Intelligent Life in the Universe

Size: px
Start display at page:

Download "Intelligent Life in the Universe"

Transcription

1 Intelligent Life in the Universe Lecture 33 APoD: Easter Island Eclipse In-Class Question 1) Do you think life exists elsewhere in the Universe? a) Yes b) No c) Don t know d) Don t care

2 Lecture opics Probabilities Rates and totals he Drake equation Computes the expected number of technical civilizations in the galaxy 3 Are we alone? Do other civilizations exist in the galaxy or elsewhere? How might we estimate this statistically and what are the uncertainties? We would like to quantify whether life and, in particular, other civilizations might exist in the galaxy. 33-2

3 Probabilities How many dates might a guy get in this class? N D N W f ask f accept N D = number of dates N W = number of women in the class f ask = fraction he asks out f accept = fraction that accept f show_up = fraction that show up f show _ up 5 Suppose N w = 100 Shy guy: f ask = 0.02 (2%) f accept = 0.50 (50%) f show_up = 1.00 (100%) N D = 100 x 0.02 x 0.5 x 1.0 = 1 date Outgoing guy: f ask = 0.20 (20%) f accept = 0.10 (10%) f show_up = 0.50 (50%) N D = 100 x 0.2 x 0.1 x 0.5 = 1 date

4 Rates and otals Suppose R * = Rate at which are born t l = Average lifetime of a star How many are alive at a given time? he number of is: N = R * x t l ( Rate times time ) 7 otal number of alive Death line Now 10 yrs Stars dead Stars not yet born ime Suppose: R * = 1 star/year (represented by spikes above). And live only 10 years. 10 would be alive at any given time

5 Number of civilizations Suppose that each star developed a civilization. If the lifetime of the civilization is t l then the total number of civilizations alive is: N R t But this isn t the whole story... l 9 he Drake Equation Attempts to quantify the number of civilizations that might exist in the galaxy. Named after, Frank Drake pioneered this analysis while at Cornell

6 N R f f f f f t p h s i t l N = Number of technological civilizations in the galaxy. R * =Rateat which are born, averaged over the lifetime of the galaxy. (Stars/year) f p = Fraction having planetary systems. f h = Average number of life-suitable (habitable) planets within those systems having planets. 11 N R f f f f f t p h s i t l f s = f i = f t = t l = Fraction of habitable planets on which at least simple life arises. Fraction of life-bearing planets on which intelligence evolves. Fraction of those intelligent life planets that develop a technological society. Average lifetime of a technological civilization. (years)

7 N 10 R f ff ff ff ff ft t yearp ph hs si i t tl l R * = Rate at which are born, averaged over the lifetime of the galaxy. (Stars/year) here are ~100 billion in the galaxy today. And the galaxy is about 10 billion years old. R * ~ 10 /year 13 N 10 1f f f f f f f f f t t year p h h s s i i t t l l f p = Fraction having planetary systems. If our understanding of star formation is correct, then planets are a natural consequence. All could have planets, so we take f p ~ 1 However, only ~5% of nearby sun-like have giant planets (depends highly on metallicity)

8 N 10 1 f 1 f f f t year 10h ss ii tt ll f h = Average number of life-suitable (habitable) planets within those systems having planets. he ecosphere size varies with stellar type, but we might expect the odds to be similar to our solar system, so we choose f h ~ 1/10 Accept only F, G and K. 15 Caveats: Galactic Habitable Zone Region in the Galaxy over which life and life bearing worlds are likely to exist Requirements Available material to build planets High enough metallicity to produce terrestrial planets Right mix of heavy elements to radioactively heat core of planet (drives plate tectonics which regulate CO 2 in the atmosphere) Seclusion from cosmic threats Impacts by asteroids (depends on Jupiter) and comets (affected by galactic tides, GMCs, and passing ) Blasts of radiation (active galactic nucleus outbursts, supernovae, and gamma ray bursts) Orbit near co-rotation circle place where orbital period of star equals rotation period of spiral arm pattern

