Topics and questions for astro presentations
|
|
- Morris Manning
- 1 years ago
- Views:
Transcription
1 Topics and questions for astro presentations 1. Historical development of distance measurements 1. Explain the challenges of identifying the distance to a point light source. What affects brightness? 2. When was the parallax method developed and what affects its accuracy? 3. When were different standard candles established? 4. Describe a timeline for the distances we could measure up until the present 2. Cepheid variables 1. What led to the discovery of Cepheid variables? Where were they first found? 2. What is one explanation for why they have periodic changes in intensity? 3. What conditions might be needed for a Cepheid variable to form? 3. Standard candles 1. What are the standard candles currently utilized in astronomy? Describe what each is in terms of the stellar lifecycle. (Cover at least 4) 2. What influences errors in astronomical measurements? 3. What are some false positives that can lead to incorrect distance measurements using standard candles? 4. Search for exoplanets 1. Describe how the methods to search for exoplanets have developed over time. 2. What are the sampling biases associated with the different methods and how are they accounted for in the final counts? 3. How can we determine the composition of an exoplanet? 5. Pre- solar system 1. How many stars went into forming the gas cloud that formed the solar system? 2. What is left of those stars? 3. How has the stellar neighborhood changed? 6. Early Solar System: 1. How big was the cloud that formed the sun and solar system? 2. What is gravitational collapse and what does it have to do with planet formation? 3. Why doesn t stuff fall into the sun? What is the role of angular momentum? 7. Late Solar system:
2 1. What will happen to the sun? What changes when a star becomes a red giant? 2. What will happen to the earth? 3. What is the ultimate fate of the solar system? 8. Inner planets: 1. What causes the composition of the inner planets? 2. Why do two have thick atmospheres, and the other two have none or very thin atmospheres? 3. How do their topographies compare and what causes that difference? 9. Outer planets: 1. What causes the composition of the outer planets? 2. Easy question: Talk about the scale of these planets 3. What are the rings around the outer planets and what made them? 4. What is the weather like on the outer planets and what drives the weather? (Does it work the same as on earth?) 10. Sun: 1. Where does fusion take place in the sun and what are the different layers? 2. How does heat flow in the sun? 3. What can we see of the sun, and how can we find things out about whats going on inside? 4. Why is the corona so hot? 11. Moons: 1. What are the different ways a planet may have/acquire a moon? 2. Are there any moons that are promising for life? 3. What s up with Neptune s moons Triton and Nereid? What does their motion say about their origin? 4. How are rings related to moons? 12. Our Moon: 1. Why are there areas of more or less cratering on our moon? (why isn t it all the same?) 2. Why do we think the moon is a result of a relatively early impact? (what s the evidence?) 3. What will be the ultimate fate of the moon? 13. Asteroid and Kuiper Belt 1. What does it mean to clear the neighborhood? 2. What is the Nice model and what does it have to do with the Kuiper belt?
3 3. What are Trojan asteroids and where are they? 4. What are a couple significant asteroids and what are they like? 14. Comets 1. What are recent missions to explore or investigate comets? What were they doing? 2. What causes their composition? Why are comets orbits so eccentric? 3. Why is Haley s comet important? What historical relevance does it have? 15. Telescopes 1. Choose 2 major optical telescopes. Where are they? What are their capabilities? 2. What is the VLA? What is the basic idea of aperture synthesis? 3. What are the limitations and benefits of xray, infrared, microwave, radio, and optical telescopes? 16. Mars Exploration 1. What is the scale of the history of mars exploration? 2. What are the major missions so far? 3. How were landing sites chosen? 4. How have we broken down the problem of searching for life? 17. Voyager and Outer solar system probes 1. Why were the voyager missions sent at the time they were? What were their flight paths? (find an animation) 2. What is the technology in the voyager probes like? How does it compare to current technology? 3. What is going on at the edge of the solar system? Why? 18. Our view of the universe (historically that has influenced our perspective) 1. What are the major milestones in astronomical measurements that have affected our view of the structure of the universe? 2. At each of those points, how were those new perspectives received? Did anyone know at the time? How did they react? 3. What are the outstanding questions about the universe and what are some projects that are aiming to understand the answers? 19. Galactic evolution (what changes?) 1. When were there galaxies first around? What were they like? 2. How do we classify galaxies? What is the historical origin of that classification scheme? 3. What factors influence the form of a galaxy?
