Roland Diehl. MPE Garching

Size: px
Start display at page:

Download "Roland Diehl. MPE Garching"

Transcription

1 Gamma-Ray Astronomy Roland Diehl MPE Garching Astrophysical Objects & Nuclear Physics Supernova and Nova Issues, Observations, Nuclear Physics Aspects Diffuse Radioactivities and Positron Annihilation Applications for Cosmic-Rays and Near Compact Objects Prospects in Astronomy Instrumentation

2 Astronomical Observations throughout the e.m. Spectrum Radio- Waves Infrared Radiation Optical Light UV Radiation X-Rays Gamma-Rays 100km 50km 10km Reflection CO 2,H 2 O,O 3... Absorption Bands due to O 3, N, O log 10 log 10 λ

3 Gamma-Ray Astrophysics: Basic Processes Physical Source Processes at kev GeV:

4 Astrophysical Cycles of Matter M~ M o 10 8 y condensation dense molecular clouds star formation (~3%) interstellar medium stars y M > 0.08 M o infall y dust dust winds SN explosion mixing Galactic halo outflow SNR's & hot bubbles y ~90% SNIa compact remnant (WD, NS,BH) Associate Radiation Source Processes with Desired Astrophysical Parameter Roland Diehl e.g. Stellar-Atmosphere Abundance <-> SN Physics VISTARS Workshop, Russbach (A), 7 March 2005

5 Astrophysics and Nuclear Physics Nuclear Reactions in Cosmic Environments Nucleosynthesis Radioactive Isotopes Elemental Abundances in Stars and ISM (SNR), IGM Excited Nuclei Cosmic Ray Population Environment of Compact Stars Models for Astrophysical Object Types Supernovae Type Ia Core Collapses Black Holes, Neutron Stars, Sun

6 Relevant Astronomical Observations Abundances of Elements (Isotopes) Optical Absorption/Emission Lines Stellar and Supernova Atmospheres Interstellar and Intergalactic Gas (ionized, neutral) X-Ray Emission Lines Supernova Remnants Interstellar & Intergalactic Gas Gamma-Ray Lines Supernovae and Young Supernova Remnants Interstellar Gas Broad-Band Emission Characteristics & Energy Budgets Supernovae Gamma-Ray Bursts Neutron Stars Black-Hole Candidates

7 Gamma-Ray Astronomy: Instruments Photon Counters and Telescopes Simple Detector (& Collimator) (e.g. HEAO-C, SMM, CGRO-OSSE) Spatial Resolution (=Aperture) Defined Through Shield Coded Mask Telescopes (Shadowing Mask & Detector Array) (e.g. SIGMA, INTEGRAL) Spatial Resolution Defined by Mask & Detector Elements Sizes Focussing Telescopes (Laue Lens & Detector Array) (CLAIRE, MAX) Spatial Resolution Defined by Lens Diffraction & Distance Compton Telescopes (Coincidence-Setup of Position-Sensitive Detectors) (e.g. CGRO-COMPTEL, LXeGRiT, MEGA, ACS) Spatial Resolution Defined by Detectors Spatial Resolution Achieved Sensitivity: ~10-5 ph cm -2 s -1, Angular Resolution deg

8 INTEGRAL Successfully Launched! 17 October 2002: INTEGRAL on its way (as planned) 12:00 INTEGRAL safely on its way, all systems normal 08:35 Both solar wings successfully deployed 08:13 Separation of Integral from upper stage 06:50 Separation of upper stage and Integral from third stage 06:41 Launch of Integral

9 INTEGRAL Orbit Goals Minimize Cosmic-Ray Activation Background Variations Maximize Science Observing Time Highly Eccentric 72-hour orbit Inclination 51.6 o Perigee 9078km, Apogee km 90% Above 40000km Realtime Telemetry (->GRB!) Launch Proton, From Baikonur Ground Stations Redu (Belgium ) Goldstone (California)

