Search for exotic process with space experiments

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Search for exotic process with space experiments"

Transcription

1 Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, January 2001 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1

2 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 2

3 One year All-Sky Survey Simulation, Eγ > 100 MeV All-sky intensity map based on five years EGRET data. All-sky intensity map from a GLAST one year survey, based on the extrapolation of the number of sources versus sensitivity of EGRET Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 3

4 Probing the era of Galaxy Formation Uncover the nature of Dark Matter Counts / bin Roll- offs in the γ -ray spectra from AGN at large z probe the extra-galactic background light (EBL) over cosmological distances. A dominant factor in EBL models is the era of galaxy formation: AGN roll- offs may help distinguish models of galaxy formation, e. g., Cold Dark Matter vs. Hot Dark Matter-- 5 ev neutrino contributions, etc. See for example Macminn, D., and J. R. Primack, 1995, astro- ph/ (* assumes no intrinsic source cutoff) Energy (GeV) Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 4

5 Dark matter problem (2 S ) Experimentally in spiral galaxies the ratio between the matter density and the Critical density Ω is : Ω lum 0.01 but from rotation curves must exist a galactic dark halo of mass at least: Ω halo from gravitational behavior of the galaxies in clusters the Universal mass density is : Ω halo from structure formation theories: Ω halo 0. 3 but from big bang nucleosinthesis the Barionic matter cannot be more then: Ω B 0. 1 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 5

6 Massive Compact Halo Objects (MACHOs) Low (sub- solar) mass stars. Standard baryonic composition. Use gravity microlensing to study. Could possibly account for 25% to 50% of Galactic Dark Matter. Neutrinos Candidates for Galactic Dark Matter Small contribution if atmospheric neutrino results are correct, since m ν < 1eV. Large scale galactic structure hard to reconcile with neutrino dominated dark matter Weakly Interacting Massive Particles ( WIMPs) Non- Standard Model particles, ie: supersymmetric neutralinos Heavy (> 10GeV) neutrinos from extended gauge theories. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 6

7 (1 a ) Flux absorption due to the interaction with the infrared and microwave background γ ray source if the center of mass energy is: Microwave and infrared background γ Ε=ω 1 e + Earth photons interactions produce electron positron pairs γ ϑ Ε=ω 2 e - Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 7

8 (2 a ) Flux absorption due to the interaction with the infrared and microwave background The cross section of the process γγ > e + e - is: where r e is the classical radius of the electron and: ω 1 and ω 1 are respectively the energies of the low and the high energies gamma ray and ϑ is their angle of incidence. γ γ ϑ Ε=ω 1 e + e - Ε=ω 2 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 8

9 (3 a ) Flux absorption due to the interaction with the infrared and microwave background the ratio between the flux I(L) at a distance L from the source and the initial flux I can be written as: I(L)/I o =exp(-k γ L) where k γ is the absorption coefficient: that contains the cross section and the low energy photon distribution. For the microwave spectrum: γ γ ϑ Ε=ω 1 Ε=ω 2 e + e - Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 9

10 Ratio between surviving flux and initial flux versus photon energies for two different distances due to the sum of the infrared and black-body background (4 a ) Attenuation ( I / I 0 ) Total Absorption ( microwave + infrared) Z=0.03 (low) infrared only 10-3 Z=1 (high) Z=0.03 (high) 10-4 Z=0.03 (high) E(TeV) A.Morselli, INFN/AE-94/22 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 10

11 Energy density of the extragalactic diffuse background radiation (6 a ) Characteristic absorbed γ ray energy (TeV): E γ (TeV) λ (µm) E 2 n(e) (ev/cm 3 ) Hegra, astro/ph/ Far Infrared Dust Near Infrared Average models Starlight Energy (ev) Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 11

12 Comulative Extragalactic Background light as a function of redshift (6 a ) Cold Dark Matter Model Ω CDM =0.9, Ω b =0.1 early era of galaxy formation ( 1< z f < 3 ) CHDM = Cold + Hot Dark Matter Model Ω CDM =0.6, Ω ν =0.3, Ω b =0.1 late era of galaxy formation ( 0.2 < z f < 1 ) Cold Dark Matter Model CHDM Macminn & Primac astro-ph z Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 12

