JETS FROM YOUNG STARS: RADIATIVE MHD SIMULATIONS

Size: px
Start display at page:

Download "JETS FROM YOUNG STARS: RADIATIVE MHD SIMULATIONS"

Transcription

1 JETS FROM YOUNG STARS: RADIATIVE MHD SIMULATIONS O. TEŞILEANU 1,2, A. MIGNONE 1, S. MASSAGLIA 1 1 Dipartimento di Fisica Generale, Università degli Studi di Torino, via P. Giuria 1, Turin, Italy, tesileanu@ph.unito.it 2 Research Centre for Atomic Physics and Astrophysics, University of Bucharest, P.O. Box MG-6, RO Bucharest-Mãgurele, Romania Received October 10, 2008 With the recent improvements in available observational data, simulating the radiative processes in YSO jets will provide a valuable tool for model discrimination. The present work describes the various strategies for the implementation of radiative cooling losses in a time-dependent manner to MHD simulation codes, with an emphasis on the code we use, PLUTO. Post-processing routines for the realistic computation of emission lines are now available. Preliminary results of the 1D modelling of the HH30 jet with synthetic emission line ratios computations is presented. 1. INTRODUCTION Jets are widespread phenomena in the Universe, existing in a wide range of objects and temporal and spatial scales. Collimated, supersonic outflows of matter can be found in the most powerful form originating from Active Galactic Nuclei but also, in the other end of the scales range, in our Galaxy in regions of star formation, originating from young stellar objects. Between these two extreme cases, jets were discovered to be associated to neutron stars, massive X-ray binary systems (for example SS433), symbiotic stars, and galactic stellar mass black holes (microquasars). Because of the resemblances of the morphologies, similar physical mechanisms are believed to be at work at all scales. Some of the young stellar objects (YSOs) in our Galaxy are sources of jets, at relatively small scales they extend on ranges of ~ 0.01 to few parsecs, and have core velocies of the order of few hundreds kilometers per second (at a sound speed of ~ 10 kms 1 ). The rapid evolution of the observational capabilities and the relatively small distance to these sources made them the ideal candidates for comparison with theory and for discrimination between theoretical models of jet formation and propagation. Paper presented at the National Conference of Physics, September, 2008, Bucharest Mãgurele, Romania. Rom. Journ. Phys., Vol. 54, Nos. 7 8, P , Bucharest, 2009

2 772 O. Tesileanu, A. Mignone, S. Massaglia 2 Initially only the regions of high and peculiar emissions from the YSO jets have been discovered by Herbig [1] and Haro [2]. We present in Fig. 1 an image of the first two HH objects discovered, imaged at high resolution by the Hubble Space Telescope. Fig. 1 Hubble Space Telescope images of HH1 and HH2. The present work will focus on the numerical study of Herbig-Haro jets, including the radiative cooling processes due to collisionally-excited line radiation. Departing from magnetohydrodynamic (MHD) simulations, synthetic observations (emission line ratios) are obtained and compared with astronomical observations. 2. RADIATIVE COOLING Radiative cooling becomes important for the dynamical evolution of the system whenever the cooling timescale becomes comparable to or lower than the dynamical timescale. This is the case with schocked astrophysical flows like those encountered in YSO jets. The total energy E is evolved according to the standard MHD equations: E Ept uu BBSE (1) t where S E is a radiative loss term, and pt pb 2 2 denotes the total pressure (thermal + magnetic) of the fluid. For a detailed description of the way this system is solved by the MHD code PLUTO, we refer to [3].