4 4. What evidence supports the idea that collisions lead to different types of galaxies? 20. Spiral galaxy origins 1. What leads to the formation of spiral arms in a galaxy? How long does it take? 2. What are the different classes of spiral galaxies? What causes those differences? 3. What is the core of a spiral galaxy like and why? 21. Elliptical galaxy origins 1. What evidence supports the claim that elliptical galaxies are often formed by galactic collisions? 2. What is the core of a elliptical galaxy like and why? 3. What will the ultimate fate of an elliptical galaxy be? 22. Irregular galaxy origins and examples 1. How are irregular galaxies classified? 2. Give three examples of irregular galaxies and explanations for what lead to their formation. 23. Quasars and active galactic nuclei 1. What is a quasar and how can a black hole shoot material out? 2. What causes the formation of quasars? Will the collision of the Andromeda galaxy and our own create a quasar? What would that depend on? 3. How are quasars utilized in distance measurements? What lets us use them in that way? 24. History of universe up to first star 1. Give a detailed timeline of the history of the universe from the first millisecond up until the formation of the first star. 2. What is the importance of 3000K and why does the cosmic microwave background tell us that temperature? 25. Dark matter (nonbaryonic) 1. What is the evidence that dark matter exists? 2. What are current theories for what dark matter might be? 3. Describe how one project aims to detect dark matter. 26. Fate of universe 1. What does it mean for the expansion of the universe to be accelerating? 2. Discuss the ideas behind an open, flat, and closed universe. 3. What is the role of dark energy in describing how the universe will evolve?
5 27. Large- scale structure of the universe 1. Describe in detail the structure of the universe at the largest scales. 2. What factors affect this structure? 3. How is this structure expected to change or stay the same in the future? 28. Stellar life cycle that ends in white dwarf 1. Describe in detail the sequence of events that lead a star through its life cycle to become a white dwarf. 29. Stellar life cycle that ends in nova or supernova 1. Describe in detail the sequence of events that lead a star through its life cycle to become a neutron star or black hole. 30. HR diagrams 1. Describe the origin of the HR diagram (who developed it, why it is useful) 2. How will our sun move through this diagram? 3. What stars present challenges when classifying using HR diagrams? 31. Fusion power 1. What are the current methods used to attempt to harness fusion power? 2. What are the technical challenges that must still be overcome? 3. How is fusion power research funded? Is that funding stable? Why or why not? 32. Black holes 1. How are black holes formed? 2. Why doesn t everything in the galaxy get sucked into the black hole at the core? 3. How do black holes become active? 33. Neutron stars 1. How does a neutron star form? 2. Why doesn t a neutron star become a black hole? Can it ever? 3. Give detailed comparisons of the size, temperature, speed of rotation, density, and mass of a neutron star to other stellar materials.
Introduction to the Universe
What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)
Introduction to the Universe. What makes up the Universe?
Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding
Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name
Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to
Cosmic Microwave Background Radiation
Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red
29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A
29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!
Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe
Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe The Big Bang Theory The Big Bang Theory The Big Bang Theory is the most widely accepted scientific explanation
ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy
Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire
Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.
Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.
Galaxies & Introduction to Cosmology
Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably
Unit 16: Astronomy and space science. Learning aim A Understand the fundamental aspects of the solar system
Unit 16: Astronomy and space science Learning aim A Understand the fundamental aspects of the solar system Contents page Note: anywhere you see a capital D means you MUST draw a diagram. Radiative zone
ASTRONOMY QUIZ NUMBER 11
ASTRONOMY QUIZ NUMBER. Suppose you measure the parallax of a star and find 0. arsecond. The distance to this star is A) 0 light-years B) 0 parsecs C) 0. light-year D) 0. parsec 2. A star is moving toward
Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents
Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the
The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14
The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations
Astronomy Study Guide Answer Key
Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric
Galaxies. With a touch of cosmology
Galaxies With a touch of cosmology Types of Galaxies Spiral Elliptical Irregular Spiral Galaxies Spiral Galaxies Disk component where the spiral arms are Interstellar medium Star formation Spheroidal
CHAPTER 28 STARS AND GALAXIES
CHAPTER 28 STARS AND GALAXIES 28.1 A CLOSER LOOK AT LIGHT Light is a form of electromagnetic radiation, which is energy that travels in waves. Waves of energy travel at 300,000 km/sec (speed of light Ex:
ASTRONOMY (ASTRON) ASTRON 113 HANDS ON THE UNIVERSE 1 credit.