10 The INTEGRAL Spectrometer (SPI) Coded-Mask Telescope 19 Ge Detectors (5.5x5.5x7cm) BGO Anticoincidence Detector & Shield Stirling Cryocooler Energy Range kev Energy Resolution ~ kev Angular Resolution ~2 arcmin Field-of-View 16x16 o Timing Resolution 52 µs

11 Maintaining High Spectral Resolution Degradation ~2% per Orbit, ~20% in 6 Months (@1 MeV) ~35% Slower at 85K Annealing: 126(36) hrs at 105C Few hrs at 90K 12 Feb Jul Nov 2003 FWHM = *rev

12 SPI Sensitivity for Gamma-Ray Lines 3σ narrow line sensitivity (photons s -1 cm -2 ) HEAO3 OSSE SPI COMPTEL T obs = 10 6 s E (MeV) 1 The early estimate had ignored the instrumental line contributions Pulse Shape Rejection of background is less effective than estimated

13 Gamma-Ray Lines for Nucleosynthesis Study Radioactive Trace Isotopes as Nucleosynthesis By-Products For Gamma-Spectroscopy We Need: Decay Time > Source Dilution Time Yields > Instrumental Sensitivities Isotope Mean Lifetime Decay Chain γ -Ray Energy (kev) 7 Be 77 d 7 Be 7 Li* Ni 111 d 56 Ni 56 Co* 56 Fe*+e + 158, 812; 847, Ni 390 d 57 Co 57 Fe* Na 3.8 y 22 Na 22 Ne* + e Ti 89 y 44 Ti 44 Sc* 44 Ca*+e + 78, 68; Al y 26 Al 26 Mg* + e Fe y 60 Fe 60 Co* 60 Ni* 59, 1173, 1332 e y e + +e - Ps γγ.. 511, <511

14 Radioactive Material Measurements Gamma-Rays Penetrate ~g/cm 2 (Galaxy=transparent) Weak Decay -> No Excitation Function Gamma-Ray Intensity Independent from T, ρ, Radioactive Decay Gamma-Ray Flux and Radioactive Mass M X A Z Known Distance -> Radioactive Mass Known Source Yield -> Source Distance Known Distance & Yield -> Age of Event [ M Θ ] = I γ [ ph cm 2 sec 1 N = N 0 e t τ 2 4πd τa 1pc ] n N γ A 2 2 [ cm] 1yr[sec] M [ g] Θ

15 Specific Studies & Results

16 A Hot Issue : Are SNIa Standard Candles? Branch, 1998; 2003 Spectra and Light Curves are Surprisingly Homogeneous (after normalization by decline in B band) Need a Well-Regulated Process/Event Type, Producing Much Fe Diversity Can Be Recognized, Nevertheless

17 What Makes a Supernovae Ia SN Ia Models Close Binary System WD Giant White Dwarf Merger Binary Mass Transfer WD at M Ch C/O Layer He Layer SN Ia Central C Ignition He Shell Flash

18 How Does a SNIa Explode? C Ignition at M Ch Limit (possibly many ignition points) Turbulent Flame Propagation WD Expansion -> Flame Extinction Issues: Rapid Time Scales! Nuclear Burning C+O-> 56 Ni Expansion Mixing

19 Variations of a Thermonuclear WD Explosion Flame Propagation Slow Flame Fizzles, Fast Flame at ρ>10 7 g cm -3 Yields Ni Only Deflagration -> Detonation Transition Chemical Composition of Accreted Matter Accretion Rate C/O (WD Merger): Rapid C Burning. But: Accretion-Induced Collapse or SN? He: off-center C Detonation after He Flash H: Accumulation of Matter? (M ej(nova) ~M accr ) Build-Up Fuel Layer for Explosion. How Slow? -> Fe/Ca Element Ratio -> Sub-Ch Progenitors -> Sub-Ch Progenitors -> Supersoft XRS e.g.h: Novae (dm/dt < 10-9 M o yr -1 )? Flashes? Steady Burning? Common Envelope (dm/dt > 10-6 M o yr -1 )? e.g.he: 10-9 < dm/dt < 5x10-8 M o yr -1 Need Sufficient WD s for SNIa Event Rate Key Measurements: E kin, E radioactive (Ni Mass, Envelope Structure), Ejecta Composition

20 Gamma-Rays from Supernovae Ia Rarely SNIa 56 Ni Decay Gamma-Rays are Above Instrumental Limits (~10-5 ph cm -2 s -1 ) COMPTEL ~2 Events / 9 Years CGRO ~2 Events / 2 Years INTEGRAL Mission Signal from SN1991T (3σ) (13 Mpc) Upper Limit for SN1998bu (11 Mpc) The 56 Ni Power Source -0.5 M o of 56 Ni?? Which Model?