3 3 Jets from young stars: radiative MHD simulations 773 The radiative loss term may be computed in various ways, depending on the accuracy needed and available computational power. These approaches will be described in this section TABULATED COOLING The tabulated cooling module provides a way to solve the internal energy equation dp ( 1) 2 n ( T) with n dt m m when the cooling/heating function (T) is not known analytically but rather is available as a table sampled at discrete points, i.e., j ( Tj). In the equation above, is the density, n the particle number density, is the ratio of specific heats and m p and m e are the proton and electron masses, respectively. p e (2) 2.2. MINEQ COOLING The Multi-Ion Non-Equilibrium cooling is a newly developed cooling module for the PLUTO MHD code that integrates a complex ionization network of 29 ion species: H I, H II, He I, He II, C I to V, N I to V, O I to V, Ne I to V, and S I to V, and the collisionally excited line emission for these ion species in the approximation of a 5-level atom. For each ion, we solve the additional equation ( Xi ) Xiu Si (3) t coupled to the original system of conservation laws. In Eq. (3), the first index () corresponds to the element, while the second index (i) corresponds to the ionization stage. Specifically, Xi Ni N is the ion number fraction, N i is the number density of the i-th ion of element, and N is the element number density. The source term S i accounts for ionization and recombination. The total line emission from these species enters in the source term S E in Eq. (1) and should give a good approximation of radiative cooling for the above conditions ([4]). For a detailed description of this cooling function, testing and sample applications to astrophysics, we refer to [5].

4 774 O. Tesileanu, A. Mignone, S. Massaglia SIMPLIFIED NON-EQUILIBRIUM COOLING The SNEq cooling consists of the introduction of one supplementary variable to the MHD system, the fraction of neutrals fn fhi / fh, representing the fraction of neutral hydrogen in the plasma. The fraction of neutrals obeys the following non-homogeneous advection equation: fn v fn ne[ cr ci fn cr] (4) t where v is the velocity, n e the electron number density, and c i and c r the ionization and recombination coefficients of hydrogen. This is coupled to the energy equation. S E is computed as the sum 16 different line emissions from from some of the most common elements, k = Ly, H, HeI ( Å), CI ( Å), CII (156 m), CII (2325 Å), NI (5200 Å), NII ( Å), OI (63 m), OI ( Å), OII ( 3727 Å), MgII ( 2800 Å), SiII (35 m), SII ( Å), FeII (25 m), FeII (1.6 m). 3. EMISSION LINE RATIOS With the detailed non-equilibrium ionization balance computed in MINEq cooling, one is able to accurately compute the emission line intensities and emission line ratios. These can be further on directly compared to observations. The observational data for HH30 comes from [6], the cited paper being also an analysis of the physical quantities following the procedure in [7]. We instead computed the emission line ratios departing from the 1D MHD data (physical parameters). HH30 is an ideal candidate for this type of studies as it lies almost in the plane of the sky and has a quasilinear, very collimated shape. A key (reasonable) assumption is that all the emission from the jet comes from post-shock regions in the flow, resulting from instabilities or variations in the jet injection speed. An initial perturbation (the setup in [8]) in velocity evolves in a shock propagating through the jet medium. We follow its evolution in time, compute the line emissions and then integrate over the distance corresponding to the resolution of observational data. The basic parameters for the simulations are the jet density, perturbation amplitude in velocity, transversal magnetic field. An investigation of the parameter space is underway, but a preliminary acceptable result (given the simplicity of the model) was obtained for the parameters mentioned in Fig. 2. The variation in the emission along the jet cannot be captured with this simple method as it probably comes from secondary or interacting shocks. Further studies will include the extension to 2D.

5 5 Jets from young stars: radiative MHD simulations 775 Fig. 2 Simulation of line ratios between the doublets of NII ( Å), OI ( Å), and SII ( Å) (lines: [SII]/[OI] solid, [OI]/[NII] dashed). Comparison with HH30 data (circles). 4. CONCLUSIONS Including radiative losses in the MHD simulations of YSO jets demonstrated to be essential for reliable predictions in terms of jet propagation and morphology. The detailed cooling and non-equilibrium ionization computation is desirable if predictions are to be made in terms of line emissions. Preliminary results from 1D and 2D simulations are encouraging, and further efforts will be made in order to obtain predictions for more (and more complex) HH objects. Acknowledgements. The present work has been supported by the European Union (contract MRTN-CT ) within the Marie Curie RTN JETSET. REFERENCES 1. G. H. Herbig, ApJ, 113, 697 (1951). 2. G. Haro, Astron. J., 55, 72 (1950). 3. A. Mignone, S. Massaglia, G. Bodo et al., ApJS, 170, 228 (2007). 4. A. C. Raga, G. Mellema, P. Lundqvist, ApJS, 109, 517 (1997). 5. O. Teºileanu, A. Mignone, S. Massaglia, A&A, 488, 429 (2008). 6. F. Bacciotti, J. Eislöffel, T. P. Ray, A&A, 350, 917 (1999). 7. F. Bacciotti, J. Eislöffel, A&A, 342, 717 (1999). 8. S. Massaglia, A. Mignone, G. Bodo, A&A, 442, 549 (2005).