9 Metallicity In the outer parts of the galaxy, the metallicity will be too low for giant planet formation Galactic Hazards Supernovae and stellar encounters are much more frequent in the interior of the galaxy 17 Galactic Habitable Zone

10 N f f f t year 10 s i t l f s = Fraction of habitable planets on which at least simple life arises. How likely is it life will form? Is life rare? It is certainly complex! Laboratory experiments show that complex organic molecules can be formed in an atmosphere similar to that expected on the early earth. 19 he Urey-Miller Experiment Harold Urey and Stanley Miller (1953) Made primordial soup mixture water, methane, carbon dioxide, ammonia Passed simulated lightning through it. Produced gunk containing many of the amino acids found in life today

11 Cyril Ponnamperuma About a decade later constructed nucleotide bases in a similar manner. Both experiments did not closely resemble the early atmosphere. But showed biological molecules can be synthesized by nonbiological means. Astrobiology Studies the origin, evolution, and possible future of life in the Universe his is an area of active research 21 Primordial Soup 33-11

12 Creating Organics is easy Using better knowledge of the primordial ocean and atmosphere. Various energy sources can produce amino acids and nucleotide bases. Energy sources such as: solar UV radiation, lightning, volcanic heat, natural radioactivity, and atmospheric shock waves produced by meteorites N f ff ff t t year 10 s i i t t l l f s = Fraction of habitable planets on which at least simple life arises. Making organics is easy, but creating life may not be. Some might argue that under the right conditions life has to happen. Most optimistic case: f s ~

13 In-Class Question 1) What is the galactic habitable zone of the Milky Way? a) Sufficient metals the build planets b) Seclusion from cosmic threats c) Inner regions of the galaxy d) a and b e) b and c 25 1 N f ff t t year 10 i t t l l f i = Fraction of life-bearing planets on which intelligence evolves. he appearance of a well-developed brain might not happen if left to random chance. But natural selection tends to single out the more adaptable, more intelligent species. he optimistic view takes intelligence as inevitable: f i ~

14 Dinosaurs and extinction Dinosaurs ruled the world for ~ 100 million years, but were pretty stupid (technically). Was the mass extinction (due to an asteroid impact) of the dinosaurs necessary for Homo Sapiens to evolve? 27 Other influences? What role did Jupiter and Saturn have in allowing life to form on Earth. Cleared out cometary objects! But also deflects them too he Moon Stabilizes the orientation of the Earth s spin axis Otherwise we could have days that last a whole year!

15 N f t t year 10 t l l f t = Fraction of those intelligent life planets that develop a technological society. It is hard to imagine an intelligent species avoiding technology. echnical civilizations arose independently in many areas of the world. aking technological development as inevitable: f t ~ 1 29 N t year 10 l t l = Average lifetime of a technological civilization. (years) How long does a technical civilization last? We ve had one for ~100 years. here are many unknowns to our own future, let alone predicting how long another civilization might last

16 N N t year 10 l 6 years t l = Average lifetime of a technological civilization. (years) Suppose the average lifetime of a technical civilization is 1 millions years 1% of the reign of the dinosaurs 100 times longer than human civilization has existed! 1 million civilizations in our galaxy. 31 Uncertainties! Important - each term in the Drake equation (probably) gets more uncertain when proceeding from left to right. For lack of a better example we have adopted an Earth/human bias when estimating various terms. We do not know the uncertainties

17 How far to our neighbors? For 1,000,000 civilizations in the galaxy the average distance between them will be ~ 150 ly!!! two-way communication will take at least 300 years! But this is a large over prediction since the Galactic Habitable Zone has much, much less than How far? (cont d) If the lifetime of a technical civilization is less than 3000 years Average distance is so large that civilizations will die, on average, before two-way communications can be established!

