Project: Hubble Diagrams

Size: px
Start display at page:

Download "Project: Hubble Diagrams"

Transcription

1 Project: Hubble Diagrams Distances Exercise 1 In this exercise, you will find the magnitudes of six galaxies in the SDSS database. The table below shows the object IDs and positions (right ascension and declination) of the six galaxies. Question 1: Why can magnitudes be used as a substitute for distances in the Hubble diagram? Magnitudes can be used as a substitute for distances because magnitude varies with distance. Redshifts Exercise 2 Find redshifts for the galaxies that you used in Exercise 1. Making the Diagram Exercise 3 Follow the steps below to make a simple Hubble diagram for six galaxies. Exercise 4 Find the fit of a linear model in your Hubble diagram. Another Hubble Diagram Exercise 5 Repeat Exercises 1 and 2 for the following galaxies: Exercise 6 Repeat Exercise 3 for these six galaxies. Graph these data on the same scale you used in Exercise 3. What do your data look like now? Repeat Exercise 4. What is the percentage fit of the data? Estimating Distances to Galaxies Radiant flux: F = m F is a relative number that compares the arriving radiant flux to the star Vega.

2 Relative distance to a galaxy is the inverse square root of F. Normalize by solving d 1 / d 2 = 1 / x for x for each galaxy, where d 1 is the relative distance to the nearest galaxy and d 2 is the relative distance to another galaxy and x is the normalized distance to the other galaxy. Relative distance can also be estimated by comparing apparent sizes of galaxies. Measure the width of the image of each galaxy. Compare the inverse of this measure to get relative distance. This approach assumes that galaxies have about the same true size. Exercise 7 Find the relative distances between the six galaxies whose magnitudes you found in Exercise 1. Use a scientific calculator that can display numbers in scientific notation (that is, as 1.5 million = 1.5E+06). Exercise 8 Write the two techniques for finding relative distance as algebraic equations. Derive them using geometrical or physical principles. Relative distance... from radiant flux: d = m, where d is relative distance and m is apparent magnitude from apparent size: d = 1 w, where w is the apparent width of a galaxy. Question 2: Suppose the relative distances for a number of galaxies using brightnesses don't agree with the relative distances using apparent sizes. What would you conclude? I would conclude that not all galaxies are the same true size. Estimating Distances to Clusters Question 3: Why can we assert that galaxies in a cluster are all at the same distance? I think we can make this assertion because clusters can be thought of as statistical units or populations of galaxies. Statistically, they are at the same distance. Exercise 9 Show that the fractional error in the assumption that galaxies in a spherical cluster are all at the same distance is equal to the cluster's angular size: the angle of the sky that it takes up when viewed from Earth.

3 Assuming the width and depth of a spherical cluster to be equal, the largest error in distance will be the depth of the cluster which is also its width, its angular size. Question 4: What are some of those clues and cues? Would any of those techniques apply to estimating relative distances for galaxies in space? In surveying the countryside for towns, cities, and buildings, clues abound that would help distinguish one from the next. Building types, knowledge of relative building sizes, separation distance between buildings, etc. Some of those techniques might be helpful in estimating relative distances for galaxies in space, especially accepted separation distance. Exercise 10 Look at SDSS images for the following clusters: table follows. For each cluster, think about how we know that the galaxies are actually part of the same cluster. What properties are similar between galaxies in the same cluster? What properties show a wide range? How might you be able to tell - using just these images - if any particular galaxy is actually in the cluster, as opposed to being at a different distance along the same line-of-sight? Similar properties: color, magnitude Wide range: size Question 5: What would tell Hubble and Humason that one approach was better than another? Assuming that the brightest galaxy in one cluster should have about the same true brightness as the brightest galaxy in another cluster, approaches that result in closer brightness values might be deemed better. Relative Distances for Sample Galaxies Exercise 11 Look at the SDSS image at right. The image shows three galaxy clusters in the same area of the sky. Look closely at the image and decide which galaxies belong to which clusters. Make some notes for yourself about which galaxies belong where. I decided to invert the image so that objects would more easily be seen. I think the three galaxies are in the areas circled.