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] An Investigation of the Hydrodynamics of Hypersonic Jets in Astrophysical Conditions Original Citation: M. Belan; S. Massaglia; M. Mirzaei;

More information

Simulating radiative astrophysical flows with the PLUTO code: a non-equilibrium, multi-species cooling function

Simulating radiative astrophysical flows with the PLUTO code: a non-equilibrium, multi-species cooling function A&A 488, 429 440 (2008) DOI: 10.1051/0004-6361:200809461 c ESO 2008 Astronomy & Astrophysics Simulating radiative astrophysical flows with the PLUTO code: a non-equilibrium, multi-species cooling function

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

arxiv: v1 [astro-ph.ga] 12 Jun 2017

arxiv: v1 [astro-ph.ga] 12 Jun 2017 Astronomy & Astrophysics manuscript no. SB c ESO 2018 September 15, 2018 Numerical simulation of surface brightness of astrophysical jets Carl L. Gardner, Jeremiah R. Jones, and Perry B. Vargas School

More information

Astronomy. Astrophysics. High resolution simulations of a variable HH jet. A. C. Raga 1, F. De Colle 2,P.Kajdič 3,A.Esquivel 1, and J.

Astronomy. Astrophysics. High resolution simulations of a variable HH jet. A. C. Raga 1, F. De Colle 2,P.Kajdič 3,A.Esquivel 1, and J. A&A 465, 879 885 (2007) DOI: 10.1051/0004-6361:20066625 c ESO 2007 Astronomy & Astrophysics High resolution simulations of a variable HH jet A. C. Raga 1, F. De Colle 2,P.Kajdič 3,A.Esquivel 1, and J.

More information

How can jets survive MHD instabilities?

How can jets survive MHD instabilities? How can jets survive MHD instabilities? Hubert Baty Observatoire Astronomique, 11 Rue de l université 67000 Strasbourg, France Rony Keppens FOM-Institute for Plasma Physics Rijnhuizen, Association Euratom/FOM,

More information

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS.

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. 13th AGILE Workshop, ASI, Rome May 25, 2015 NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. Dr. Bhargav Vaidya Università degli Studi di Torino, Torino. Collaborators:

More information

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei SECOND EDITION Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Donald E. Osterbrock Lick Observatory, University of California, Santa Cruz Gary J. Ferland Department of Physics and Astronomy,

More information

Morphologies of extragalactic jets

Morphologies of extragalactic jets MOMENTUM TRANSPORT IN TURBULENT HYDRO JETS AND EXTRAGALACTIC SOURCES MORPHOLOGY Attilio Ferrari University of Torino University of Chicago JETSET - CMSO with G. Bodo, S. Massaglia, A. Mignone, P. Rossi

More information

Numerical Simulations of the Jet in the Crab Nebula

Numerical Simulations of the Jet in the Crab Nebula Numerical Simulations of the Jet in the Crab Nebula A. Mignone 1, A. Ferrari 1, E. Striani 2, M. Tavani 2 1 Dipartimento di Fisica, Università di Torino 2 Iasf/iaps università di tor vergata (roma) 1.

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory Relativistic HD/MHD Flow for GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN), Masada (Kobe University) What a relativistic

More information

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Emission lines arise from permitted (recombination) and forbidden

More information

Topics for Today s Class

Topics for Today s Class Foundations of Astronomy 13e Seeds Chapter 11 Formation of Stars and Structure of Stars Topics for Today s Class 1. Making Stars from the Interstellar Medium 2. Evidence of Star Formation: The Orion Nebula

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

Astrophysics of Gaseous Nebulae

Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Bright Nebulae of M33 Ken Crawford (Rancho Del Sol Observatory) Potsdam University Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de HST

More information

Numerical simulations of fluid models in astrophysics From stellar jets to CO white dwarfs