Lecture Outlines. Chapter 28. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 28. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 28 Astronomy Today 8th Edition Chaisson/McMillan Chapter 28 Life in the Universe Units of Chapter 28 28.1 Cosmic Evolution Discovery 28-1 The Virus 28.2 Life in the Solar System

More information

ASTR 380 The Drake Equation

ASTR 380 The Drake Equation ASTR 380 The Drake Equation 1 ASTR 380 The Drake Equation Drake Equation Methodology Reviewing Drake Equation factors that we know The star formation rate Estimating the number of Earth-like planets or

More information

ASTR 380 The Drake Equation

ASTR 380 The Drake Equation ASTR 380 The Drake Equation Aside: Rosetta Mission - Landing on a Comet! Aside: Rosetta Mission - Landing on a Comet! ASTR 380 The Drake Equation Drake Equation Methodology Reviewing Drake Equation factors

More information

The Search for Extraterrestrial Intelligence (SETI)

The Search for Extraterrestrial Intelligence (SETI) The Search for Extraterrestrial Intelligence (SETI) Our goals for learning What is the Drake equation? How many habitable planets have life? How many civilizations are out there? How does SETI work? Can

More information

Life in the Universe. Key Concepts: Lecture 35: Admin. 11/21/17. All Formulae (for final):

Life in the Universe. Key Concepts: Lecture 35: Admin. 11/21/17. All Formulae (for final): Admin. 11/21/17 Key Concepts: Lecture 35: 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period

More information

Part I---Introduction: planets, and habitable planets

Part I---Introduction: planets, and habitable planets Part I---Introduction: planets, and habitable planets star--about 10 11 in our galaxy. Average separation is a few light years. (Compare with size of Galaxy: about 100,000 light years) planet--indirect

More information

ASTRONOMY 202 Spring 2007: Solar System Exploration. Instructor: Dr. David Alexander Web-site:

ASTRONOMY 202 Spring 2007: Solar System Exploration. Instructor: Dr. David Alexander Web-site: ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 37: Life in the Universe [4/18/07] Announcements Habitability of

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

N = R * f p n e f l f i f c L

N = R * f p n e f l f i f c L Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 10): Nature of Life Next Class: Nucleic Acids Some Oral Presentation on Feb 16 th and 18 th! Mike Somers Chris Kramer Sarah Goldrich

More information

Astrobiology: The Semester in Review

Astrobiology: The Semester in Review A Universe of Life Astrobiology: The Semester in Review Honors 228 with Dr. Harold Geller Searching for life everywhere Planets, stars, galaxies, Big Bang Conception of size and distance Stars and the

More information

Extrasolar Planets What are the odds?

Extrasolar Planets What are the odds? Honors 228: Astrobiology using Bennett and Shostak Chapter 12 overview Spring 2007 Dr. H. Geller What s talked about The Drake Equation (12.1) The Question of Intelligence (12.2) Searching for Intelligence

More information

Extraterrestrial Life Group Discussion

Extraterrestrial Life Group Discussion Extraterrestrial Life Group Discussion Group Assignment Meet with the other members of your group. Assign group roles. Print names below. Your name must appear below in order to receive credit. Recorder

More information

Chapter 24 Life in the Universe. Earliest Life Forms. When did life arise on Earth? Fossils in Sedimentary Rock. Fossils in Sedimentary Rock

Chapter 24 Life in the Universe. Earliest Life Forms. When did life arise on Earth? Fossils in Sedimentary Rock. Fossils in Sedimentary Rock Chapter 24 Life in the Universe 24.1 Life on Earth Our goals for learning When did life arise on Earth? How did life arise on Earth? What are the necessities of life? When did life arise on Earth? Earliest

More information

Searching for Life: Chapter 20: Life on Other Worlds. Life in the Universe. Earliest Fossils. Laboratory Experiments.