4 Exercise 12 Now, find the relative distances to the galaxies you studied in Exercise 11. Exercise 13 Repeat Exercise 12 for the same clusters using a different measured quantity leading to another estimate of relative distance. Add two columns to the right edge of your table for your second measurement and second relative distance. How do your independent estimates of the cluster distances compare? Which is better? Why? Rather than using additional columns in one table, a table was created for each additional measurement. Apparent magnitudes of five wavelengths were used as the measurements. Four of the five put the same galaxy as the closest. The two infrared wavelengths agree in the rank order among the galaxies. Red and green wavelengths are somewhat similar to each other while ultraviolet is quite different than all other measurements. I do not think any one estimate is inherently better than the others because stars emit in all these wavelengths differently. Perhaps some averaging method should be employed. Redshifts Measuring a redshift or blueshift requires four steps: 1) obtain the spectrum of something (let's say a galaxy) that shows spectral lines 2) from the pattern of lines, identify which line corresponds to which atom, ion, or molecule 3) measure the shift of any one of those lines with respect to its expected wavelength, as measured in a laboratory on Earth 4) apply a formula that relates the observed shift to velocity along the line-of-sight Redshift is symbolized as 1 z = l observed l rest so that z= l observed l rest 1 where z is the redshift (negative indicates blueshift), l observed and l rest are individual Balmer lines for a particular wavelength observed and at rest, respectively. Interpreting Redshifts Speed of a galaxy toward/away from us is v = c z where c is the speed of light ( km/sec), z is the redshift, and v is the speed in km/sec. Question 6: In the SkyServer database, you can find redshifts for quasars such that z > 1. Is there a conceptual problem if the redshift is interpreted as a Doppler shift velocity? Is there a conceptual problem if the redshift is interpreted as the cosmological stretching of space? There is a conceptual problem if the redshift is interpreted as a Doppler shift velocity because the velocity would then be greater than the speed of light. There is also a conceptual problem if the redshift is interpreted as the cosmological stretching of space because z = 1 would correspond to a time when galaxies were 100% closer together than they are now.

5 Exercise 15 Redshift templates. The application did not work. Exercise 16 Open your online notebook containing the galaxies you found relative distances to in the last section. Of the objects you selected, at least four should have spectra available in the SDSS spectra database. In fact, these four were among the ten galaxies you found redshifts for in the last exercise. The table below tells you which spectrum number from Exercise 13 corresponds to which galaxy's object ID from the Distances section. Click any of the object IDs to open the Object Explorer in the tools window. Write down the redshift (the "z" just above the spectrum) for each galaxy. Spectrum Number Galaxy ID Compare the redshifts found by the SDSS with the redshifts you calculated in Exercise 15. How close were you? The application to calculate redshift did not work. Exercise 17

Exercise 1. Exercise 2.

Exercise 1. Exercise 2. Exercise. Magnitue Galaxy ID Ultraviolet Green Re Infrare A Infrare B 9707296462088.56 5.47 5.4 4.75 4.75 97086278435442.6.33 5.36 4.84 4.58 2255030735995063.64.8 5.88 5.48 5.4 56877420209795 9.52.6.54.08

More information

Spectroscopy in Motion: A Method to Measure Velocity

Spectroscopy in Motion: A Method to Measure Velocity Name Partner(s) Date Spectroscopy in Motion: A Method to Measure Velocity Did you ever hear a train whistle or truck on a highway as it approaches you and then passes at a high rate of speed? Go to and

More information

Photographs of a Star Cluster. Spectra of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09

Photographs of a Star Cluster. Spectra of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09 Photographs of a Star Cluster Spectra of a Star Cluster What can we learn directly by analyzing the spectrum of a star? A star s chemical composition dips in the spectral curve of lines in the absorption

More information

Spectra of a Star Cluster. Photographs of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09

Spectra of a Star Cluster. Photographs of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09 Photographs of a Star Cluster Spectra of a Star Cluster What can we learn directly by analyzing the spectrum of a star? A star s chemical composition dips in the spectral curve of lines in the absorption

More information

Astronomy 102: Stars and Galaxies Review Exam 3

Astronomy 102: Stars and Galaxies Review Exam 3 October 31, 2004 Name: Astronomy 102: Stars and Galaxies Review Exam 3 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or

