News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Size: px
Start display at page:

Download "News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim"

Transcription

1 News from High-Energy Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim []

2 Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

3 Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

4 Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

5 Introduction History 1912: Victor Hess discovers cosmic rays Two key questions what are their sources? how do they accelerate? Hess and Kolhoerster s results: 80 excess ionization altitude/00m Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

6 Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

7 Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain How to overcome these problems? 1 Multi-messenger astronomy, γ: distinguish hadronic from leptonic, only below TeV ν: low event rates requires km 3 detectors Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

8 Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain How to overcome these problems? 1 Multi-messenger astronomy, γ: distinguish hadronic from leptonic, only below TeV ν: low event rates requires km 3 detectors 2 improve experiments: combining different techniques (KASCADE-Grande, PAO, TA) models: new data from LHC (EPOS-LHC, QGSJET-II-04) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

9 Introduction Is Progress slow? Composition of Galactic CRs: traditional view [Gaisser, Stanev, Tilav 13 ] sr -1 s -1 ] 4 3 Proton_total He_total C_total O_total Fe_total Z=53 group Z=80 group dn/de [GeV 2.6 E 1.6 m Pamela Proton Pamela He CreamII Proton CreamII He CreamII C CreamII O CreamII Mg CreamII Si CreamII Fe Primary Energy, E [GeV] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

10 Introduction Is Progress slow? Composition of Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m 2.5 E EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv: v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de 15 KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

11 Introduction Is Progress slow? Composition of Galactic CRs: Auger [arxiv: ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p = p = QGSJET II-04 QGSJET II-04 QGSJET II log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p < -3 p = EPOS-LHC EPOS-LHC EPOS-LHC log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p = p = X max [g/cm 2 ] X max [g/cm 2 ] X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

12 Introduction Is Progress slow? Composition of Galactic CRs: Auger [arxiv: ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p = p = QGSJET II-04 QGSJET II-04 QGSJET II log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p < -3 p = EPOS-LHC EPOS-LHC EPOS-LHC log(e/ev) = log(e/ev) = log(e/ev) = composition ev consistent with N 200 p < -4 p = p = O( 0 50% p, 50% He+N, < 20%Fe ) X max [g/cm 2 ] X max [g/cm 2 ] X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

13 Introduction Is Progress slow? Composition of Galactic CRs: 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p = p = QGSJET II-04 QGSJET II-04 QGSJET II log(e/ev) = log(e/ev) = log(e/ev) = N p < -4 p < -3 p = EPOS-LHC EPOS-LHC EPOS-LHC log(e/ev) = log(e/ev) = log(e/ev) = composition ev consistent with N p < -4 p = p = O( 0 50% p, 50% He+N, < 20%Fe ) early transition X max [g/cm 2 ] from Galactic X max [g/cm to 2 ] extragalactic X max CRs [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

14 Introduction Is Progress slow? Transition to extragalactic CRs anisotropy limits dipole quadrupole Upper Limit - Dipole Amplitude Z=1 Z=26 1 E [EeV] Upper Limit - Amplitude λ Z=1 Z=26 1 E [EeV] dominant light Galactic composition around E = 18 ev excluded [Giacinti, MK, Semikoz, Sigl ( 12), PAO 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

15 Introduction Pion peak The pion peak CR scattering on gas or photons: pp mesons, baryons e, γ, ν, p the lightest mesons, π 0 and π ±, are produced most often decays: π 0 2γ and π ± 3ν + e ± Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

16 Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

17 Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

18 Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. min./max. photon energies Emin max = γ m π 0 2 (1 ± β) = m π ± β 1 β Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

19 Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. min./max. photon energies Emin max = γ m π 0 2 (1 ± β) = m π 0 2 geometric mean Emin E max = m π ± β 1 β Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

20 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

21 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

22 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

23 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

24 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

25 Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) independent of velocity distribution of pions: symmetric photon distribution w.r.t. m π 0/2 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

26 Introduction Pion peak The pion peak: pp interactions n γ ln(m π /2) ln(e γ ) low threshold & approx. Feynman scaling Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 / 53

27 Introduction Pion peak The pion peak: pp interactions n γ ln(m π /2) ln(e γ ) low threshold & approx. Feynman scaling dn γ /de dn CR /de Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 / 53

28 Introduction Pion peak The pion peak: pγ interactions n γ ln(m π /2) ln(e γ ) threshold E th > m π m p /ε γ 16 ev with ε γ < ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