21 X-Rays from Young SNR: SNIa Diagnostics Imaging plus Spectroscopy Map Spatial Distribution of Elements After Explosion Tycho SNR: Images in Elemental Lines (XMM, top) Hi-Res Image (Chandra, bottom)

22 Core Collapse-Supernovae: Model Shell-Structured Evolved Massive Star Gravitational Core Collapse Supernova Shock Wave Shock Region Explosive Nucleosynthesis Proto-Neutron Star Neutrino Heating of Shock Region from Inside Explosion Mechanism = Competition Between Infall and Neutrino Heating 3D-Effects Important for Energy Budget AND Nucleosynthesis

23 Nuclear-Physics Issues in CC-Supernova Models 45 Sc(p,γ) 46 Ti 3D-Effects Important for Energy Budget AND Nucleosynthesis Location of Ejecta/Remnant Separation? 44 Ti Produced at r < 10 3 km from QSE/Si-Burning & α-rich Freeze-Out, => 44 Ti Gamma-Rays are Unique Probe (+Ni Isotopes)

24 Core-Collapse Collapse Supernovae: 44 Ti from Cas A τ =89y, EC 44 Ti 44 Sc τ = 5.4 h, β + 44 Ca Detections: Iyudin et al. 1994: COMPTEL MeV Vink et al. 2001; 2005: SAX & IBIS 68/78 kev Comparable Upper Limits by RXTE, OSSE 44 Ti Decay: τ~89y Difficult γ-ray Region (78, 68, 1157 kev) -> Young SNR -> Uncertain I γ, I X -> 44 Ti Ejected Mass ~ M o

25 Cas A: A Well-Studied Young Nearby SNR Chandra ISO XMM-Newton ~330 year-old SNR at ~3.4 kpc Massive Progenitor (10-25 M o ) Filaments, Fast Ejecta (knots), Fe-rich Clumps, No Onion-Shell- Like Elemental Morphology, Jet: Asymmetric Explosion 44 Ti (and 56 Ni) Ejection Unseen SN -> CSM Dust Central Object (NS/BH?) => (?) Core Collapse SN with Unusual Asymmetries? 44 Ti Emission Affected by Ionization? HST

26 44 Ti Decay in a Young SNR 44 Ti Decay: e Capture -> Ionization!?! E ion,k =6.6 kev, E ion,l =1.6 kev SN Composition Profile: Fe & Ti Similar Fe/Ti Clump Ionization by Reverse Shock 44 Ti Decay Rate Modifications: Inhibit Early, -> Enhance Later (wrt 44 Ti Mass / Exponential Decay) Days Days Cas A 44 Ti Mass ~ as Predicted by Theory? 44 Ti EC, τ~89y 44 Sc EC/β, τ~5.4h 44 Ca

27 44 Ti Emission from cc-sne: Open Issues Consistency of Cas A cc-sn Model: 44 Ti from Models/SN1987A/γ-Rays: ~ M o 44 Ti Ejection Should Be Correlated to High-Entropy Material -> a-rich Freeze-Out Large Explosion Energy Large Mass of Ejected 56 Ni (Bright Supernova) Only in aspherical explosions?