Numerical simulations of fluid models in astrophysics From stellar jets to CO white dwarfs Numerical simulations of fluid models in astrophysics From stellar jets to CO white dwarfs (or, how things sometimes work pretty well and sometimes do not) Francesco Rubini Dipartimento di Astronomia,

More information

Astrofysikaliska Dynamiska Processer

Astrofysikaliska Dynamiska Processer Astrofysikaliska Dynamiska Processer VT 2008 Susanne Höfner hoefner@astro.uu.se Aims of this Course - understanding the role and nature of dynamical processes in astrophysical contexts and how to study

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

3D numerical modeling of YSO accretion shocks

3D numerical modeling of YSO accretion shocks EPJ Web of Conferences 64, 04003 (2014) DOI: 10.1051/ epjconf/ 20146404003 C Owned by the authors, published by EDP Sciences, 2014 3D numerical modeling of YSO accretion shocks T. Matsakos 1,2,3,a, J.-P.

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborator: Youhei Masada (Kobe University) What a relativistic

More information

ASTROPHYSICS. K D Abhyankar. Universities Press S T A R S A ND G A L A X I E S

ASTROPHYSICS. K D Abhyankar. Universities Press S T A R S A ND G A L A X I E S ASTROPHYSICS S T A R S A ND G A L A X I E S K D Abhyankar Universities Press Contents Foreword vii Preface ix 1 Introduction 1 1.1 ' Astronomy and astrophysics 1 1.2 Importance of astronomy 2 1.3 Methods

More information

Lec. 4 Thermal Properties & Line Diagnostics for HII Regions

Lec. 4 Thermal Properties & Line Diagnostics for HII Regions Lec. 4 Thermal Properties & Line Diagnostics for HII Regions 1. General Introduction* 2. Temperature of Photoionized Gas: Heating & Cooling of HII Regions 3. Thermal Balance 4. Line Emission 5. Diagnostics

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Giant Star-Forming Regions

Giant Star-Forming Regions University of Heidelberg, Center for Astronomy Dimitrios A. Gouliermis & Ralf S. Klessen Lecture #1 Introduction & Overview Introduction to HII Regions In this Lecture Motivation for this Course Schedule

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

The Physics and Dynamics of Planetary Nebulae

The Physics and Dynamics of Planetary Nebulae Grigor A. Gurzadyan The Physics and Dynamics of Planetary Nebulae With 125 Figures, 14 Plates and 93 Tables Springer Contents 1. Global Concepts 1 1.1 The Shapes of Planetary Nebulae 1 1.2 The Structure

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

Infrared Spectroscopy of the Black Hole Candidate GRO J

Infrared Spectroscopy of the Black Hole Candidate GRO J Infrared Spectroscopy of the Black Hole Candidate GRO J1655-40 1 Francis T. O Donovan March 19th, 2004 1 Based on a paper by F. T. O Donovan & P. J. Callanan (in preparation). Black Holes in the Sky At

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014 Attilio Ferrari CIFS, Università di Torino 12th Agile Workshop, May 8, 2014 Plasma processes of astrophysical relevance Highly nonlinear (relativistic) physics Huge extension of physical parameters Scalability?

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

High Energy Processes in Young Stellar Objects

High Energy Processes in Young Stellar Objects High Energy Processes in Young Stellar Objects Ji Wang Department of Astronomy, University of Florida, Gainesville, Fl 32601 jwang@astro.ufl.edu Received ; accepted 2 ABSTRACT In this paper, I present

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Gas Dynamics: Basic Equations, Waves and Shocks

Gas Dynamics: Basic Equations, Waves and Shocks Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks Susanne Höfner Susanne.Hoefner@fysast.uu.se Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks

More information

Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants

Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants Mem. S.A.It. Vol. 82, 787 c SAIt 2011 Memorie della Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants S. Orlando 1, F. Bocchino 1, M. Miceli 2,1,

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Magnetized High-Energy-Density Plasma

Magnetized High-Energy-Density Plasma LLNL PRES 446057 Magnetized High-Energy-Density Plasma D.D. Ryutov Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Presented at the 2010 Science with High-Power Lasers and Pulsed Power

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

The Interstellar Medium

The Interstellar Medium The Interstellar Medium Fall 2014 Lecturer: Dr. Paul van der Werf Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium 528 doney@strw.leidenuniv.nl Class Schedule

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

International Atomic Energy Agency, Vienna, Austria. Charge Transfer in Collisions of Ions with atoms and molecules.