13 Neutralino WIMPs Assume χ present in the galactic halo χ is its own antiparticle => can annihilate in galactic halo producing gamma-rays, antiprotons, positrons. Antimatter not produced in large quantities through standard processes (secondary production through p + p --> p + X) So, any extra contribution from exotic sources (χ χ annihilation) is an interesting signature ie: χ χ --> p + X Produced from (e. g.) χ χ --> q / g / gauge boson / Higgs boson and subsequent decay and/ or hadronisation. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 13

14 In the minimal supersymmetric extension of the Standard Model four neutral spin-1/2 Majorana particles are introduced: the partners of the neutral gauge bosons B, W the neutral CP-even higgsinos H 0 1, H 0 2. Diagonalizing the corresponding mass matrix, four mass eigenstates are obtained. The lightest of these, χ, is commonly referred as the neutralino. It is useful to introduce the gaugino fraction Z g defined as: Z g = N N 2 2 and classify the neutralino as higgsino-like when Z g <0.01, mixed when 0.01 < Z g < 0.99 and gaugino like if Z g >0.99. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 14

15 SuperSymmetric Dark Matter (4 S ) Possible signature: Gamma Ray from Neutralino Annihilation Annihilation at rest: bump around Neutralino mass φ γ Diffuse background 10 GeV 100 GeV A=pseudoscalar χ ± =chargino χ 0 =neutralino H=Higgs boson Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 15

16 (5b S ) Signal rate from Supersymmetry (2) But in more general form we have: where: ψ is the angle between the line of sight and the Galactic center, r(ψ) is the distance along that line of sight I(ψ) is the angular dependence of the gamma-ray flux. The galactic dark matter density distribution can have the form ρ(r) ~ r α with α ~ 1.8 and the predicted photon flux can be 10 4 brighter from certain directions! (the sources can appear nearly point-like) Ι(ψ) R ~ 8.5 kpc ψ Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 16

17 Energy versus time For X and Gamma ray detectors Energy 1 TeV 100 GeV WHIPPLE CAT HEGRA CANGAROO GRANITE MILAGRO ARGO HESS CELESTE, STACEE, Solar Two MAGIC Super Cangaroo VERITAS 10 GeV GLAST 1 GeV EGRET AGILE 100 MeV 10 MeV COMPTEL 1 MeV 100 KeV 10 KeV BATSE OSSE SIGMA RXTE ASCA BeppoSAX INTEGRAL Super AGILE Constellation-X 1 KeV ROSAT Chandra XMM XEUS Year Aldo Morselli Aldo Morselli 10/00 6/9/99 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 17

18 (5b S ) Signal rate from Supersymmetry (2) But in more general form we have: where: ψ is the angle between the line of sight and the Galactic center, r(ψ) is the distance along that line of sight I(ψ) is the angular dependence of the gamma-ray flux. The galactic dark matter density distribution can have the form ρ(r) ~ r α with α ~ 1.8 and the predicted photon flux can be 10 4 brighter from certain directions! (the sources can appear nearly point-like) Ι(ψ) R ~ 8.5 kpc ψ Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 18

19 GLAST Performance : Energy resolution for lateral photons σ E /E =1.5% θ > 56 0 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 19

20 Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino. Background from normal secondary production Signal from very heavy (~ 1 TeV) neutralino annihilations ( astro-ph ) Mass91 data from XXVI ICRC, OG , 1999 Caprice94 data from ApJ, 487, 415, 1997 Particles and photons are sensitive to different neutralinos. Gaugino-like particles are more likely to produce an observable flux of antiprotons whereas Higgsino-like annihilations are more likely to produce an observable gamma-ray signature Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 20

21 Distortion of the secondary positron fraction induced by a signal from a heavy neutralino. M χ =336 GeV K s =11.7 Χ 2 /7=1.53 M χ =2313 GeV K s = Χ 2 /7=1.08 BR(e + e - ) M χ =106 GeV K s =19 Χ 2 /7=2.24 M χ =130 GeV K s =54 Χ 2 /7=1.35 Baltz & Edsjö Phys.Rev. D59 (1999) astro-ph Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 21