More information

Quasars in the SDSS. Rich Kron NGC June 2006 START CI-Team: Variable Quasars Research Workshop Yerkes Observatory

Quasars in the SDSS. Rich Kron NGC June 2006 START CI-Team: Variable Quasars Research Workshop Yerkes Observatory Quasars in the SDSS Rich Kron 28 June 2006 START CI-Team: Variable Quasars Research Workshop Yerkes Observatory NGC 1068 About 10% of all of the spectra in the SDSS database are of quasars (as opposed

More information

Doppler Shift. a. In which situation will the observer receive light that is shifted to shorter wavelengths?

Doppler Shift. a. In which situation will the observer receive light that is shifted to shorter wavelengths? 73 Because of the Doppler Effect, light emitted by an object can appear to change wavelength due to its motion toward or away from an observer. When the observer and the source of light are moving toward

More information

Astro 3 Lab Exercise

Astro 3 Lab Exercise Astro 3 Lab Exercise Lab #4: Measuring Redshifts of Galaxies Dates: August 5 6 Lab Report due: 5 pm Friday August 15 Summer 2014 1 Introduction This project involves measuring the redshifts of distant

More information

HOMEWORK 4: H-R DIAGRAM

HOMEWORK 4: H-R DIAGRAM NAME(S) SECTION DAY/TIME ASTRONOMY25 (LLOYD) SPRING 2012 Purpose HOMEWORK 4: H-R DIAGRAM To plot the H-R diagram of a star cluster and estimate its age and distance. Background Magnitude is a measure of

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

Light: Transverse WAVE

Light: Transverse WAVE Light Longitudinal WAVES Light: Transverse WAVE Light: Particle or wave Photon The Wave Nature of Light 1. Unlike other branches of science, astronomers cannot touch or do field work on their samples.

More information

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial)

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial) Assignments For Wed. Do Online Exercise 08 ( Doppler shift tutorial) 1 st Midterm is Friday, Oct. 12 Chapter 5 Light: The Cosmic Messenger Which forms of light are lower in energy and frequency than the

More information

Edited from the online virtual version available at

Edited from the online virtual version available at Produced for NASA's Office of Space Science by the Smithsonian Astrophysical Observatory 2001 Smithsonian Institution Edited from the online virtual version available at http://www.cfa.harvard.edu/seuforum/galspeed/

More information

In this lab you will measure how fast the Universe is expanding, how old it is, and the distance to some nearby galaxies.

In this lab you will measure how fast the Universe is expanding, how old it is, and the distance to some nearby galaxies. Hubble Constant Lab Introduction In this lab you will measure how fast the Universe is expanding, how old it is, and the distance to some nearby galaxies. To determine the Hubble constant, one needs to

More information

Cosmology & Culture. Lecture 4 Wednesday April 22, 2009 The Composition of the Universe, & The Cosmic Spheres of Time.

Cosmology & Culture. Lecture 4 Wednesday April 22, 2009 The Composition of the Universe, & The Cosmic Spheres of Time. Cosmology & Culture Lecture 4 Wednesday April 22, 2009 The Composition of the Universe, & The Cosmic Spheres of Time UCSC Physics 80C Why do scientists take seriously the Double Dark cosmology, which says

More information

Astron 104 Laboratory #12 Hubble s Law

Astron 104 Laboratory #12 Hubble s Law Name: Date: Section: Astron 104 Laboratory #12 Hubble s Law Section 15.3 In this lab, you investigate Hubble s Law, an empirical law which relates the speed with which galaxies recede from us to their

More information

Spring 2001: Hubble Redshift-Distance Relation

Spring 2001: Hubble Redshift-Distance Relation Cosmology is that branch of astronomy which deals with the structure and evolution of the Universe as a whole. It is a remarkable fact that a vital clue to the nature of the Universe is revealed by a very

More information

How Do I Create a Hubble Diagram to show the expanding universe?