Searching for Life: Chapter 20: Life on Other Worlds. Life in the Universe. Earliest Fossils. Laboratory Experiments. Chapter 20: Life on Other Worlds Searching for Life: What does life look like here? How did Earth get life? Is Earth ordinary or extraordinary? If Earth is ordinary, where is everyone else? Life in the

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

http://www.youtube.com/watch?v=lhtsfozun Lo Explanation: Comet Lovejoy was captured last week passing well in front of spiral galaxy M63. Discovered only three months ago and currently near its maximum

More information

NSCI EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION. Dr. Karen Kolehmainen Department of Physics, CSUSB

NSCI EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION. Dr. Karen Kolehmainen Department of Physics, CSUSB NSCI 314 LIFE IN THE COSMOS 14 - EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ METHODS FOR DETECTING EXTRASOLAR

More information

Astronomy 330 HW 2. Presentations. Outline. ! Nicholas Langhammer esp_sociopol_washingtondc01.

Astronomy 330 HW 2. Presentations. Outline. ! Nicholas Langhammer  esp_sociopol_washingtondc01. Astronomy 330 This class (Lecture 13): What is n p? Anna Dorn Praneet Sahgal HW 2 Nicholas Langhammer http://www.bibliotecapleyades.net/sociopolitica/ esp_sociopol_washingtondc01.htm Next Class: Life on

More information

Fusion in first few minutes after Big Bang form lightest elements

Fusion in first few minutes after Big Bang form lightest elements Fusion in first few minutes after Big Bang form lightest elements Stars build the rest of the elements up to Iron (Fe) through fusion The rest of the elements beyond Iron (Fe) are produced in the dying

More information

n p = n e for stars like Sun f s = fraction of stars with suitable properties

n p = n e for stars like Sun f s = fraction of stars with suitable properties Habitable Planets n e Number of planets, per planetary system that are suitable for life n e = n p x f s planetary stellar n p = n e for stars like Sun f s = fraction of stars with suitable properties

More information

Chapter 24: Life in the Universe

Chapter 24: Life in the Universe Chapter 24 Lecture Chapter 24: Life in the Universe Life in the Universe 24.1 Life on Earth Our goals for learning: When did life arise on Earth? How did life arise on Earth? What are the necessities of

More information

The Solar System - I. Alexei Gilchrist. [The Story of the Solar System]

The Solar System - I. Alexei Gilchrist. [The Story of the Solar System] The Solar System - I Alexei Gilchrist [The Story of the Solar System] Some resources Section 13.3 of Voyages (references and links at end) References noted in these slides The Story of the Solar System,

More information

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk  ascension.html Astronomy 330 This class (Lecture 11): What is f p? Eric Gobst Suharsh Sivakumar Next Class: Life in the Solar System HW 2 Kira Bonk http://www.ufodigest.com/news/0308/ ascension.html Matthew Tenpas http://morphman.hubpages.com/hub/alien-

More information

The Quest for Extraterrestrial Signals. Ron Maddalena National Radio Astronomy Observatory Green Bank, WV

The Quest for Extraterrestrial Signals. Ron Maddalena National Radio Astronomy Observatory Green Bank, WV The Quest for Extraterrestrial Signals Ron Maddalena National Radio Astronomy Observatory Green Bank, WV Associated Universities, Inc; April/2016 2 Preliminary thoughts a. How certain are you that other

More information

Fusion in first few minutes after Big Bang form lightest elements

Fusion in first few minutes after Big Bang form lightest elements Fusion in first few minutes after Big Bang form lightest elements Stars build the rest of the elements up to Iron (Fe) through fusion The rest of the elements beyond Iron (Fe) are produced in the dying

More information

What is Astrobiology?

What is Astrobiology? What is Astrobiology? Astrobiology is the study of life in the universe. It investigates the origin, evolution, distribution, & future of life on Earth, & the search for life beyond Earth. Astrobiology

More information

AST 248, Lecture 23. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. November 19, 2018

AST 248, Lecture 23. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. November 19, 2018 AST 248, Lecture 23 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University November 19, 2018 The Search for Life in the Universe james.lattimer@stonybrook.edu The Drake Equation

More information

The Drake Equation. L, average lifetime of civilizations T, age of Galaxy (10 10 years) L/T gives the fraction of civilizations that currently exist.