Astronomy (ASTRON) 1 ASTRONOMY (ASTRON) ASTRON 100 SURVEY OF ASTRONOMY 4 credits. Modern exploration of the solar system; our galaxy of stars, gas and dust; how stars are born, age and die; unusual objects
Name Date Period. 10. convection zone 11. radiation zone 12. core
240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete
Prentice Hall EARTH SCIENCE
Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical
Question 1. Question 2. Correct. Chapter 16 Homework. Part A
Chapter 16 Homework Due: 11:59pm on Thursday, November 17, 2016 To understand how points are awarded, read the Grading Policy for this assignment. Question 1 Following are a number of distinguishing characteristics
Ay162, Spring 2006 Week 8 p. 1 of 15
Astronomy 162, Week 8 Milky Way Galaxy, continued Patrick S. Osmer Spring, 2006 Rotation of Galaxy How do we know the galaxy is rotating, and how do we measure its rotation? Measure radial velocities of
TEACHER BACKGROUND INFORMATION
TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a
Unit 6 Lesson 4 What Are the Planets in Our Solar System? Copyright Houghton Mifflin Harcourt Publishing Company
Unit 6 Lesson 4 What Are the Planets in Our Solar System? What other objects are near Earth in this part of space? Earth and millions of other objects make up our solar system. In Our Corner of Space A
Light and Telescopes
Light and Telescopes Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day We find them smaller and fainter, in constantly increasing numbers, and we know that we
Astro 1010 Planetary Astronomy Sample Questions for Exam 3
Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors
Chapter 21: Stars Notes
Branches of Earth Science Chapter 21: Stars Notes Astronomy: The study of planets, stars, and other objects in space. Lithosphere: the land masses of earth o Litho means rock Hydrosphere: waters of the
Our Universe: Creation, Galaxies, Stars and Celestial Objects
Our Universe: Creation, Galaxies, Stars and Celestial Objects Big Bang Theory Our universe began with one huge exploding atom that relapsed all the energy and matter that exists in the universe today.
Astronomy: Exploring the Universe
Course Syllabus Astronomy: Exploring the Universe Course Code: EDL028 Course Description The universe is truly the last unknown frontier and offers more questions than answers. Why do stars twinkle? Is
Astronomy: Exploring the Universe
Course Syllabus Astronomy: Exploring the Universe Course Description Why do stars twinkle? Is it possible to fall into a black hole? Will the sun ever stop shining? Since the first glimpse of the night
AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!
AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons
It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy.
The Galaxies The Milky Way Galaxy Is a spiral galaxy in which our solar system is located. The center of the galaxy lies in the Sagittarius Constellation. It is about 100,000 ly across, 2,000 ly thick,
2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr A*.
7/7 The Nucleus of the MW its center 1. Can t see the nucleus in visible light too much stuff in the way. 2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr
The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya
Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of
Chapter 3 Cosmology 3.1 The Doppler effect
Chapter 3 Cosmology 3.1 The Doppler effect Learning objectives Explain why the wavelength of waves from a moving source depends on the speed of the source. Define Doppler shift. Measure the velocity of
Light. Transverse electromagnetic wave, or electromagnetic radiation. Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays
Light Transverse electromagnetic wave, or electromagnetic radiation Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays The type of light is determined purely by wavelength.
The Universe and Galaxies
The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus
BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015
BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50
Joy of Science Experience the evolution of the Universe, Earth and Life
Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of
The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way
The Milky Way Milky Way : A band of and a The band of light we see is really 100 billion stars Milky Way probably looks like Andromeda. Milky Way Composite Photo Milky Way Before the 1920 s, astronomers
Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.
If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between
Stellar Astronomy Sample Questions for Exam 3
Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.
The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies:
Galaxies The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies: Small Magellanic Cloud (Digital Sky Survey) Large Magellanic Cloud (credit: Eckhard
Chapter 19 Exploring Space. I. Fill in the blank
Chapter 19 Exploring Space 1. All radiation is classified by wavelength in the electromagnetic spectrum. 2. Two types of telescopes that collect visible light are refractors and reflectors. 3. An uncrewed
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 14 The Milky Way Galaxy Lecture Presentation 14.0 the Milky Way galaxy How do we know the Milky Way exists? We can see it even though
Unit 12 Lesson 1 What Objects Are Part of the Solar System?
Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other
Astronomy Unit Notes Name:
Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)
Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am
Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula
ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study
Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through
Star systems like our Milky Way. Galaxies
Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in
Lunar Eclipse. Solar Eclipse
Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes
1UNIT. The Universe. What do you remember? Key language. Content objectives
1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn
Chapter 15 The Formation of Planetary Systems
Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar
Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)
THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external
Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008
Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate
Study Guide Chapter 2
Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR
Effective August 2007 All indicators in Standard / 14
8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future
Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya
Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes
Beyond Our Solar System Chapter 24
Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position
The Formation of the Solar System
The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting
Abstracts of Powerpoint Talks - newmanlib.ibri.org - Stars & Galaxies. Robert C. Newman
Stars & Galaxies Robert C. Newman Stars & Galaxies Here we want to start with stars, looked at from two different perspectives: What they look like from earth What we know about them from astronomy and
Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).
Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution
1. Galaxy (a) the length of a planet s day. 2. Rotational Period (b) dust and gases floating in space
Vocabulary: Match the vocabulary terms on the left with the definitions on the right 1. Galaxy (a) the length of a planet s day 2. Rotational Period (b) dust and gases floating in space 3. Orbital Period
Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter C. High School
Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter C. High School Statutory Authority: The provisions of this Subchapter C issued under the Texas Education Code, 7.102(c)(4), 28.002,
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,
Read each slide then use the red or some underlined words to complete the organizer.
Read each slide then use the red or some underlined words to complete the organizer. 1B Did it start as a bang! 1B The Expanding Universe A. The Big Bang Theory: Idea that all matter began in an infinitely
Earth in the Universe Unit Notes
Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems
Exam 3 Astronomy 100, Section 3. Some Equations You Might Need
Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period
Sample Assessment Material Time: 2 hours
Paper Reference(s) 5AS01 Edexcel GCSE Astronomy Paper 1 Sample Assessment Material Time: 2 hours Materials required for examination Calculator Items included with question papers Nil Instructions to Candidates
Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2
Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths
Modern Observations: the Accelerating Universe
Modern Observations: the Accelerating Universe So far we re caught up to the early or possibly mid 1990s in basic cosmological observations. In this lecture, however, we are going to address the greatest
Galaxies and the Solar System
Galaxies and the Solar System by Lynn Durrant 1 10 tips for learning success Be independent and responsible for your own learning. Work collaboratively in pairs or groups. Use different strategies to help
Section 26.1 pp The Sun s Size, Heat, and Structure
Section 26.1 pp. 572 576 The Sun s Size, Heat, and Structure Set a Purpose: TE, p. 572 Reading Study Guide, p. 89 Visualization Examine the sun at different wavelengths: SE, p. 573 Visual Teaching Interpret
Galaxies and the expansion of the Universe
Review of Chapters 14, 15, 16 Galaxies and the expansion of the Universe 5/4/2009 Habbal Astro 110-01 Review Lecture 36 1 Recap: Learning from Light How does light tell us what things are made of? Every
Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe
16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational
The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers
Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or
The Milky Way & Galaxies
The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes
Beyond the Solar System 2006 Oct 17 Page 1 of 5
I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured
Stellar Evolution. The lives of low-mass stars. And the lives of massive stars
Stellar Evolution The lives of low-mass stars And the lives of massive stars Stars of High Mass High mass stars fuse H He, but do so in a different reaction: the CNO cycle Carbon is a catalyst, speeding
Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies
Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly
Astronomy Ch. 6 The Solar System: Comparative Planetology
Name: Period: Date: Astronomy Ch. 6 The Solar System: Comparative Planetology MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid,
UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )
CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher
Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)
When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,
Figure 19.19: HST photo called Hubble Deep Field.
19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.
Astro 301/ Fall 2005 (48310) Introduction to Astronomy
Astro 301/ Fall 2005 (48310) Introduction to Astronomy Instructor: Professor Shardha Jogee TAs: David Fisher, Donghui Jeong, and Miranda Nordhaus Lecture 2 + 3: Tu Sep 6, Th Sep 8 Topics in class this/next
Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.
Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble
Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE
Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology Cosmology is the study of the universe; its nature, origin and evolution. General Relativity is the mathematical basis of cosmology from which
A 103 Notes, Week 14, Kaufmann-Comins Chapter 15
NEARBY GALAXIES I. Brief History A 103 Notes, Week 14, Kaufmann-Comins Chapter 15 A. Kant B. Curtis-Shapley debate C. Distance to Andromeda II. Classification of nearby galaxies: Spirals, Ellipticals,
outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets
Earth s Place in the Universe outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets the big bang the universe is expanding
2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left
Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae
Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe
Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Wrap-Up What makes up the universe and how does
Planets Inner vs. outer Composition inner planets are rocky/outer are gas Size inner are smaller/outer are much larger Distance from sun inner are
Planets Inner vs. outer Composition inner planets are rocky/outer are gas Size inner are smaller/outer are much larger Distance from sun inner are close/outer are farther. Earth is 1 AU from the sun Life
CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere?
----------------------------- ---------- ------ Section 1 Review CVtpf 2-1 -- SECTION VOCABULARY planet a celestial body that orbits the sun, is round because of its own gravity, and has cleared the neighborhood
Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? How did we come to be? How can we know what the universe was like in the
Astronomy Part 1 Regents Questions
Regents Questions 1. The Sun revolves around the center of A) Polaris B) Aldebaran C) Earth D) the Milky Way Galaxy 4. In which sequence are the items listed from least total mass to greatest total mass?
Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.
Galaxies and Stars 1. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is A) hotter than Rigel B) more luminous than Rigel C) closer than Rigel D) larger than Rigel
Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary
Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement
Clicker Question: Clicker Question: Clicker Question:
Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from
How did it come to be this way? Will I stop sounding like the
Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system
Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.
Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3