28 44 Ti Emission from cc-sne: Open Issues Consistency of Cas A cc-sn Model: 44 Ti from Models/SN1987A/γ-Rays: ~ M o 44 Ti Ejection Should Be Correlated to High-Entropy Material -> a-rich Freeze-Out Large Explosion Energy Large Mass of Ejected 56 Ni (Bright Supernova) No 44 Ti Sources in Inner Galaxy Parent Distribution of Sources ~ 26 Al Monte-Carlo Study -> 44 Ti SNR Number Low Small-Number Statistics? Observational Bias? Metallicity Anticorrelation? The et al., 2000 Can 44 Ti Sources Reveal... Inner SN Velocity Profiles? Ionization-Inhibited Decay (EC)? ( 44 Ti Line Shape!) Asymmetric Core Collapses?

29 Novae Classical Novae: Accreting WD in Binary System Runaway H Burning with Nuclear Processing of Upper WD Layer (p process) Ejection of ~10-4 M o Issues: Burning Time Profile Fuel Composition and Mixing Ejected Mass Nuclear Reactions

30 Nova Diagnostics with Nuclear Lines CO Nova (1 kpc; 0.8 M o ) O-Ne Nova (1 kpc; 1.2 M o ) Brief Annihilation Flash β Decay Continuum (before optical nova!) 22 Na Radioactivity (O-Ne Novae)

31 Nova Gamma-Ray Light Curves Need Sky Survey Optical Nova (=discovery) After Characteristic Gamma- Ray Signals Hernanz et al.,

32 The Sky at 1809 kev: 26 Al Sco-Cen? Auriga/α Per? Cygnus Inner-Galaxy Ridge Carina Vela Orion Eridanus Superimposed Nucleosynthesis Sources (10 6 Years) Complete CGRO Mission (Plüschke et al. 2001)

33 26 Al Maps & Possible Source Tracers synchrotron radiation thermal dust emission free-free radiation Different Linear Combinations of Narrow-Band Radio Maps (WMAP) Different Imaging Methods (ME, MREM, MLik)

34 26 Al Line Shape Astrophysics SN dust formation ejecta ISM SNR & Wind Bubbles ISM thermal turbulent Re-accelerated (CR) 26 Al velocity Ejection and Slowing-Down of 26 Al from Sources 26 Al Ejected into Hot Cavities (WR Winds, ) -> ISM Turbulence <-> Line Width 26 Al Condensed on Dust, Re-accelerated -> High-Velocity Tail? Chen et al. 1997; Sturner & Naya 1999 Galactic Rotation 26 Al Sources in Spiral Arms, Along Line-of-Sight -> 26 Al Source Location Along LoS Gehrels et al. 1996; Kretschmer et al. 2003

35 Imaging Spectroscopy with SPI: Al Line Shape ~ 3 Msec of Observations of Inner Galaxy Search Signal Amplitude in Fine Energy Bins, Assuming ~Galactic-Plane Distribution Gaussian Fit COMPTEL 26 Al Map (-180 o +180 o / -10 o +10 o ) GeSat bgd; scale per kev,det The Galactic 26 Al Line is not significantly broadened Gaussian with Width of instrumental Bgd Feature Gaussian with Width of effective instrumental Resolution Gaussian with Width of best-achieved instrumental Resolution

36 The 26 Al Line Width GRIS (Naya 1996) RHESSI (Smith 2003) SPI (Diehl et al 2003) Broad Line was Difficult to Understand, Seems not Confirmed Cygnus Region May Show ISM Turbulence SPI; in Cygnus (Knödlseder et al 2004) SPI preliminary (Diehl et al 2005)

37 Nucleosynthesis in the Current Galaxy: 26 Al Astrophysics: 26 Al Reflects Sources of Nucleosynthesis (τ~10 6 y) COMPTEL Imaging -> Massive Stars are Dominating Sources Source Complexes: Decay in ISM -> narrow line Large Cavities -> broad line Young Clusters -> broad line INTEGRAL/SPI Results: Narrow Line in Inner Galaxy SPI COMPTEL SPI GRIS s 540km s -1 result (difficult, for τ=10 6 y) Somewhat Broadened Line in Cygnus Region (~200 km s -1 ) WR-Wind Dominated (v WR ~10 3 km s -1, d~pc) Ejecta in Hot/Turbulent Phase & pre-blown Bubbles