The Drake Equation. L, average lifetime of civilizations T, age of Galaxy (10 10 years) L/T gives the fraction of civilizations that currently exist. The Drake Equation ns, total number of stars in Galaxy of the right type (6 billion) fp, fraction of these stars with planets (5%) ne, average number of planets orbiting those stars that have right size

More information

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n) When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

More information

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life?

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? The Habitability of Worlds Lecture 31 NASA: The Visible Earth In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? a) 1 (yes, definitely)

More information

ESA's Rosetta spacecraft What are habitable exoplanets? Is there an Earth 2.0?

ESA's Rosetta spacecraft What are habitable exoplanets? Is there an Earth 2.0? ESA's Rosetta spacecraft - 2009 What are habitable exoplanets? Is there an Earth 2.0? Christina Hedges (Institute of Astronomy) For the past 20 years, since the discovery of planets outside our solar system,

More information

The Physical Basis of Life

The Physical Basis of Life Origins of Life Physics 113 Goderya Chapter(s): 19 Learning Outcomes: The Physical Basis of Life All life forms on Earth, from viruses to complex mammals (including humans) are based on carbon chemistry.

More information

N = R *! f p! n e! f l! f i! f c! L

N = R *! f p! n e! f l! f i! f c! L Leslie Looney Phone: 244-3615 Email: lwl1@1uiuc1.1edu Office: Astro Building #218 Office Hours: W: 11- noon or by appointment Sex in Space: 134 Astronomy Building This class (Lecture 3): Cosmology Next

More information

~15 GA. (Giga Annum: Billion Years) today

~15 GA. (Giga Annum: Billion Years) today ~15 GA (Giga Annum: Billion Years) today ~ 300,000 years after the Big Bang The first map of the Universe. Not homogeneous. Cosmic microwave background (CMB) anisotropy. First detected by the COBE DMR

More information

Search for Extra-Terrestrial Intelligence

Search for Extra-Terrestrial Intelligence Search for Extra-Terrestrial Intelligence Life in the Universe? What is life? (as we know it) Auto-regulation (ex. : sweating) Organization (A cell is more organized than a bunch of atoms) Metabolism :

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

What is in outer space?

What is in outer space? What is in outer space? Celestial Objects are any natural objects that move through space. Star:_a huge sphere of gas in space _Nuclear fusion within stars give off enormous amounts of energy such as light

More information

Solar System Unit Tracking Sheet

Solar System Unit Tracking Sheet Name Period Mrs. Coates Earth Science Solar System Unit Tracking Sheet Learning Target The Solar System is 4.6 billion years old Question Example How is the age of the solar system estimated by scientists?

More information

Detection of Earth-like planets

Detection of Earth-like planets Planets and life Successful detections of extrasolar giant planets suggests that planetary systems may be fairly common could we detect Earthlike planets? is it likely that such planets would have life?

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

12/5/ Life on Earth. Chapter 19: Life in the Universe. When did life arise on Earth? Earliest Life Forms. Important Stuff (Section 001)

12/5/ Life on Earth. Chapter 19: Life in the Universe. When did life arise on Earth? Earliest Life Forms. Important Stuff (Section 001) Important Stuff (Section 001) The Final Exam is Thursday, December 22, 8:00 10:00 am The Final Exam will be given in: Willey 175 Don t come to Anderson 210. No one will be there. No one. Bring 2 pencils

More information

Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen

More information

Earth in the Universe Unit Notes

Earth in the Universe Unit Notes Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems

More information

Habitable Planets: 2 Estimating f s "

Habitable Planets: 2 Estimating f s Habitable Planets: 2 Estimating f s " Stellar Requirements (f s )" We assume that our planet needs to orbit a star" Leaves out planets around brown dwarfs" Leaves out nomad planets (may be many)" About

More information

Copyright 2009 Pearson Education, Inc. Life in the Universe

Copyright 2009 Pearson Education, Inc. Life in the Universe Life in the Universe Life in the Universe The only place we know life exists is here on Earth One of humanity s Big Questions is whether it exists elsewhere We can get some clues by considering life s