International Atomic Energy Agency, Vienna, Austria. Charge Transfer in Collisions of Ions with atoms and molecules. International Centre for Theoretical Physics (ICTP), Trieste, Italy International Atomic Energy Agency, Vienna, Austria Training Workshop on Atomic and Molecular Data for Fusion Energy Research Charge

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

arxiv: v1 [astro-ph.im] 15 Jan 2011

arxiv: v1 [astro-ph.im] 15 Jan 2011 Hydrodynamics of Hypersonic Jets: Experiments and Numerical Simulations arxiv:1101.2960v1 [astro-ph.im] 15 Jan 2011 Marco Belan, Sergio de Ponte Daniela Tordella Silvano Massaglia, Attilio Ferrari, Andrea

More information

Gamma-ray binaries: hydrodynamics and high energy emission

Gamma-ray binaries: hydrodynamics and high energy emission Gamma-ray binaries: hydrodynamics and high energy emission Astrid Lamberts University of Wisconsin-Milwaukee Collaborators: Guillaume Dubus (Grenoble, France) - Sébastien Fromang (CEA-Saclay, France) -

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Mario Manuel Einstein Fellows Symposium Harvard-Smithsonian Center for Astrophysics October 28 th, 2014 Ø Collimation and

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della À Ø Ò Ø ËÓÐ Ö ÓÖÓÒ B.V. Gudiksen Institute of Theoretical Astrophysics, University of Oslo, Norway e-mail:boris@astro.uio.no Abstract. The heating mechanism

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

Revealing new optically-emitting extragalactic Supernova Remnants

Revealing new optically-emitting extragalactic Supernova Remnants 10 th Hellenic Astronomical Conference Ioannina, September 2011 Revealing new optically-emitting extragalactic Supernova Remnants Ioanna Leonidaki (NOA) Collaborators: P. Boumis (NOA), A. Zezas (UOC, CfA)

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Theory of Interstellar Phases

Theory of Interstellar Phases Theory of Interstellar Phases 1. Relevant Observations 2. Linear Stability Theory 3. FGH Model 4. Update and Summary References Tielens, Secs. 8.1-5 Field ApJ 142 531 1965 (basic stability theory) Field,

More information

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble Stellar Binary Systems and CTA Guillaume Dubus Laboratoire d Astrophysique de Grenoble Barcelona Cherenkov Telescope Array Meeting, 24-25 January 2008 X-ray binaries picture by H. Spruit relativistic outflow

More information

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Parviz Ghavamian SNR 0509-67.5 HST ACS Hα (F657N) Supernova Remnants Heat and Enrich the ISM and Accelerate Cosmic Rays reverse-shocked

More information

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES DAVID F. GRAY University of Western Ontario, London, Ontario, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface to the first edition Preface to the

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

ASTRONOMY (ASTRON) ASTRON 113 HANDS ON THE UNIVERSE 1 credit.

ASTRONOMY (ASTRON) ASTRON 113 HANDS ON THE UNIVERSE 1 credit. Astronomy (ASTRON) 1 ASTRONOMY (ASTRON) ASTRON 100 SURVEY OF ASTRONOMY 4 credits. Modern exploration of the solar system; our galaxy of stars, gas and dust; how stars are born, age and die; unusual objects

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS ANTOANETA ENE 1, I. V. POPESCU 2, T. BÃDICÃ 3, C. BEªLIU 4 1 Department of Physics, Faculty

More information

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars 1 Brankica Šurlan 1 Astronomical Institute Ondřejov Selected Topics in Astrophysics Faculty of Mathematics

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option

PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option Version 1.1 Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education June 2003 Advanced Level Examination PHYSICS (SPECIFICATION A) Unit 5 Nuclear

More information

GRAVITATIONAL COLLAPSE

GRAVITATIONAL COLLAPSE GRAVITATIONAL COLLAPSE Landau and Chandrasekhar first realised the importance of General Relativity for Stars (1930). If we increase their mass and/or density, the effects of gravitation become increasingly

More information

Effects of Massive Stars

Effects of Massive Stars Effects of Massive Stars Classical HII Regions Ultracompact HII Regions Stahler Palla: Sections 15.1, 15. HII Regions The salient characteristic of any massive star is its extreme energy output, much of

More information

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays DESY Summer Student Programme, 2016 Olga Lebiga Taras Shevchenko National University of Kyiv, Ukraine Supervisors Reinaldo

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star 23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star (8 units) No knowledge of Astrophysics is assumed or required: all relevant equations are defined and explained in the project itself.