38 60 Fe Radioactivity Gamma-Rays Production in Supernovae and Massive Stars Neutron Capture on 56,58 Fe (s-process) n Sources: 13 C(α,n) 16 O (He Burning) 20 Ne(α,n) 23 Na (O/Ne Burning) Locations: CC-Supernova O/Ne Shell and Bottom of He Shell Giant Phase of Massive Star He Shell, C Shell Astrophysical Significance: Identify Dominating 26 Al Sources Core-Collapse Supernovae Identical Diffuse-Emission Morphologies of 26 Al Line and 60 Fe Lines Images Wolf Rayet Phase of (M 25-40M o ) Stars No 60 Fe from 26 Al Sources I 60Fe-lines /I 26Al-line Prediction (?) for SN Origin: ~0.16 (MeV Lines) ~0.03 (59 kev Line) 60 Fe 60 Co 60 Ni τ =2.0 My β - (2%) τ = 5.3 y γ β - 59 kev γ MeV γ MeV

39 Terrestrial 60 Fe Detections Current Terrestrial Record Ocean Crust Analysis Slow, Fe-rich Growth (2mm/My) Dating with CR-Produced 10 Be AMS Atom Counting Nearby SN 2.8 My ago? Knie et al. 2004

40 Interstellar 60 Fe: Gamma-Ray Constraints Upper Limits, and two tentative detections RHESSI (2.6σ), SPI (3σ)

41 60 Fe: The Puzzle Model Predictions Prantzos 2004 γ-rays No Source Would Bring the 60 Fe/ 26 Al Gamma-Ray Intensity Ratio Close to Measurement Constraints! (~Factor 5!) Nuclear Physics? Model Sample Statistics? Uncertainties: n Capture Cross Sections for Fe Isotopes β Decay Rate for 59 Fe Development of Hot-Base He Shell, C Shell n Source Activation

42 Positrons from Nuclear Reactions (<2001) Annihilation 511 kev OSSE Map of Inner Galaxy e+ Budget: Nucleosynthesis (β + decays) Pulsars & Jet Sources Other Exotic Sources? CGRO-OSSE ref s: Purcell et al. 1997; Kinzer et al. 1998; Milne et al. 1999

43 Annihilation of Positrons in the Galaxy Astrophysics: Positron-Source Variety in Inner Galaxy Nucleosynthesis Sources (SNIa, ) Pulsars, Binaries, Jet Sources Light Dark Matter Annihilations Annihilation in Diluted ISM (τ~10 5 y) Results (INTEGRAL / SPI) : instrumental bgd line Lonjou et al Annihilation in Hot ISM Jean et al kev Line Characteristics : I = ph cm -2 s -1 -> Annihilation Rate (@GC) s -1 e+ annihilation line: kev; MaxEnt +20 Strong et al Broadened Line: Deconvolved FWHM = 2.76 kev Expectation: Hot-ISM->~4 kev, Grains->~2 kev -> Annihilation in Warm ISM Phase 511 kev Line Emission Morphology: Extended, ~bulge-like Emission (δl~18 o,δb~13 o ) All-sky map; Richardson-Lucy, Smoothed Knödlseder et al No/Weak Disk Emission Seen; No Fountain -> Young Stars make Minor Contribution Old stellar population! Dark-Matter Annihilations?

44 Gamma-Ray Lines from Cosmic Nuclei: Summary Live Cosmic Nucleosynthesis Detected. More? ISM: e + 26 Al 60 Fe; SNae: 56 Ni, 57 Ni, 44 Ti 22 Na? Cosmic Nucleosynthesis Environments Being Studied 26 Al and e + Annihilation 44 Ti 5 44 Ti Decay Gamma-ray Fluxes from Cas A 4 I * 10-5 ph cm -2 s COMPTEL 1999 OSSE 1996 RXTE 1997 SAX Ni

45 Instrumental Sensitivities for Gamma-Ray Lines Courtesy S. Boggs, 2003

46 Gamma-Ray Lines from Cosmic Nuclei: Prospects Astrophysics: Origin of 26 Al, e+, 60 Fe -> Massive Stars and SNae Core Collapse SNae: Inner Explosion, Asymmetries Thermonuclear SNae: Deflagration/Detonation Transition Novae: Progenitor Evolution, Mixing? Radioactive Ejecta? Cosmic-Ray Acceleration -> Excitation Lines Observatories: Gamma-Ray Line Shapes -> INTEGRAL Surveys at Improved Sensitivity Deep SN Measurements -> MEGA, ACT -> Laue Tel.