More information

Cosmic Landscape Introduction Study Notes

Cosmic Landscape Introduction Study Notes Cosmic Landscape Introduction Study Notes About how much bigger in radius is the Sun than the Earth? The ratio of the Sun's radius to the Earth's radius is 1,392,000/12756 = 109.1 How big is an astronomical

More information

The Universe and Galaxies

The Universe and Galaxies The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus

More information

Pale Blue Dot. Life in the Universe. What is Life? Now Define Intelligent Life

Pale Blue Dot. Life in the Universe. What is Life? Now Define Intelligent Life Life in the Universe Pale Blue Dot Is there anybody out there? What might other forms of life look like? What about intelligent life? What do we mean by living? What do we mean by intelligent? Earth as

More information

Astronomy: Exploring the Universe

Astronomy: Exploring the Universe Course Syllabus Astronomy: Exploring the Universe Course Description Why do stars twinkle? Is it possible to fall into a black hole? Will the sun ever stop shining? Since the first glimpse of the night

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

Lunar Eclipse. Solar Eclipse

Lunar Eclipse. Solar Eclipse Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes

More information

The Physical Basis of Life. The Origin of Life on Earth. Information Storage and Duplication

The Physical Basis of Life. The Origin of Life on Earth. Information Storage and Duplication The Physical Basis of Life All life forms on Earth, from viruses to complex mammals (including humans) are based on carbon chemistry. Carbon-based DNA and RNA molecule strands are the basic carriers of

More information

ASTR-1020: Astronomy II Course Lecture Notes Section XII

ASTR-1020: Astronomy II Course Lecture Notes Section XII ASTR-1020: Astronomy II Course Lecture Notes Section XII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Ultimate Events. Galaxy clustering in ever deeper surveys. Models of universe and its fates

Ultimate Events. Galaxy clustering in ever deeper surveys. Models of universe and its fates ASTR 1040 Accel Astro: Stars & Galaxies Ultimate Events Prof. Juri Toomre TA: Nicholas Nelson Lecture 30 Thur 28 Apr 2011 zeus.colorado.edu/astr1040-toomre toomre Allen Telescope Array Review current big

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth Class Announcements Please fill out an evaluation for this class. If you release your name I ll I give you quiz credit. Will you read Chap 32 before Wed. class? a) Yes b) No Chap 32 Beyond the Earth Objectives

More information

The End of the World...

The End of the World... The End of the World... as we know it. Impacts in the Inner Solar System Collisions have played a key role in the past formation of planets by accretion fragmentation (formation of the Moon) sustained

More information

Astronomy: Exploring the Universe

Astronomy: Exploring the Universe Course Syllabus Astronomy: Exploring the Universe Course Code: EDL028 Course Description The universe is truly the last unknown frontier and offers more questions than answers. Why do stars twinkle? Is

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 8. The scale of time and nature of worlds (Page

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

Welcome Aboard!! CHANGE OF KOMATSU S OFFICE HOURS. Briefing Welcome to the Cosmic Tour: Some Guide Lines. Lecture 1 Our Place in the Universe

Welcome Aboard!! CHANGE OF KOMATSU S OFFICE HOURS. Briefing Welcome to the Cosmic Tour: Some Guide Lines. Lecture 1 Our Place in the Universe CHANGE OF KOMATSU S OFFICE HOURS (Previous) Tuesdays & Thursdays 3:30 to 4:30 (New) Tuesdays 4:45 to 5:30 Thursdays 3:30 to 4:30 YOURNAME 31AUG Welcome Aboard!! AUSTIN AST 301 YOURNAME 31AUG 2.5 MILLION

More information

Overview of the Solar System. Solar system contents one star, several planets, lots of debris.