How Do I Create a Hubble Diagram to show the expanding universe? How Do I Create a Hubble Diagram to show the expanding universe? An extremely important topic in astronomy is the expansion of the universe. Although the expanding universe is nearly always discussed in

More information

Prelab 9: The Hubble Redshift Distance Relation

Prelab 9: The Hubble Redshift Distance Relation Name: Section: Date: Prelab 9: The Hubble Redshift Distance Relation The Doppler Effect: When objects are moving, the frequency or pitch of waves can change. Think of the noise a car makes when you are

More information

Physics Lab #9: Measuring the Hubble Constant

Physics Lab #9: Measuring the Hubble Constant Physics 10263 Lab #9: Measuring the Hubble Constant Introduction In the 1920 s, Edwin Hubble discovered a relationship that is now known as Hubble s Law. It states that the recession velocity of a galaxy

More information

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe!

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe! The Cosmic Distance Ladder Hubble s Law and the Expansion of the Universe! Last time: looked at Cepheid Variable stars as standard candles. Massive, off-main sequence stars: at a certain stage between

More information

Data Release 5. Sky coverage of imaging data in the DR5

Data Release 5. Sky coverage of imaging data in the DR5 Data Release 5 The Sloan Digital Sky Survey has released its fifth Data Release (DR5). The spatial coverage of DR5 is about 20% larger than that of DR4. The photometric data in DR5 are based on five band

More information

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale What can we learn from light? Temperature Energy Chemical Composition Speed towards or away from us All from the spectrum! Temperature and Radiation Why do different objects give off different forms of

More information

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1]

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1] 1 (a) Explain what is meant by a white dwarf when describing the evolution of a star.... [1] (b) Antares is a red giant and one of the brightest stars in the night sky. The parallax angle for this star

More information

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale What can we learn from light? Temperature Energy Chemical Composition Speed towards or away from us All from the spectrum! Temperature and Radiation Why do different objects give off different forms of

More information

Midterm Exam. IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3

Midterm Exam. IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3 Midterm Exam #&%?@)#$! IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3 Nature of Light 10/3 Apparent versus Actual Brightness 10/6 Electromagnetic Spectrum of Light

More information

Reading for Meaning and the Electromagnetic Spectrum!

Reading for Meaning and the Electromagnetic Spectrum! Earth Science Zimmerman Name: Period: Reading for Meaning and the Electromagnetic Spectrum! HOOK: An astronomer discovers a new galaxy. How can the Doppler Effect be applied to determine if that galaxy

More information

The distance modulus in the presence of absorption is given by

The distance modulus in the presence of absorption is given by Problem 4: An A0 main sequence star is observed at a distance of 100 pc through an interstellar dust cloud. Furthermore, it is observed with a color index B-V = 1.5. What is the apparent visual magnitude

More information

the evidence that the size of the observable Universe is changing;

the evidence that the size of the observable Universe is changing; Q1. Describe, in as much detail as you can: the evidence that the size of the observable Universe is changing; the evidence that, billions of years ago, all the matter in the Universe was tightly packed

More information

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

Questions on Universe

Questions on Universe Questions on Universe 1. The Doppler shift may be used in the study of distant galaxies. Explain what is meant by a Doppler shift and how it is used to deduce the motion of distant galaxies. You may be

More information

Learning Objectives. distances to objects in our Galaxy and to other galaxies? apparent magnitude key to measuring distances?

Learning Objectives. distances to objects in our Galaxy and to other galaxies? apparent magnitude key to measuring distances? The Distance Ladder Learning Objectives! What is the distance ladder? How do we measure distances to objects in our Galaxy and to other galaxies?! How are the concepts of absolute magnitude and apparent

More information

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2)

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Name Date Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means

More information

Hubble s Law: Finding the Age of the Universe

Hubble s Law: Finding the Age of the Universe Lab 16 Name: Hubble s Law: Finding the Age of the Universe 16.1 Introduction In your lecture sessions (or the lab on spectroscopy), you will find out that an object s spectrum can be used to determine

More information

I bully myself cause I make me do what I put my mind to. -Marshall Mathers

I bully myself cause I make me do what I put my mind to. -Marshall Mathers I bully myself cause I make me do what I put my mind to. -Marshall Mathers Solve the following problem: `Twas 22 brillig, and the 5.6 slithy toves Did Gyre and 3.2 gimble in the ½ wabe Use any of the following