47 Gamma-Ray Lines from Cosmic Nuclei: Summary Live Cosmic Nucleosynthesis Detected. More? ISM: e + 26 Al 60 Fe; SNae: 56 Ni, 57 Ni, 44 Ti 22 Na? Cosmic Nucleosynthesis Environments Being Studied 26 Al and e + Annihilation 44 Ti 5 44 Ti Decay Gamma-ray Fluxes from Cas A 4 I * 10-5 ph cm -2 s COMPTEL 1999 OSSE 1996 RXTE 1997 SAX Ni

Gamma-Rays from Supernovae

Gamma-Rays from Supernovae Gamma-Rays from Supernovae Roland Diehl MPE Garching Gamma-Ray Line Astronomy and Supernovae Specific Objects Thermonuclear Supernovae ( 56 Co; SN1991T, SN1998bu) Core-Collapse Supernovae ( 44 Ti; Cas

More information

Gamma-Ray Spectroscopy with INTEGRAL - Observations and their Interpretations -

Gamma-Ray Spectroscopy with INTEGRAL - Observations and their Interpretations - Gamma-Ray Spectroscopy with INTEGRAL - Observations and their Interpretations - MPE Garching Astrophysics with γ-ray Lines Studies of Sources of Nucleosynthesis: Supernovae and Novae Massive Stars Positrons

More information

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 48 53 c World Scientific Publishing Company DOI: 10.1142/S2010194513011069 GALACTIC

More information

Gamma-Ray Astrophysics

Gamma-Ray Astrophysics Gamma-Ray Astrophysics Gamma-Ray Astrophysics Science Topics Experiments in Gamma-Ray Astronomy MPE and Gamma-Ray Astrophysics MPE Garching Gamma-Ray Astrophysics: Basic Processes Physical Source Processes

More information

Prospects in space-based Gamma-Ray Astronomy

Prospects in space-based Gamma-Ray Astronomy Prospects in space-based Gamma-Ray Astronomy On behalf of the European Gamma-Ray community Jürgen Knödlseder Centre d Etude Spatiale des Rayonnements, Toulouse, France Gamma-Ray Astronomy in Europe Europe

More information

Spectral analysis of the 511 kev Line

Spectral analysis of the 511 kev Line Spectral analysis of the 511 kev Line Gillard William (C.E.S.R) From P. Jean et al. A&A, in press ( astro-ph/0509298 ) I. Introduction II. Annihilation spectrum 1. Independent model 2. Astrophysical model

More information

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center II. Observations 17 From 1912 to 1950: * 1913: High-altitude radiation (Hess 1914, Kolhoerster 1914) * 1920s: Term cosmic rays (Millikan) * 1929: corpuscular nature of the radiation (with Geiger-Müller

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Positron Annihilation in the Milky Way

Positron Annihilation in the Milky Way Positron Annihilation in the Milky Way Thomas Siegert, MPE Garching R. Diehl, G. Khachatryan, M.G.H. Krause, F. Guglielmetti, J. Greiner, A.W. Strong, X. Zhang 18th Workshop on Nuclear Astrophysics, March

More information

Abundance Constraints on Sources of Nucleosynthesis, and on the Chemical Evolution of the Universe and its Components

Abundance Constraints on Sources of Nucleosynthesis, and on the Chemical Evolution of the Universe and its Components Abundance Constraints on Sources of Nucleosynthesis, and on the Chemical Evolution of the Universe and its Components - Characteristic Cosmic Gamma-Rays - NIC School 2008 24 Jul 2008 by Outline Themes