29 Introduction Pion peak The pion peak: pγ interactions n γ ln(m π /2) ln(e γ ) threshold E th > m π m p /ε γ 16 ev with ε γ < ev dn γ /de { E 1 dn CR /de for E < E th for E > E th Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

30 Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

31 Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes for E ν m π, m µ the same picture Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

32 Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes for E ν m π, m µ the same picture for a single source: pp: dnν /de dn CR /de pγ: dn ν /de { E 1 dn CR /de for E < E th for E > E th steeper spectra for pγ as result of Emax distribution and evolution Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

33 Introduction Pion peak Observing the π 0 bump in SNR W44: - W44 s -1 ) -2 dn/de (erg cm 2 E Best-fit broken power law Fermi-LAT AGILE (Giuliani et al. 2011) 0 π -decay Bremsstrahlung Bremsstrahlung with Break 8 9 Energy (ev) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

34 Introduction Pion peak Observing the π 0 bump in SNR W44: - W44 s -1 ) -2 dn/de (erg cm 2 E Best-fit broken power law Fermi-LAT AGILE (Giuliani et al. 2011) π 0 -decay Bremsstrahlung Bremsstrahlung with Break 8 9 Energy (ev) strong evidence for proton acceleration Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

35 Knee explanations Cosmic Ray Knee: steepening γ 0.4 at few 15 ev. ) 1.5 s -1 sr -1 ev -2 J(E) (m RHIC (p-p) HERA (γ-p) Equivalent c.m. energy 3 Tevatron (p-p) 4 7 TeV 14 TeV LHC (p-p) s pp (GeV) 5 HiRes-MIA HiRes I HiRes II Auger Scaled flux E ATIC PROTON RUNJOB KASCADE (QGSJET 01) KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) Energy 20 (ev/particle) 21 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

36 Knee explanations Cosmic Ray Knee: 3 explanations. ) Equivalent c.m. energy 3 4 s pp (GeV) 5 6 s -1 sr -1 ev -2 J(E) (m RHIC (p-p) HERA (γ-p) Tevatron (p-p) 7 TeV 14 TeV LHC (p-p) HiRes-MIA HiRes I HiRes II Auger Scaled flux E ATIC KASCADE (QGSJET 01) 14 PROTON RUNJOB KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) Energy (ev/particle) change of interactions at multi-tev energies: excluded by LHC Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

37 Knee explanations Cosmic Ray Knee: 3 explanations. change of interactions at multi-tev energies: excluded by LHC change of propagation at R L l coh or E c ZeB l coh : change in diffusion from D(E) E 1/3 to Hall diffusion D(E) E small-angle scattering D(E) E 2 something intermediate? unavoidable effect, but for B few µg and l coh 30 pc at too high energy: E c /Z 15 B l c µg pc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

38 Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] p He C O Fe total E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

39 Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] p He C O Fe total E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

40 Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] p He C O Fe total E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i no reliable estimate of E max,i, α A,i, and f A,i fit of many-parameter model to two observables: I tot and ln(a) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

41 Knee explanations Cosmic Ray Knee: 3 explanations maximal energy: Gaisser, Stanev & Tilav version [ ] <lna> IC40/IT40 Kascade Tunka-133 HiResMia HiRes Auger TA H4a H3a Global Fit Global Fit with Population Primary Energy, E [GeV] 9 11 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

42 Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

43 Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

44 Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

45 Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E α observed: dn/de E α β α = 3/2 and β = 1/2 simplest combination, but degeneracies Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

46 Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E α observed: dn/de E α β α = 3/2 and β = 1/2 simplest combination, but degeneracies anisotropy δ = 3D ij i ln(n) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

47 Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

48 Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. as preparation, let s calculate diffusion tensor in pure, isotropic turbulent magnetic field Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

49 Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D Time (kyr) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

50 Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D Time (kyr) asymptotic value is smaller than extrapolated Galprop value [Giacinti, MK, Semikoz ( 12) ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

51 Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

52 Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) Jones E/Z in ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

53 Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) Jones E/Z in ev prefers weak random fields fluxes I A (E) of all isotopes fixed by low-energy data Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

54 Knee explanations Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv: v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de E KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

55 Knee explanations Knee from Cosmic Ray Escape: energy spectra protons from X(E): E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] B=0.1 B=1 KASCADE-Grande 0 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

56 Knee explanations Knee from Cosmic Ray Escape: He energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] PAMELA 2011 CREAM-2011 KASCADE Grande KASCADE 2013 He 5 pc e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

