistical validation of PLATO 2.0 planet candidates Rodrigo F. Díaz Laboratoire d Astrophysique de Marseille José Manuel Almenara, Alexandre Santerne, Claire Moutou, Anthony Lehtuillier, Magali Deleuil

More information

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy)

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy) Project RISARD - the story so far credit : wiki Marcin P. Gawroński (Toruń Centre for Astronomy) in collaboration with K. Goźdzewski, K. Katarzyński, G. Rycyk (TCfA) Overview RISARD motivation and current

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Data-driven models of stars

Data-driven models of stars Data-driven models of stars David W. Hogg Center for Cosmology and Particle Physics, New York University Center for Data Science, New York University Max-Planck-Insitut für Astronomie, Heidelberg 2015

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Stellar Formation and Evolution

Stellar Formation and Evolution Stellar Formation and Evolution Wen Ping Chen http://www.astro.ncu.edu.tw/~wchen/courses/stars/default.htm What is a star? How hot is the surface of the Sun? How is this known? The Sun is gaseous, so how

More information

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances 12. Physical Parameters from Stellar Spectra Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances 1 Fundamental Properties of Stars Temperature (T) Radius (R) Chemical

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Planetary interiors: What they can(not) tell us about formation

Planetary interiors: What they can(not) tell us about formation Planetary interiors: What they can(not) tell us about formation Methods and constraints Jérémy Leconte Timeline Formation ( 1-10 Myr) Mass Radius Orbital Parameters Stellar Parameters... Evolution ( 1-10

More information

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Oxygen in red giants from near-infrared OH lines: 3D effects and first results from Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Overview! 1. APOGEE: status and prospects! 2. A first look at

More information

5. The Baade-Wesselink Method

5. The Baade-Wesselink Method Rolf Kudritzki SS 2017 5. The Baade-Wesselink Method Baade-Wesselink Method (BWM): distance determination method for stellar objects, for which the photosphere can be approximated as a spherically moving

More information

Signal processing in Python for the detection and characterization of extrasolar planets

Signal processing in Python for the detection and characterization of extrasolar planets Signal processing in Python for the detection and characterization of extrasolar planets Institut d astrophysique spatial Université Paris-Sud 11 29 August 2011 1 Personal background 2 3 4 5 1 Personal

More information

Stars: basic observations

Stars: basic observations Stars: basic observations Basic properties of stars we would like to know in order to compare theory against observations: Stellar mass M Stellar radius R Surface temperature - effective temperature T

More information

Validation of Transiting Planet Candidates with BLENDER

Validation of Transiting Planet Candidates with BLENDER Validation of Transiting Planet Candidates with BLENDER Willie Torres Harvard-Smithsonian Center for Astrophysics Planet Validation Workshop, Marseille, 14 May 2013 2013 May 14 Planet Validation Workshop,

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

MINIMUM MASS EXTRASOLAR NEBULA DERIVED FROM THE MASS OF EXTRASOLAR PLANETARY SYSTEMS

MINIMUM MASS EXTRASOLAR NEBULA DERIVED FROM THE MASS OF EXTRASOLAR PLANETARY SYSTEMS MINIMUM MASS EXTRASOLAR NEBULA DERIVED FROM THE MASS OF EXTRASOLAR PLANETARY SYSTEMS IVAN ANTE JAKOVČEVIĆ Supervisor: Associate Professor dr. Dejan Vinković Split, September 2014 Bachelor Thesis in Physics

More information

A Survey of Stellar Families Multiplicity of Solar-type Stars

A Survey of Stellar Families Multiplicity of Solar-type Stars A Survey of Stellar Families Multiplicity of Solar-type Stars Advisor: Dr. Hal McAlister GSU Committee members: Dr. Doug Gies GSU Deepak Raghavan Ph.D. Dissertation Talk March 17, 2009 Dr. Todd Henry GSU

More information

Modeling intrinsic luminosity variations induced by internal magnetic field in the Sun and solar-like stars

Modeling intrinsic luminosity variations induced by internal magnetic field in the Sun and solar-like stars Modeling intrinsic luminosity variations induced by internal magnetic field in the Sun and solar-like stars Federico Spada Max-Planck-Institut für Sonnensystemforschung, Göttingen Collaborators: Sabatino