More information

A NEW GENERATION OF GAMMA-RAY TELESCOPE

A NEW GENERATION OF GAMMA-RAY TELESCOPE A NEW GENERATION OF GAMMA-RAY TELESCOPE Aleksandar GOSTOJIĆ CSNSM, Orsay, France 11 th Russbach School on Nuclear Astrophysics, March 2014. Introduction: Gamma-ray instruments GROUND BASED: ENERGY HIGHER

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Satellite Experiments for Gamma-Ray Astrophysics

Satellite Experiments for Gamma-Ray Astrophysics Satellite Experiments for Gamma-Ray Astrophysics Science Topics for Gamma-Ray Satellites The INTEGRAL Mission & First Results MPE Garching (D) Gamma-Ray Astrophysics from Space No Ground-Based Astronomy

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe NASA Goddard Space Flight Center & Univ. of Maryland College Park, USA On behalf of the INTEGRAL/SPI Science

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center On behalf of the INTEGRAL/SPI Science Team MeV Gamma-ray Astrophysics

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Positron Annihilation in the Milky Way and beyond

Positron Annihilation in the Milky Way and beyond Positron Annihilation in the Milky Way and beyond Thomas Siegert, MPE Garching R. Diehl, A. C. Vincent, F. Guglielmetti, M. G. H. Krause, C. Boehm Research Area G Science Day, October 20 th 2016 Positron

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Positron Annihilation throughout the Galaxy

Positron Annihilation throughout the Galaxy Positron Annihilation throughout the Galaxy Thomas Siegert Max-Planck-Institute for extraterrestrial Physics Oct 18 th 2017, INTEGRAL Symposium, Venice, Italy The Early Years Late 60s, early 70s: Balloon-borne

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Gamma-ray Bursts Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk May 2011 Gamma-ray Bursts - Observations - Long-duration

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

arxiv:astro-ph/ v1 19 Feb 1999

arxiv:astro-ph/ v1 19 Feb 1999 Assessment of Tracers of 1.8 MeV Emission arxiv:astro-ph/992282v1 19 Feb 1999 J. Knödlseder 1, R.Diehl 2, U. Oberlack 5, P. vonballmoos 1, H.Bloemen 3, W. Hermsen 3, A. Iyudin 2, J. Ryan 4, and V. Schönfelder

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Perspectives on Nuclear Astrophysics

Perspectives on Nuclear Astrophysics Perspectives on Nuclear Astrophysics and the role of DUSEL Nuclear Astrophysics is a broad field that needs facilities from 1keV-100GeV A low energy accelerator DIANA a DUSEL is a unique instrument for

More information

Explosive Events in the Universe and H-Burning

Explosive Events in the Universe and H-Burning Explosive Events in the Universe and H-Burning Jordi José Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC), & Institut d Estudis Espacials de Catalunya (IEEC), Barcelona Nuclear

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002 Outline Novae (detonations on the surface of a star) Supernovae (detonations of a star) The Mystery of Gamma Ray Bursts (GRBs) Sifting through afterglows for clues! Stellar Explosions Novae Nova V838Mon

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Greg Madejski Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Outline:

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? Sumner Starrfield School of Earth and Space Exploration Arizona State University WHY DO WE CARE? RS Oph may

More information

Thermonuclear shell flashes II: on WDs (or: classical novae)

Thermonuclear shell flashes II: on WDs (or: classical novae) : on WDs (or: classical novae) Observations Thermonuclear flash model Nova/X-ray burst comparison Effects of super-eddington fluxes To grow or not to grow = to go supernova Ia or not.. 1 Nova Cygni 1975

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Recall what you know about the Big Bang.