57 Knee explanations Knee from Cosmic Ray Escape: CNO energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] KASCADE Grande CNO KASCADE 2013 CREAM C+O 9 CNO 25 pc e+12 1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

58 Knee explanations Knee from Cosmic Ray Escape: total energy spectra E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] Tibet KASCADE Grande Auger 2013 P He CNO Si Fe total E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

59 Knee explanations Transition to extragalactic CRs E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] Tibet KASCADE Grande Auger 2013 P 2.7 He 2.57 CNO Si+Mg+Fe 25 pc Extra-Galactic total E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

60 Knee explanations Transition to extragalactic CRs E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] Tibet KASCADE Grande Auger 2013 P 2.7 He 2.57 CNO Si+Mg+Fe 25 pc Extra-Galactic total E [ev] at E 2 17 ev: F gal (E) : F exgal (E) = 1 : 1 at E 2 18 ev: F gal (E) : F exgal (E) = 0 : 1 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

61 Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

62 Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV exgal. mix: 60% p, 25% He, 15% N Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

63 Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy dipole EAS-TOP IceCube PAO dipole E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

64 Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

65 IceCube Neutrinos IceCube [ ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

66 IceCube Neutrinos Icecube: 2 events presented at Neutrino cascade events close to E min = 15 ev, bg = 0.14 Two events passed the selection criteria 2 events / days - background (atm. + conventional atm. ) expectation 0.14 events preliminary p-value: (2.36 Run Event Jan 3 rd 2012 NPE 9.628x 4 Number of Optical Sensors 312 CC/NC interactions in the detector MC Run Event August 9 th 2011 NPE x 4 Number of Optical Sensors 354 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53 8

67 IceCube Neutrinos Icecube: prompt neutrino analysis [A. Schukraft, NOW2012 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

68 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

69 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

70 IceCube Neutrinos IceCube events: 2 years 28 events Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

71 IceCube Neutrinos IceCube events: 3 years 36 events Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

72 IceCube Neutrinos Column density of gas [Evoli, Grasso, Maccione 07 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

73 IceCube Neutrinos Diffuse ν flux from Galactic plane [Evoli, Grasso, Maccione 07 ] averaged over 1,2,5 degrees Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

74 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

75 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α , conflict? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

76 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α , conflict? CR energies E p 20E ν up to few 16 ev, high for Galactic CRs lowish for cosmogenic, AGN, GRB Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

77 IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α , conflict? CR energies E p 20E ν up to few 16 ev, high for Galactic CRs lowish for cosmogenic, AGN, GRB initial flavor ratio consistent with 1:1:1? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

78 IceCube Neutrinos Flavour ratio ratio R = N sh /N tr (N e + N τ )/N µ 21/7 consistent with 1:1:1 including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

79 IceCube Neutrinos Flavour ratio ratio R = N sh /N tr (N e + N τ )/N µ 21/7 consistent with 1:1:1 including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

80 Astrophysical sources Sources of high-energy neutrinos Galactic sources: Galactic plane and bulge SNR hypernova, GRB micro-quasar,... Extragalactic sources: diffuse flux from normal/starburst galaxies cosmogenic neutrinos diffuse flux from AGN GRB single AGN,... Dark matter decays, topological defects Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

81 Astrophysical sources Diffuse extragalactic flux Diffuse ν flux from normal and starburst galaxies 5 E 2 ν Φ ν [GeV/cm2 s sr] AMANDA(ν µ ); Baikal(ν e ) Star Bursts 0.1 km 2 WB Bound 9 Atmospheric 1 km 2 GZK E ν [GeV] [Loeb, Waxman 06 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

82 Astrophysical sources Diffuse extragalactic flux Diffuse ν flux from normal and starburst galaxies 5 E 2 ν Φ ν [GeV/cm2 s sr] 6 AMANDA(ν µ ); Baikal(ν e ) 7 Star Bursts km 2 WB Bound Atmospheric 1 km 2 GZK E ν [GeV] too optimistic? fraction of starbust galaxies? all calorimetric? [Loeb, Waxman 06 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

83 Astrophysical sources Diffuse extragalactic flux Reminder: The photon horizon 22 radio log(e/ev) 16 photon horizon γγ e + e CMB 14 IR 12 kpc kpc 0kpc Mpc Mpc 0Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

84 Astrophysical sources Cascade spectrum Development of the elmag. cascade: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