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

More information

Homework 13 (not graded; only some example ques!ons for the material from the last week or so of class)

Homework 13 (not graded; only some example ques!ons for the material from the last week or so of class) Homework 13 (not graded; only some example ques!ons for the material from the last week or so of class)! This is a preview of the draft version of the quiz Started: Apr 28 at 9:27am Quiz Instruc!ons Question

More information

ROSAT Roentgen Satellite. Chandra X-ray Observatory

ROSAT Roentgen Satellite. Chandra X-ray Observatory ROSAT Roentgen Satellite Joint facility: US, Germany, UK Operated 1990 1999 All-sky survey + pointed observations Chandra X-ray Observatory US Mission Operating 1999 present Pointed observations How do

More information

Welcome to Astronomy 402/602

Welcome to Astronomy 402/602 Welcome to Astronomy 402/602 Introductions Syllabus Telescope proposal Coordinate Systems (Lecture) Coordinate System Exercise Light (Lecture) Telescopes (Lecture) Syllabus Course goals Course expectations

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Unusual orbits in the Andromeda galaxy Post-16

Unusual orbits in the Andromeda galaxy Post-16 Unusual orbits in the Andromeda galaxy Post-16 Topics covered: spectra, Doppler effect, Newton s law of gravitation, galaxy rotation curves, arc lengths, cosmological units, dark matter Teacher s Notes

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background The Cosmic Microwave Background Key Concepts 1) The universe is filled with a Cosmic Microwave Background (CMB). 2) The microwave radiation that fills the universe is nearly

More information

Galaxy Classification

Galaxy Classification Galaxies Galaxies are collections of billons of stars; our home galaxy, the Milky Way, is a typical example. Stars, gas, and interstellar dust orbit the center of the galaxy due to the gravitational attraction

More information

Phys333 - sample questions for final

Phys333 - sample questions for final Phys333 - sample questions for final USEFUL INFO: c=300,000 km/s ; AU = 1.5 x 10 11 m ; 1000 nm hc/ev ; ev/k 10 4 K; H-ionization energy is 13.6 ev Name MULTIPLE CHOICE. Choose the one alternative that

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids Class Announcements Vocab Quiz 4 deadline is Saturday Midterm 4 has started, ends Monday Lab was in the Planetarium. You still need to do the 2 questions Check PS100 webpage, make sure your clicker is

More information

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc. Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

More information

The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and with a STRONG EMPHASIS on Chapters 9-16, 18, and

The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and with a STRONG EMPHASIS on Chapters 9-16, 18, and Final Exam!!! The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and 18-19 with a STRONG EMPHASIS on Chapters 9-16, 18, and 19. It will consist of 50 questions and

More information

Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford

Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford You are going to work with some famous astronomical data in this homework.

More information

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB WEEK 1. Introduction D. E. McLaughlin January 2011 The purpose of this lab is to introduce you to some astronomical terms

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

Cosmology. Lecture Topics. Colliding Galaxy Simulations The expanding universe Cosmology. The Age of the Universe The Big Bang

Cosmology. Lecture Topics. Colliding Galaxy Simulations The expanding universe Cosmology. The Age of the Universe The Big Bang Cosmology Lecture 27: Cosmology 27 1 APOD: GOODS project Lecture Topics Colliding Galaxy Simulations The expanding universe Cosmology The cosmological principle The Age of the Universe The Big Bang 2 27-1

More information

Hubble s Law and the Cosmic Distance Scale

Hubble s Law and the Cosmic Distance Scale Lab 7 Hubble s Law and the Cosmic Distance Scale 7.1 Overview Exercise seven is our first extragalactic exercise, highlighting the immense scale of the Universe. It addresses the challenge of determining

More information

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October 31 30 points Profs. Rieke You are going to work with some famous astronomical data in this homework. The image data

More information

Sun Building Activity 2 The Signature of the Stars

Sun Building Activity 2 The Signature of the Stars Sun Building The Signature of the Stars Rainbows reveal that white light is a combination of all the colours. In 1666, Isaac Newton showed that white light could be separated into its component colours