Overview of the Solar System. Solar system contents one star, several planets, lots of debris. Overview of the Solar System Solar system contents one star, several planets, lots of debris. Most of it is the Sun! 99.8% of the mass of the Solar System resides in the Sun. A hot ball of mostly hydrogen

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Evolution of the Atmosphere: The Biological Connection

Evolution of the Atmosphere: The Biological Connection Evolution of the Atmosphere: The Biological Connection The Earth s Four Spheres How It All Began Or At Least How We Think It Began O.k. it s a good guess Egg of energy The Big Bang splattered radiation

More information

Online Quiz Chapter 16 Due Wednesday at 11:59PM. Online Quiz Chapter 7 Due Wednesday at 11:59PM. Online Quiz Chapter 8 Due Wednesday at 11:59PM

Online Quiz Chapter 16 Due Wednesday at 11:59PM. Online Quiz Chapter 7 Due Wednesday at 11:59PM. Online Quiz Chapter 8 Due Wednesday at 11:59PM Reminders I 1 Online Quiz Chapter 16 Due Wednesday at 11:59PM 2 Online Quiz Chapter 7 Due Wednesday at 11:59PM 3 Online Quiz Chapter 8 Due Wednesday at 11:59PM 4 Online Quiz Chapter 18 Due Friday at 11:59PM

More information

ASTR 380. The Universe: the context for Life

ASTR 380. The Universe: the context for Life ASTR 380 The Universe: the context for Life Simple facts: The Universe is vast. The Universe is old. The elements for life are wide-spread. Our physical laws appear universal The Universe is mostly empty!

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice Slide 1 / 44 Slide 2 / 44 iology Origins of Life Multiple hoice 2015-10-14 www.njctl.org 1 Where did the heavier elements, present in our solar system, come from? Slide 3 / 44 collisions between the earth

More information

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

telescopes resolve it into many faint (i.e. distant) stars What does it tell us? The Milky Way From a dark site the Milky Way can be seen as a broad band across the sky What is it? telescopes resolve it into many faint (i.e. distant) stars What does it tell us? that we live in a spiral

More information

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara Astronomy 330 This class (Lecture 10): Origin of the Moon Ilana Strauss Next Class: Our Planet Scott Huber Thomas Hymel HW 2! Alex Bara http://userpages.bright.net/~phobia/main.htm! Margaret Sharp http://hubpages.com/hub/proof-that-ufos-exist---

More information

Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy

Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy Homework Issues Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy mistakes. The speed of light is 299,792,458

More information

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice Slide 1 / 44 Slide 2 / 44 iology Origins of Life Multiple hoice 2015-10-14 www.njctl.org 1 Where did the heavier elements, present in our solar system, come from? Slide 3 / 44 collisions between the earth

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class

Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class Ast 281 Review for Exam 1 Tuesday, February 25, 2014 in class The Exam will be a CLOSED BOOK exam, lasting the whole period. You will be allowed to have calculators and the sheet of planetary data, but

More information

1. Approximately how fast would a galaxy 420 Mly away be moving? A) 20 km/s B) 0.05 km/s C) 8,820 km/s D) km/s E) None of the above

1. Approximately how fast would a galaxy 420 Mly away be moving? A) 20 km/s B) 0.05 km/s C) 8,820 km/s D) km/s E) None of the above Spring 2013 Astronomy Final Exam Test form A Name Do not forget to write your name on your answer sheet and above as well, and fill in your student ID bubbles and test form bubble A on your answer sheet.

More information

ASTR 380 The Requirements for Life

ASTR 380 The Requirements for Life ASTR 380 The Requirements for Life Outline Chemical requirements? Is water necessary? Type of star? Nature of the Solar System? Location in the Galaxy? An evaluation of other locations in our Solar System

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Cosmology Overview (so far): Cosmology Overview (so far): The Age of the Universe. The Big Bang. The Age of the Universe

Cosmology Overview (so far): Cosmology Overview (so far): The Age of the Universe. The Big Bang. The Age of the Universe Cosmology Overview (so far): The Universe: Everything Observable Universe: Everything we can The Universe has no special locations No If no, then no Cosmology Overview (so far): Oblers s Paradox: The sky