85 Astrophysical sources Cascade spectrum Development of the elmag. cascade: analytical estimate: [Strong 74, Berezinsky, Smirnov 75 ] K(E/ε X ) 3/2 at E ε X J γ (E) = K(E/ε X ) 2 at ε X E ε a 0 at E > ε a three regimes: Thomson cooling: E γ = 4 ε bb Ee 2 3 m 2 e 0 MeV ( ) 2 Ee 1TeV plateau region: ICS Eγ E e above pair-creation threshold smin = 4E γ ε bb = 4m 2 e : flux exponentially suppressed Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

86 Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.1 E 2 J(E) [ev/cm 2 s sr] gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

87 Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.3 E 2 J(E) [ev/cm 2 s sr] gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

88 Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.5 E 2 J(E) [ev/cm 2 s sr] gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

89 Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

90 Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB pγ interactions: slope below Eth differs can be modified by max. energy & redshift evolution cascades in source can be modified Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

91 Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB pγ interactions: slope below Eth differs can be modified by max. energy & redshift evolution cascades in source can be modified successful paradigm: Stecker model Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

92 Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs: X = 30g/cm 2 E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] Hillas Polygonato Escape E/eV [MK, S.Ostapchenko 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

93 Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs: X = 30g/cm 2 E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] Hillas Polygonato Escape 0.1 model dependence impacts background in IceCube E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

94 Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z kpc results apply also to other normal galaxies as starburst galaxies: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

95 Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z kpc results apply also to other normal galaxies as starburst galaxies: magnetic fields factor 0 higher: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

96 Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z kpc results apply also to other normal galaxies as starburst galaxies: magnetic fields factor 0 higher: if knee is caused by diffusion: Ecr B, neutrino knee at few 16 ev source: Emax B CR, neutrino knee at few 14 ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

97 Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

98 Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

99 Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources close to the knee: CRs in PeV range spread fast few extreme sources Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

100 Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources close to the knee: CRs in PeV range spread fast few extreme sources inhomogenous CR sea, extended sources no clear distinction between point sources vs. Galactic bulge + plane cases Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

101 Astrophysical sources Galactic point sources Point source in gamma-ray source HESS J [Neronov, Semikoz, Tchernin 13 ] Cygnus region Crab HESS J region Galactic Center HESS J1632 region Kookaburra region Vela region Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

102 Astrophysical sources Galactic point sources Gamma-ray point sources flux from HESS J , GC and GP Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

103 Astrophysical sources Galactic point sources (Isotropic) photon limits GRAPES-3 UMC HEGRA EAS-TOP IC-40 (γ) GAMMA KASCADE CASA-MIA 4 E 2 Jγ [GeV cm 2 s 1 sr 1 ] kpc 20kpc 30kpc E γ [TeV] [Ahlers, Murase 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

104 PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

105 PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

106 PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

107 PeV dark matter PeV dark matter E Ν 2 dj de Ν TeV cm 2 s 1 sr 1 11 DM Ν e Ν e 15, bb 85 DM Ν e Ν e 12, cc 88 DM e e 40, qq E Ν TeV [Esmaili, Serpico 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

108 PeV dark matter PeV dark matter events bin data E 2 spec. DM ΝΝ, qq 2 3 E Ν TeV [Esmaili, Serpico 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

109 Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

110 Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

111 Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

112 Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

113 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

114 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

115 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

116 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

117 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

118 Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec / 53

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz The Escape Model Michael Kachelrieß NTNU, Trondheim [] with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz Introduction Outline Outline of the talk 1 Introduction Results on Composition 2 Escape

More information

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim Galactic Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline of the talk 1 Introduction Observations Cascade limit and implications 2 Neutrinos from the Galactic CR sea Galactic plane

More information

Charged Cosmic Rays and Neutrinos

Charged Cosmic Rays and Neutrinos Charged Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies

More information

Multi-Messenger Astonomy with Cen A?