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

Galaxy Classification and the Hubble Deep Field

Galaxy Classification and the Hubble Deep Field Galaxy Classification and the Hubble Deep Field A. The Hubble Galaxy Classification Scheme Adapted from the UW Astronomy Dept., 1999 Introduction A galaxy is an assembly of between a billion (10 9 ) and

More information

Today. Lookback time. ASTR 1020: Stars & Galaxies. Astronomy Picture of the day. April 2, 2008

Today. Lookback time. ASTR 1020: Stars & Galaxies. Astronomy Picture of the day. April 2, 2008 ASTR 1020: Stars & Galaxies April 2, 2008 Astronomy Picture of the day Reading: Chapter 21, sections 21.3. MasteringAstronomy Homework on Galaxies and Hubble s Law is due April 7 th. Weak Lensing Distorts

More information

The Hubble Law & The Structure of the Universe

The Hubble Law & The Structure of the Universe Name: Lab Meeting Date/Time: The Hubble Law & The Structure of the Universe The Hubble Law is a relationship between two quantities the speed of and distance to a galaxy. In order to determine the Hubble

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate PHY 475/375 Lecture 2 (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate By the 1920 s a debate had developed over whether some of the spiral nebulae catalogued in the 18th century by

More information

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe Lecture #24: Plan Cosmology Expansion of the Universe Olber s Paradox Birth of our Universe Reminder: Redshifts and the Expansion of the Universe Early 20 th century astronomers noted: Spectra from most

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

The Doppler Effect is the change in frequency observed when a source of sound waves is moving relative to an observer.

The Doppler Effect is the change in frequency observed when a source of sound waves is moving relative to an observer. Doppler Effect The Doppler Effect is the change in frequency observed when a source of sound waves is moving relative to an observer. Examples of the Doppler effect are: Hearing an increase in a car horn

More information

1. Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e. unresolved

1. Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e. unresolved NatSci102 Due Feb. 14 Professor G. Rieke Homework on spectroscopy, colors, and light. Answers should be entered on a Scantron form given out in class. This exercise is worth 30 points (25 questions plus

More information

Lecture Fall, 2005 Astronomy 110 1

Lecture Fall, 2005 Astronomy 110 1 Lecture 13+14 Fall, 2005 Astronomy 110 1 Important Concepts for Understanding Spectra Electromagnetic Spectrum Continuous Spectrum Absorption Spectrum Emission Spectrum Emission line Wavelength, Frequency

More information

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works Chapter 34: Cosmology According to the currents models of stellar life cycle, our sun will eventually become a a) Cloud of hydrogen gas b) Protostar c) Neutron star d) Black hole e) White dwarf id you

More information

Earth-based parallax measurements have led to the conclusion that the Pleiades star cluster is about 435 light-years from Earth.

Earth-based parallax measurements have led to the conclusion that the Pleiades star cluster is about 435 light-years from Earth. 1 The Pleiades star cluster is a prominent sight in the night sky. All the stars in the cluster were formed from the same gas cloud. Hence the stars have nearly identical ages and compositions, but vary

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. (a) Figure 1 shows two stars, A and B, which form a binary star system. The two stars orbit their common centre of mass with the same period of rotation. The Earth is in the

More information

Doppler Effect. Sound moving TOWARDS. Sound moving AWAY 9/22/2017. Occurs when the source of sound waves moves towards or away

Doppler Effect. Sound moving TOWARDS. Sound moving AWAY 9/22/2017. Occurs when the source of sound waves moves towards or away Burkey- ESS QUIZ Thursday At the instant of the Big Bang, all the matter, energy, time, & space in the Universe was condensed into a single, tiny point. We call this Singularity. Doppler Effect Occurs

More information

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious.