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

Classical observations of stellar properties

Classical observations of stellar properties Classical observations of stellar properties Luca Casagrande M. Bessell - J. Meléndez - I. Ramírez / M. Asplund R. Schönrich / V. Silva Aguirre Spectroscopy F(l) : lots of info, but also model dependent

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

Coronagraphic Imaging of Exoplanets with NIRCam

Coronagraphic Imaging of Exoplanets with NIRCam Coronagraphic Imaging of Exoplanets with NIRCam C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology For the NIRCam Team September 27, 2016 Copyright

More information

Red giants with brown dwarfs companions

Red giants with brown dwarfs companions Red giants with brown dwarfs companions Andrzej Niedzielski Toruń Center for Astronomy, Nicolaus Copernicus University in Toruń, Poland Planets around evolved stars 1992 Wolszczan & Frail - first planet

More information

Asterseismology and Gaia

Asterseismology and Gaia Asterseismology and Gaia Asteroseismology can deliver accurate stellar radii and masses Huber et al 2017 compare results on distances from Gaia and asteroseismology for 2200 Kepler stars Asteroseismology

More information

Science with EPICS, the E-ELT planet finder

Science with EPICS, the E-ELT planet finder The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Proceedings IAU Symposium No. 276, 2010 c International Astronomical Union 2011 A. Sozzetti, M. G. Lattanzi & A. P.

More information

Tests of stellar physics with high-precision data from eclipsing binary stars

Tests of stellar physics with high-precision data from eclipsing binary stars Tests of stellar physics with high-precision data from eclipsing binary stars Ignasi Ribas Institut de Ciències de l Espai (CSIC-IEEC, Barcelona) Barcelona, April 2013 Eclipsing binary systems Eclipsing

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars Gerard T. van Belle PRIMA Instrument Scientist Observatory April 7, 2008 Interferometric Observations of Supergiants:

More information

Professional / Amateur collaborations in exoplanetary science

Professional / Amateur collaborations in exoplanetary science Professional / Amateur collaborations in exoplanetary science Alexandre Santerne Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto alexandre.santerne@astro.up.pt Outline Exoplanets:

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

Challenges in Exoplanet Research for the UV

Challenges in Exoplanet Research for the UV Challenges in UV Astronomy Garching 7 Oct 2013 Collaborators Catherine Huitson Exeter, UK / U of Colorado Alain Lecavelier des Etangs IAP, France Alfred Vidal-Madjar IAP, France V. Bourrier IAP, France

More information

CHARA/NPOI 2013 Science & Technology Review MIRC Observations of the O-star Triple Sigma Orionis

CHARA/NPOI 2013 Science & Technology Review MIRC Observations of the O-star Triple Sigma Orionis MIRC Observations of the O-star Triple Sigma Orionis Gail Schaefer Doug Gies John Monnier Nils Turner New Title: Do NPOI and CHARA Orbits Agree?... stay tuned... Sigma Orionis Image credit: Peter Wienerroither

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Update date: December 13, 2010 Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle,

More information

Orbital Obliquities of Small Planets from CHARA Stellar Diameters

Orbital Obliquities of Small Planets from CHARA Stellar Diameters Orbital Obliquities of Small Planets from CHARA Stellar Diameters Samuel Quinn & Russel White Georgia State University CHARA Meeting March 19, 2015 Hébrard+ (2011) How do planets migrate? Giant planets

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

arxiv: v1 [astro-ph.sr] 26 Oct 2015

arxiv: v1 [astro-ph.sr] 26 Oct 2015 Astronomy & Astrophysics manuscript no. aa c ESO 2018 July 3, 2018 Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search (Research Note) M. Adamczyk, B. Deka-Szymankiewicz,

More information

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Robert Wilson, Steven Majewski, Katia Cunha, Verne Smith, Diogo Souto, Chad Bender, Suvrath Mahadevan,

More information

Finding terrestrial planets in the habitable zones of nearby stars

Finding terrestrial planets in the habitable zones of nearby stars Finding terrestrial planets in the habitable zones of nearby stars Part II Astrophysics Essay Simon Hodgkin & Mark Wyatt (on sabbatical) Terrestrial? 15 Exoplanets Solar system 5 4.5 g cm 3 Winn et al.