More information

ASTRONOMY. Eric Chaisson. Steve McMillan. A Beginner's Guide to the Universe FOURTH EDITION. Tufts University. Drexel University

ASTRONOMY. Eric Chaisson. Steve McMillan. A Beginner's Guide to the Universe FOURTH EDITION. Tufts University. Drexel University ASTRONOMY A Beginner's Guide to the Universe FOURTH EDITION Eric Chaisson Tufts University Steve McMillan Drexel University PEARSON Prentice Hall Pearson Education, Inc. Upper Saddle River, New Jersey

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

More information

12.3 Pluto: Lone Dog No More

12.3 Pluto: Lone Dog No More 12.3 Pluto: Lone Dog No More Our goals for learning: How big can a comet be? What are the large objects of the Kuiper belt like? Are Pluto and Eris planets? How big can a comet be? Pluto s Orbit Pluto

More information

SPI Use data to draw conclusions about the major components of the universe.

SPI Use data to draw conclusions about the major components of the universe. SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions

More information

General Considerations! Habitable Planets! Key Requirement: a Liquid! Water Phase Diagram! 2/3/11!

General Considerations! Habitable Planets! Key Requirement: a Liquid! Water Phase Diagram! 2/3/11! General Considerations! Habitable Planets! Number of planets, per planetary system, suitable for life (n e )! Useful to break into 2 factors! n e = n p x f s! n p = n e for stars like Sun! f s is fraction

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

Astronomy 230 TR Astronomy Building. Presentations. Optimism? Outline. Rogelio Cruz Origin of Live on Earth. Tyler Natoli Wormholes

Astronomy 230 TR Astronomy Building. Presentations. Optimism? Outline. Rogelio Cruz Origin of Live on Earth. Tyler Natoli Wormholes Astronomy 230 TR 1300-1420 134 Astronomy Building This class (Lecture 9): Planets of Life Rogelio Cruz Tyler Natoli Presentations Rogelio Cruz Origin of Live on Earth Tyler Natoli Wormholes Next Class:

More information

Earth s Early History. Lesson Overview. Lesson Overview Earth s Early History

Earth s Early History. Lesson Overview. Lesson Overview Earth s Early History Lesson Overview 19.3 THINK ABOUT IT How did life on Earth begin? What were the earliest forms of life? How did life and the biosphere interact? Origin-of-life research is a dynamic field. But even though

More information

Test 4 Final Review. 5/2/2018 Lecture 25

Test 4 Final Review. 5/2/2018 Lecture 25 Test 4 Final Review 5/2/2018 Lecture 25 Apparent daily motion of celestial objects is due to earth s rotation Seasons are created due to the title of the Earth relative to the Sun Phases of the moon due

More information

Chapter 14 The History of Life

Chapter 14 The History of Life Section 1: Fossil Evidence of Change Section 2: The Origin of Life Click on a lesson name to select. 14.1 Fossil Evidence of Change Land Environments Earth formed about 4.6 billion years ago. Gravity pulled

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Simon P. Balm Astro 5 Test #3 Sample Questions

Simon P. Balm Astro 5 Test #3 Sample Questions Simon P. Balm Astro 5 Test #3 Sample Questions 1. What do we mean by the general habitability of a planet? A. the suitability for Life on it surface B. the suitability for Life beneath its surface C. its

More information

Journal of Astrobiology and Outreach Dr. Akos Kereszturi Editorial Board member

Journal of Astrobiology and Outreach Dr. Akos Kereszturi Editorial Board member Journal of Astrobiology and Outreach Dr. Akos Kereszturi Editorial Board member Research Center for Astronomy and Earth Sciences Hungarian Academy of Sciences Hungary Biography Dr. Akos Kereszturi Akos

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

You are here! The Solar System! Jo-Anne Brown

You are here! The Solar System! Jo-Anne Brown You are here! * The Solar System! Jo-Anne Brown Outline Questions! Earth, Moon, Sun A little, teeny, tiny bit of history... Terrestrial planets Gas Giants Poor Pluto Magnetic fields Tell me what you know!

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information