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

AN INTRODUCTIONTO MODERN ASTROPHYSICS

AN INTRODUCTIONTO MODERN ASTROPHYSICS AN INTRODUCTIONTO MODERN ASTROPHYSICS Second Edition Bradley W. Carroll Weber State University DaleA. Ostlie Weber State University PEARSON Addison Wesley San Francisco Boston New York Cape Town Hong Kong

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2368 Bright Quasar 3C 273 Thierry J-L Courvoisier From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Science Olympiad Astronomy C Division Event University of Chicago Invitational

Science Olympiad Astronomy C Division Event University of Chicago Invitational Science Olympiad Astronomy C Division Event University of Chicago Invitational The University of Chicago Chicago, IL January 12, 2019 Team Number: Team Name: Instructions: 1) Please turn in all materials

More information

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Andrea Mignone Collaborators: G. Bodo, M. Ugliano Dipartimento di Fisica Generale, Universita di Torino (Italy)

More information

Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

More information

Radio and X-rays from GRS Close correlations of the third kind

Radio and X-rays from GRS Close correlations of the third kind Mem. S.A.It. Vol. 82, 41 c SAIt 211 Memorie della Radio and -rays from GRS 1915+15 - Close correlations of the third kind Ralph Spencer 1 and Anthony Rushton 1,2,3 1 Jodrell Bank Centre for Astrophysics

More information

Stellar-Mass Black Holes and Pulsars

Stellar-Mass Black Holes and Pulsars Stellar-Mass Black Holes and Pulsars Anthony Rushton Work group 2 leader (ESO ALMA fellow) 2010-06-24 Overview of Work Group 2 Stellar-mass black holes and pulsars Two work group leaders: Anthony Rushton

More information

AY230 Solutions #3. nv > max. n=1

AY230 Solutions #3. nv > max. n=1 AY230 Solutions #3 (1 HII Temperature: Because the recombination coefficient to bound levels of hydrogen σn rec (v decreases with increasing electron velocity v, the electrons that are the most likely

More information

Monte Carlo Simulator to Study High Mass X-ray Binary System

Monte Carlo Simulator to Study High Mass X-ray Binary System SLAC-PUB-11350 Monte Carlo Simulator to Study High Mass X-ray Binary System S. Watanabe, F. Nagase, T. Takahashi ISAS/JAXA, Sagamihara, Kanagawa 229-8510, Japan M. Sako, S.M. Kahn KIPAC/Stanford, Stanford,

More information

Three Dimensional Models of RR Lyrae Pulsation

Three Dimensional Models of RR Lyrae Pulsation Regional Variable Star Conference: Physics & Astronomy Department, Michigan State University: 40 Years of Variable Stars: A Celebration of Contributions by Horace A. Smith ed. K. Kinemuchi (Sunspot, NM:

More information

arxiv:astro-ph/ v1 17 Dec 2003

arxiv:astro-ph/ v1 17 Dec 2003 Electromagnetic Signals from Planetary Collisions Bing Zhang and Steinn Sigurdsson arxiv:astro-ph/0312439 v1 17 Dec 2003 Department of Astronomy & Astrophysics, Penn State University, University Park,

More information

OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics

OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics Astronomical jets Experimental jets Instabilities 1.4 light years Ambient shocks Jet/ambient material interface 2.8 mm Collimated

More information

Atoms and Star Formation

Atoms and Star Formation Atoms and Star Formation What are the characteristics of an atom? Atoms have a nucleus of protons and neutrons about which electrons orbit. neutrons protons electrons 0 charge +1 charge 1 charge 1.67 x

More information