More information

Angular Resolution Universe. Universe

Angular Resolution Universe. Universe High High Angular Angular Resolution Resolution Universe Universe Gail Schaefer The CHARA Array of Georgia State University Mount Wilson, CA Angular Angular Resolution Resolution Angular Resolution - Visible

More information

Galactic archaeology with the RAdial Velocity Experiment

Galactic archaeology with the RAdial Velocity Experiment Galactic archaeology with the RAdial Velocity Experiment Georges Kordopatis & RAVE collaboration Leibniz-Institute for Astrophysics, Potsdam Multi-Object Spectroscopy in the next decade: Big questions,

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Stellar Evolution & issues related to the post Turn-Off evolution

Stellar Evolution & issues related to the post Turn-Off evolution Stellar Evolution & issues related to the post Turn-Off evolution Santi Cassisi INAF - Astronomical Observatory of Teramo, Italy The point of view of Population Synthesis users What do they want? Magnitudes

More information

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation PLATO PLAnetary Transits and Oscillations of Stars revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation The PLATO Consortium:

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

Star-planet connection:

Star-planet connection: : The role of stellar metallicity Centro de Astrofísica da Universidade do Porto Instituto de Astrofísica e Ciências do Espaço 18 September 2014 Porto, Portugal 1 Planet formation and metallicity Giant

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

SPECIFIC ANGULAR MOMENTUM DISTRIBUTION FOR SOLAR ANALOGS AND TWINS: WHERE IS THE SUN MISSING HIS ANGULAR MOMENTUM?

SPECIFIC ANGULAR MOMENTUM DISTRIBUTION FOR SOLAR ANALOGS AND TWINS: WHERE IS THE SUN MISSING HIS ANGULAR MOMENTUM? 5th International Workshop on Astronomy and Relativistic Astrophysics (IWARA2011) International Journal of Modern Physics: Conference Series Vol. 18 (2012) 58 62 c World Scientific Publishing Company DOI:

More information

A wide brown dwarf binary around a planet-host star

A wide brown dwarf binary around a planet-host star A wide brown dwarf binary around a planet-host star Nicolas Lodieu (1, 2, 3) (1) Instituto de Astrofisica de Canarias (IAC, Tenerife) (2) Universidad de La Laguna (ULL, Tenerife) (3) Ramon y Cajal fellow

More information

Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member

Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member Senior Researcher in Astronomy Univers et Théorie Paris Observatory Meudon France Biography Dr. Jean Schneider He is a Promoter

More information

Transits: planet detection and false signals. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

Transits: planet detection and false signals. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Transits: planet detection and false signals Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Outline Transit method basics Transit discoveries so far From transit detection to planet confirmation

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University)

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University) ECLIPSING BINARIES: THE ROYAL ROAD John Southworth (Keele University) Astrometric binaries: distant friends? William Herschel (1802) christened the term binary star Félix Savary (in 1827) established the

More information

Realistic limitations of detecting planets around young active stars

Realistic limitations of detecting planets around young active stars Realistic limitations of detecting planets around young active stars Sandra Jeffers IAG Goettingen In collaboration with: John Barnes, Hugh Jones, David Pinfield (Hertfordshire, UK) + ROPACS Impact of

More information

Interferometric Constraints on Fundamental Stellar Parameters

Interferometric Constraints on Fundamental Stellar Parameters Interferometric Constraints on Fundamental Stellar Parameters Pierre Kervella LESIA, Paris Observatory photo: S. Guisard Heat Heat Transport Heat Transport Photosphere Radiation Heat Transport Photosphere

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

Life in the Universe (1)

Life in the Universe (1) Conditions for the emergence of life and habitability Life in the Universe (1) We call biogenic conditions the set of physico-chemical requirements that must be fulfilled for abiogenesis to take place

More information

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets Jiangpei Dou 1, Deqing Ren 1,2, Yongtian Zhu 1, Xi Zhang 1 1 Astronomical Observatories/Nanjing Institute of Astronomical

More information

The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on

The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on Russel White (Georgia State University) With advice/insight from: Lynne Hillenbrand (Caltech) Sam Quinn

More information

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory The effect of stellar activity on radial velocities Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Mass and radius are the most fundamental parameters of a planet Main inputs for models

More information

Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision. Juliet Pickering Office: Huxley 706

Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision. Juliet Pickering Office: Huxley 706 Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision Juliet Pickering Office: Huxley 706 Office hour (Pickering): Thursday 22nd May 12-11 pm Outline overview of first part

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 13:00 Permitted examination

More information