Multi-Messenger Astonomy with Cen A? Multi-Messenger Astonomy with Cen A? Michael Kachelrieß NTNU, Trondheim [] Outline of the talk 1 Introduction 2 Dawn of charged particle astronomy? Expectations vs. Auger data Effects of cluster fields

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23 The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23 The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU

More information

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G Gamma-rays from CR sources Michael Kachelrieß NTNU, Trondheim [] TeV gamma-rays from UHECR sources 22 radio 20 18 log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR 12 10 kpc 10kpc 100kpc M pc Virgo 10M

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim Astroparticle Physics Michael Kachelrieß NTNU, Trondheim [] Plan of the lectures: Today: High energy astrophysics Cosmic rays Observations Acceleration, possible sources High energy photons and neutrinos

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

Lower bound on the extragalactic magnetic field

Lower bound on the extragalactic magnetic field Lower bound on the extragalactic magnetic field Michael Kachelrieß NTNU, Trondheim [] Dolag, MK, Ostapchenko, Tomàs 10 Neronov, Semikoz, MK, Ostapchenko, Elyiv 10 Introduction Mean free path of photons

More information

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN Extensive Air Shower and cosmic ray physics above 10 17 ev M. Bertaina Univ. Torino & INFN ISMD 2015, Wildbad Kreuth 5-9 October 2015 Outline:» Part I: A general overview of cosmic ray science.» Part II:

More information

Cosmic Rays in large air-shower detectors

Cosmic Rays in large air-shower detectors Cosmic Rays in large air-shower detectors 2. The cosmic-ray spectrum from Galactic to Extra-galactic Seattle, July 2, 2009 Tom Gaisser 1 Cascade equations For hadronic cascades in the atmosphere X = depth

More information

A few grams of matter in a bright world

A few grams of matter in a bright world A few grams of matter in a bright world Benjamin Rouillé d Orfeuil (LAL) Fellow Collaborators: D. Allard, C. Lachaud & E. Parizot (APC) A. V. Olinto (University of Chicago) February 12 th 2013 LAL All

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Air Shower Measurements from PeV to EeV

Air Shower Measurements from PeV to EeV Air Shower Measurements from PeV to EeV Andreas Haungs haungs@ik.fzk.de James L. Pinfold August 2006 TeV workshop Madison, US Andreas Haungs 1 Cosmic Rays around the knee(s) EeV PeV Knee 2 nd Knee? Ralph

More information

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds Denis Allard laboratoire Astroparticule et Cosmologie (APC, CNRS/Paris 7) in collaboration with Noemie Globus, E. Parizot,

More information

Cosmic-ray energy spectrum around the knee

Cosmic-ray energy spectrum around the knee Cosmic-ray energy spectrum around the knee M. SHIBATA Department of Physics, Yokohama National University, Yokohama, 240-8501, Japan Interesting global and fine structures of cosmic-ray energy spectrum

More information

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow PeV Neutrinos from Star-forming Regions Hajime Takami KEK, JSPS Fellow Outline 0. Basic requirements for PeV neutrinos. Review on cosmogenic neutrinos for the PeV neutrinos. PeV neutrinos from Star-forming

More information

Ultra-High Energy Cosmic Rays (III)

Ultra-High Energy Cosmic Rays (III) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Ultra-High Energy Cosmic Rays (III) Ralph Engel Forschungszentrum Karlsruhe & Karlsruhe Institute of Technology Outline Brief overview (experimental

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg Contents Introduction Simulation of sources Multi-messenger

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS Esteban Roulet Bariloche, Argentina Many observables are sensitive to CR composition Shower maximum TA APP 64 (2014) Auger

More information

UHECRs sources and the Auger data

UHECRs sources and the Auger data UHECRs sources and the Auger data M. Kachelrieß Institutt for fysikk, NTNU Trondheim, Norway I review the evidence for a correlation of the arrival directions of UHECRs observed by the Pierre Auger Observatory

More information

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Universidade Federal do Rio de Janeiro, Brazil E-mail: haris@if.ufrj.br Aquiring data continuously from 004, the Pierre Auger

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

UHECR autocorrelation function after Auger

UHECR autocorrelation function after Auger UHECR autocorrelation function after Auger Pasquale D. Serpico based on work in collaboration with A. Cuoco, S. Hannestad,, T. Haugbølle,, M. Kachelrieß (arxiv:0709.2712; arxiv:0809.4003 :0809.4003) SOCoR

More information

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY (Neutrino 2008, Christchurch, NZ) Esteban Roulet (Bariloche) the Auger Collaboration: 17 countries, ~100 Institutions, ~400 scientists Argentina, Australia,

More information

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle astronomy coming of age How it is done The sources The signals What we have learned

More information

An Auger Observatory View of Centaurus A

An Auger Observatory View of Centaurus A An Auger Observatory View of Centaurus A Roger Clay, University of Adelaide based on work particularly done with: Bruce Dawson, Adelaide Jose Bellido, Adelaide Ben Whelan, Adelaide and the Auger Collaboration