Recall what you know about the Big Bang. What is this? Recall what you know about the Big Bang. Most of the normal matter in the universe is made of what elements? Where do we find most of this normal matter? Interstellar medium (ISM) The universe

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Laura Barragán. Universidad Complutense de Madrid

Laura Barragán. Universidad Complutense de Madrid . Universidad Complutense de Madrid Tutors: Erik Kuulkers & Peter Kretschmar INTEGRAL: International Gamma-Ray Astrophysics Laboratory The payload The mission The project IBIS (Imager on-board the Integral

More information

The Algol Mystery. Binary Evolution Novae, Supernovae, and X-ray Sources. Algol. Mass Transfer in Binaries

The Algol Mystery. Binary Evolution Novae, Supernovae, and X-ray Sources. Algol. Mass Transfer in Binaries The Algol Mystery Binary Evolution Novae, Supernovae, and X-ray Sources http://apod.nasa.gov/apod/ Algol is a double-lined eclipsing binary system with a period of about 3 days (very short). The two stars

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Physics of the hot evolving Universe

Physics of the hot evolving Universe Physics of the hot evolving Universe Science themes for a New-Generation X-ray Telescope Günther Hasinger Max-Planck-Institut für extraterrestrische Physik Garching ESA Cosmic Vision 2015-2025 Workshop,

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Our View of the Milky Way. 23. The Milky Way Galaxy

Our View of the Milky Way. 23. The Milky Way Galaxy 23. The Milky Way Galaxy The Sun s location in the Milky Way galaxy Nonvisible Milky Way galaxy observations The Milky Way has spiral arms Dark matter in the Milky Way galaxy Density waves produce spiral

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star Star Death High Mass Star Red Supergiant A star with mass between 8 M and 20 M will become a red supergiant and will subsequently experience a supernova explosion. The core of this star will have a mass

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe K. Ragan McGill University Soup & Science 11-Jan-2008 Soup & Science Jan. '08 1 How do we know about the Universe? Historically, all

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Progenitor signatures in Supernova Remnant Morphology. Jacco Vink Utrecht University

Progenitor signatures in Supernova Remnant Morphology. Jacco Vink Utrecht University Progenitor signatures in Supernova Remnant Morphology Jacco Vink Utrecht University The evolution of SNRs Heating by two shocks: 1. forward shocks heating ISM/CSM 2. reverse shock heating ejecta radius

More information

Gamma-ray emission from nova outbursts

Gamma-ray emission from nova outbursts Gamma-ray emission from nova outbursts Margarita Hernanz Institute of Space Sciences - ICE (CSIC-IEEC) Bellaterra (Barcelona), Spain Stella Novae: Past and Future Decades, Cape Town, 4-8/2/2013 M. Hernanz

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

Binary Evolution Novae, Supernovae, and X-ray Sources

Binary Evolution Novae, Supernovae, and X-ray Sources Binary Evolution Novae, Supernovae, and X-ray Sources The Algol Mystery Algol is a double-lined eclipsing binary system with a period of about 3 days (very short). The two stars are: Star A: B8, 3.4M o

More information

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL Celia Sánchez-Fernández ISOC ESAC, Madrid, Spain In collaboration with: E. Kuulkers, D. Galloway, J. Chenevez C. Sanchez-Fernandez

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Chapter 15. Supernovae Classification of Supernovae

Chapter 15. Supernovae Classification of Supernovae Chapter 15 Supernovae Supernovae represent the catastrophic death of certain stars. They are among the most violent events in the Universe, typically producing about 10 53 erg, with a large fraction of

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances Basics, types Evolution Novae Spectra (days after eruption) Nova shells (months to years after eruption) Abundances 1 Cataclysmic Variables (CVs) M.S. dwarf or subgiant overflows Roche lobe and transfers

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

PoS(Extremesky 2011)064

PoS(Extremesky 2011)064 The Galactic 511 kev morphology and the old stellar population M. Ali 1, S.C. Ellis 1,2, S. Sharma 1, J. Bland-Hawthorn 1 1 Sydney Institute for Astronomy, The University of Sydney NSW 2006, Australia.

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Binary Evolution Novae, Supernovae, and X-ray Sources

Binary Evolution Novae, Supernovae, and X-ray Sources Binary Evolution Novae, Supernovae, and X-ray Sources http://apod.nasa.gov/apod/ http://www.space.com/32150-farthest-galaxy-smashes-cosmic-distance-record.html The Algol Mystery Algol is a double-lined

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information