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious. UNIT 3 The Study of the Universe Chapter 7: The Night Sky Chapter 8: Exploring Our Stellar Neighbourhood Chapter 9:The Mysterious Universe CHAPTER 9 The Mysterious Universe In this chapter, you will: identify

More information

Study and Analysis of Absorption Spectra of Quasars

Study and Analysis of Absorption Spectra of Quasars Study and Analysis of Absorption Spectra of Quasars Bushra Q. AL-Abudi 1 and Nuha S. Fouad 1, University of Baghdad, College of Science, Department of Astronomy and Space, Baghdad-Iraq ABSTRACT A quasi-stellar

More information

DOPPLER EFFECT FOR LIGHT DETECTING MOTION IN THE UNIVERSE HUBBLE S LAW

DOPPLER EFFECT FOR LIGHT DETECTING MOTION IN THE UNIVERSE HUBBLE S LAW VISUAL PHYSICS ONLINE DOPPLER EFFECT FOR LIGHT DETECTING MOTION IN THE UNIVERSE HUBBLE S LAW Motion in the Universe Stars and interstellar gas are bound by gravity to form galaxies, and groups of galaxies

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

Lecture 8: What we can learn via light

Lecture 8: What we can learn via light Lecture 8: What we can learn via light As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Lecture 8: What we can learn

More information

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Although we can be certain that other stars are as complex as the Sun, we will try to

More information

Astronomical "color"

Astronomical color Astronomical "color" What color is the star Betelgeuse? It's the bright star at upper left in this picture of Orion taken by a student at the RIT Observatory. Orange? Red? Yellow? These are all reasonable

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

2. Light carries information. Scientists use light to learn about the Universe.

2. Light carries information. Scientists use light to learn about the Universe. 1. Our sun is a star and the stars are suns. Even the nearest star lies enormously far beyond our own solar system. Stars are orbited by planets, which may be very different worlds from ours. The universe

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

The Universe and Light

The Universe and Light The Big Bang The big bang theory states that at one time, the entire universe was confined to a dense, hot, supermassive ball. Then, about 13.7 billion years ago, a violent explosion occurred, hurling

More information

Interstellar Dust and Gas

Interstellar Dust and Gas Interstellar Dust and Gas In 1783 William Herschel began a survey of the heavens using an 18 ¾ inch reflector of his own construction. His goal was to discover new star clusters, nebulae, and double stars.

More information

How do we know the distance to these stars? The Ping Pong Ball Challenge -Devise a method for determining the height of the ping pong ball above the floor. -You are restricted to the floor. -You can only

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Study Guide Chapter 2

Study Guide Chapter 2 Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR

More information

Chapter 20: Galaxies and the Foundation of Modern Cosmology

Chapter 20: Galaxies and the Foundation of Modern Cosmology Chapter 20 Lecture Chapter 20: Galaxies and the Foundation of Modern Cosmology Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How are the lives of galaxies

More information

Astronomy II (ASTR-1020) Homework 2

Astronomy II (ASTR-1020) Homework 2 Astronomy II (ASTR-1020) Homework 2 Due: 10 February 2009 The answers of this multiple choice homework are to be indicated on a Scantron sheet (either Form # 822 N-E or Ref # ABF-882) which you are to

More information

Assignment #9 Star Colors & the B-V Index

Assignment #9 Star Colors & the B-V Index Name Class Date Assignment #9 Star Colors & the B-V Index Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means measuring everything

More information

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram OBJECTIVE: To become familiar with the Hertzsprung-Russell diagram and the method of spectroscopic parallax. DISCUSSION: The Hertzsprung-Russell

More information

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium Expanding Universe November 20, 2002 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe Final Exam will be held in Ruby Diamond Auditorium NOTE THIS!!! not UPL Dec. 11, 2002 10am-noon Review

More information

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram SOME NEGATIVE EFFECTS OF THE EXPANSION OF THE UNIVERSE. Lecture 22 Hubble s Law and the Large Scale Structure of the Universe PRS: According to modern ideas and observations, what can be said about the

More information

D4.2. First release of on-line science-oriented tutorials

D4.2. First release of on-line science-oriented tutorials EuroVO-AIDA Euro-VO Astronomical Infrastructure for Data Access D4.2 First release of on-line science-oriented tutorials Final version Grant agreement no: 212104 Combination of Collaborative Projects &

More information

Visit for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 2 (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 2 (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Astrophysics 2 (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. The Doppler

More information

Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing

Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing Dark Matters, Sept. 24-26 2012, KICP Dark Matters, Sept. 24-26, 2012 Lab 1: Dark Matter in Galaxy Clusters Dynamical Masses, Strong Lensing Introduction Although the distribution of galaxies on large scales

More information