More information

OVERVIEW OF THE RESULTS

OVERVIEW OF THE RESULTS VIIIth International Workshop on the Dark Side of the Universe, Buzios STUDY OF THE ULTRA HIGH ENERGY COSMIC RAYS WITH THE AUGER DATA OVERVIEW OF THE RESULTS H. Lyberis on behalf of the Pierre Auger Collaboration

More information

High-energy cosmic rays

High-energy cosmic rays High-energy cosmic rays And their acceleration Tom Gaisser 1 Outline Sources and acceleration mechanism End of the galactic cosmic-ray spectrum Transition to extra-galactic population Key questions Tom

More information

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive air showers are the cascades that develop in the atmosphere

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University the 1 st discovery of the PeV ν Bert Physical Review

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University black hole radiation enveloping black hole The highest

More information

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY Antoine Letessier Selvon (CNRS/UPMC) FRIF days Dourdan January 2014!1 ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER YEARS AT THE PIERRE AUGER OBSERVATORY Antoine Letessier Selvon (CNRS/UPMC) FRIF

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

Seeing the moon shadow in CRs

Seeing the moon shadow in CRs Seeing the moon shadow in CRs and using the Earth field as a spectrometer Tibet III Amenomori et al. arxiv:0810.3757 see also ARGO-YBJ results Bartoli et. al, arxiv:1107.4887 Milargo: 100% coverage r owe

More information

Ultra High Energy Cosmic Rays: Observations and Analysis

Ultra High Energy Cosmic Rays: Observations and Analysis Ultra High Energy Cosmic Rays: Observations and Analysis NOT A NEW PROBLEM, STILL UNSOLVED John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020

More information

UHECR: Acceleration and Propagation

UHECR: Acceleration and Propagation UHECR: Acceleration and Propagation V. Berezinsky INFN, Gran Sasso Science Institute and Laboratori Nazionali del Gran Sasso, Italy ACCELERATION UHE particles with energies observed up to E 3 20 ev can

More information

arxiv: v2 [astro-ph.he] 5 Aug 2014

arxiv: v2 [astro-ph.he] 5 Aug 2014 Explaining the Spectra of Cosmic Ray Groups above the Knee by Escape from the Galaxy G. Giacinti 1, M. Kachelrieß 2, and D. V. Semikoz 3 1 University of Oxford, Clarendon Laboratory, Oxford, United Kingdom

More information

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays Air showers in IceCube Cosmic rays Neutrinos Gamma rays Cosmic rays Cosmic accelerators produce rela9vis9c protons and nuclei (cosmic rays) CR sources (such as SNR, AGN, GRB) are likely neutrino sources

More information

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh Ultra High Energy Cosmic Rays What we have learnt from HiRes and Auger Andreas Zech Observatoire de Paris (Meudon) / LUTh École de Chalonge, Paris, Outline The physics of Ultra-High Energy Cosmic Rays

More information

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science IceCube neutrinos and the origin of cosmic-rays E. Waxman Weizmann Institute of Science E -2.7 E -3 log [dn/de] The origin of Cosmic Rays: Open Questions Detection: Space (direct) Ground (Air-showers indirect)

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

MULTIMESSENGER APPROACH:Using the Different Messengers

MULTIMESSENGER APPROACH:Using the Different Messengers MULTIMESSENGER APPROACH:Using the Different Messengers PROTONS p NUCLEI (A,Z) NEUTRINOS νµ PHOTONS LECTURE PLAN: 1) COSMIC RAYS- proton interactions with photons, composition, nuclei interactions with

More information

Latest results and perspectives of the KASCADE-Grande EAS facility

Latest results and perspectives of the KASCADE-Grande EAS facility Latest results and perspectives of the KASCADE-Grande EAS facility 29/6-2/7/2010, Nantes, France Andreas Haungs 1 Motivation KASCADE-Grande Knee EeV PeV g-eg? Radio?! KASCADE 10 15-10 17 ev: Origin of

More information

arxiv: v1 [astro-ph.he] 8 Apr 2015

arxiv: v1 [astro-ph.he] 8 Apr 2015 Physics Procedia 00 (2015) 1 Physics Procedia www.elsevier.com/locate/procedia 13th International Conference on Topics in Astroparticle and Underground Physics Cosmic Rays from the Knee to the Ankle arxiv:1504.01859v1

More information

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Implications of recent cosmic ray results for ultrahigh energy neutrinos Implications of recent cosmic ray results for ultrahigh energy neutrinos Subir Sarkar Neutrino 2008, Christchurch 31 May 2008 Cosmic rays have energies upto ~10 11 GeV and so must cosmic neutrinos knee

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

Antimatter from Supernova Remnants

Antimatter from Supernova Remnants Antimatter from Supernova Remnants Michael Kachelrieß NTNU, Trondheim with S. Ostapchenko, R. Tomàs - PAMELA anomaly )) )+ φ(e + ) / (φ(e + 0.4 0.3 0.2 Positron fraction φ(e 0.1 0.02 Muller & Tang 1987

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

High Energy Cosmic Ray Interactions

High Energy Cosmic Ray Interactions Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft High Energy Cosmic Ray Interactions (Lecture 1: Basics) Ralph Engel Karlsruhe Institute of Technology (KIT) Outline Lecture 1 Basics, low-energy

More information

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES SVESHNIKOVA L.G. 1, STRELNIKOVA O.N. 1, PTUSKIN V.S. 3 1 Lomonosov Moscow State University, SINP,

More information

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range Measurement of the cosmic ray spectrum and chemical composition in the - 18 ev energy range Andrea Chiavassa 1, 1 Dipartimento di Fisica dell Universitá degli Studi di Torino & INFN Via Pietro Giuria 1,

More information

Absorption and production of high energy particles in the infrared background

Absorption and production of high energy particles in the infrared background Roma I, 16 March 2007 Absorption and production of high energy particles in the infrared background Todor Stanev Bartol Research Institute University of Delaware Newark, DE19716 We discuss the role of

More information

arxiv: v1 [astro-ph.he] 28 Jan 2013

arxiv: v1 [astro-ph.he] 28 Jan 2013 Measurements of the cosmic ray spectrum and average mass with IceCube Shahid Hussain arxiv:1301.6619v1 [astro-ph.he] 28 Jan 2013 Abstract Department of Physics and Astronomy, University of Delaware for

More information

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Angela V. Olinto A&A, KICP, EFI The University of Chicago Nature sends 10 20 ev particles QuickTime and a YUV420 codec decompressor are needed

More information

Questions 1pc = 3 ly = km

Questions 1pc = 3 ly = km Cosmic Rays Historical hints Primary Cosmic Rays: - Cosmic Ray Energy Spectrum - Composition - Origin and Propagation - The knee region and the ankle Secondary CRs: -shower development - interactions Detection:

More information

Looking Beyond the Standard Model with Energetic Cosmic Particles

Looking Beyond the Standard Model with Energetic Cosmic Particles Looking Beyond the Standard Model with Energetic Cosmic Particles Andreas Ringwald http://www.desy.de/ ringwald DESY Seminar Universität Dortmund June 13, 2006, Dortmund, Germany 1. Introduction Looking

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Maria Petropoulou Department of Physics & Astronomy, Purdue University, West Lafayette, USA Einstein Fellows Symposium Harvard-Smithsonian

More information

IceCube Results & PINGU Perspectives

IceCube Results & PINGU Perspectives 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration koskinen@nbi.ku.dk September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy 2 IceCube Detector ~1km

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop, Ultra-High Energy Cosmic Rays and Astrophysics Hang Bae Kim Hanyang University Hangdang Workshop, 2012. 08. 22 Ultra High Energy Cosmic Rays Ultra High Energy Cosmic Ray (UHECR)» E 3 E & 10 18 ev Energy

More information

Cosmic Rays in large air-shower detectors

Cosmic Rays in large air-shower detectors Cosmic Rays in large air-shower detectors The cosmic-ray spectrum from Galactic to extra-galactic Berlin, 2 Oct 2009 Tom Gaisser 1 Cascade equations For hadronic cascades in the atmosphere X = depth into

More information

From the Knee to the toes: The challenge of cosmic-ray composition

From the Knee to the toes: The challenge of cosmic-ray composition New Views of the Universe December 8 th 13 th, 2005, Chicago From the Knee to the toes: The challenge of cosmic-ray composition Jörg R. Hörandel University of Karlsruhe www-ik.fzk.de/~joerg New Views of

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

EeV Neutrinos in UHECR Surface Detector Arrays:

EeV Neutrinos in UHECR Surface Detector Arrays: EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward

More information

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment L.G. Sveshnikova, L.A. Kuzmichev, E.E. Korosteleva, V.A. Prosin, V.S. Ptuskin et al Moscow State University Skobeltsyn

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux The 4th International Workshop on The Highest Energy Cosmic Rays and Their Sources INR, Moscow May 20-22, 2008 Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux Oleg Kalashev* (INR RAS)

More information

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大 THE EHE EVENT 170922 AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY Lu Lu 千葉大 2 3 On-source n p TeV - PeV pp p n The Cosmic Neutrinos TeV->EeV p gp p n photopion production n GZK cosmogenic n EeV

More information

Cosmic Rays: high/low energy connections

Cosmic Rays: high/low energy connections Lorentz Center Workshop Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics 1 Cosmic Rays: high/low energy connections Etienne Parizot APC University of Paris 7 2 Cosmic rays: messages and

More information

Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation

Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation 1. High Energy Neutrinos 2. Gamma-Ray Bursts and Gravitational Waves 3. Pulsars and Magnetars 4. Diffuse GW Flux from Cosmological

More information

Ultrahigh Energy Cosmic Rays propagation II

Ultrahigh Energy Cosmic Rays propagation II Ultrahigh Energy Cosmic Rays propagation II The March 6th lecture discussed the energy loss processes of protons, nuclei and gamma rays in interactions with the microwave background. Today I will give

More information

The air-shower experiment KASCADE-Grande

The air-shower experiment KASCADE-Grande The air-shower experiment KASCADE-Grande Andreas Haungs KASCADE-Grande 1 Cosmic Rays around the knee(s) galactic origin of CR EeV PeV Knee 2 nd Knee? Ralph Engel, 2004 KASCADE 1995-2009 -Grande 2003-2009

More information

Extremely High Energy Neutrinos

Extremely High Energy Neutrinos Extremely High Energy Neutrinos A. Ringwald http://www.desy.de/ ringwald DESY 6 th National Astroparticle Physics Symposium February 3, 2006, Vrije Universiteit, Amsterdam, Netherlands Extremely high energy

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

Recent Results from the KASCADE-Grande Data Analysis

Recent Results from the KASCADE-Grande Data Analysis Recent Results from the KASCADE-Grande Data Analysis Donghwa Kang for the KASCADE-Grande Collaboration Karlsruhe Institute of Technology 20 th ISVHECRI 21 25 May 2018, Nagoya, Japan Status & Prospect KASCADE

More information

High Energy Particle Production by Space Plasmas

High Energy Particle Production by Space Plasmas Plasmas in Astrophysics and in Laboratory, 20 21 June, 2011 High Energy Particle Production by Space Plasmas A.A.Petrukhin National Research Nuclear University MEPhI C o n t e n t s 1. Introduction 2.

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Origin of cosmic rays

Origin of cosmic rays Origin of cosmic rays Vladimir Ptuskin IZMIRAN Russia/University of Maryland USA FFP14, Marseille Outline Introduction Voyager 1 at the edge of interstellar space Cosmic ray transport in the Galaxy Supernova

More information

Ultra-High Energy Cosmic Rays: Results, and Prospects

Ultra-High Energy Cosmic Rays: Results, and Prospects 26th Texas Symposium on Relativistic Astrophysics, São Paulo, Brazil, 15.-20., 2012 Ultra-High Energy Cosmic Rays: Results, and Prospects Karl-Heinz Kampert, University Wuppertal Area Grant Karl-Heinz

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

The Pierre Auger Observatory

The Pierre Auger Observatory The Pierre Auger Observatory Hunting the Highest Energy Cosmic Rays I High Energy Cosmic Rays and Extensive Air Showers March 2007 E.Menichetti - Villa Gualino, March 2007 1 Discovery of Cosmic Rays Altitude

More information

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration) IceCube and High Energy Neutrinos Stony Brook University, Stony Brook, NY 11794-3800, USA E-mail: Joanna.Kiryluk@stonybrook.edu IceCube is a 1km 3 neutrino telescope that was designed to discover astrophysical

More information

Ultrahigh Energy cosmic rays II

Ultrahigh Energy cosmic rays II Ultrahigh Energy cosmic rays II Today we will discuss the new data on UHECR presented during the last couple of years by the Auger observatory in Argentina. These data do not match previous analyses and

More information