22 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 22

23 Pamela antiproton positron Separating p from e - Magnet Silicon Calorimeter Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 23

24 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 24

25 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 25

26 10 GeV e - Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 26

27 10 GeV p Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 27

28 Cosmic Ray Physics with charged particles: - Study of the origin and propagation of cosmic rays using sample of galactic and extragalactic material. - Test of cosmological models - Search for dark matter and supersymmetry Cosmic Ray Physics with photons: - Study of the origin of cosmic rays by looking one by one the sources of cosmic rays - Test of cosmological models - Test of galaxies formation models - Search for dark matter and supersymmetry - Complementary with gravitational waves detectors Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 28

29 Cosmic Ray Physics with charged particles: - Study of the origin and propagation of cosmic rays using sample of galactic and extragalactic material. - Test of cosmological models - Search for dark matter and supersymmetry Cosmic Ray Physics with photons: - Study of the origin of cosmic rays by looking one by one the sources of cosmic rays - Test of cosmological models - Test of galaxies formation models - Search for dark matter and supersymmetry - Complementary with gravitational waves detectors Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 29

30 Summary and 1 st Conclusions Neutralinos are a promising candidate for WIMP dark matter Neutralinos can annihilate in the galactic halo... this could give rise to high energy (> 10GeV) antiproton signature and/or gamma-ray signature. Pamela experiment is designed to measure antiproton spectrum from 80MeV to 190GeV. >3 year mission large event samples Combination of TRD + Si tracker + imaging Si- W calo + TOF (trigger) and anticoincidence can isolate a pure sample of antiprotons. Engineering model currently under construction. Flight model due ~ June Launch: beginning In 2005 GLAST will search for gamma-ray signature Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 30

GLAST Large Area Telescope:

GLAST Large Area Telescope: Gamma-ray Large Area Space Telescope GLAST Large Area Telescope: LAT Project and the calorimeter Per Carlson KTH Stockholm for the GLAST Collaboration SCINT2001, Chamonix 17-21 September 2001 GLAST Gamma-Ray

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Indirect Search for Dark Matter with AMS-02

Indirect Search for Dark Matter with AMS-02 Indirect Search for Dark Matter with AMS-02 A. Malinin, UMD For the AMS Collaboration SUSY06, UC Irvine, June 14, 2006 Alpha Magnetic Spectrometer science The AMS is a particle physics experiment in space.

More information

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays Antimatter and DM search in space with AMS-02 Francesca R. Spada Istituto Nazionale di Fisica Nucleare Piazzale Aldo Moro, 5 I-00185, Rome, ITALY 1 Introduction AMS-02 is a space-borne magnetic spectrometer

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter Piergiorgio Picozza INFN and University of Rome Tor Vergata From e + /e - Colliders to High Energy Astrophysics Trieste, September

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Very High Energy (VHE) γ-ray Astronomy: Status & Future

Very High Energy (VHE) γ-ray Astronomy: Status & Future 6 th Rencontres du Vietnam: Particle Astrophysics Very High Energy (VHE) γ-ray Astronomy: Status & Future Rene A. Ong University of California, Los Angeles OUTLINE Scientific Motivation Origin of cosmic

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

components Particle Astrophysics, chapter 7

components Particle Astrophysics, chapter 7 Dark matter and dark energy components Particle Astrophysics, chapter 7 Overview lecture 3 Observation of dark matter as gravitational ti effects Rotation curves galaxies, mass/light ratios in galaxies

More information

Conservative Constraints on Dark Matter Self Annihilation Rate

Conservative Constraints on Dark Matter Self Annihilation Rate Conservative Constraints on Dark Matter Self Annihilation Rate Thomas Jacques 2009-07-13, TeVPA 2009 Indirect Detection Indirect detection often focuses on choosing a model, and comparing predicted flux

More information

2. The evolution and structure of the universe is governed by General Relativity (GR).

2. The evolution and structure of the universe is governed by General Relativity (GR). 7/11 Chapter 12 Cosmology Cosmology is the study of the origin, evolution, and structure of the universe. We start with two assumptions: 1. Cosmological Principle: On a large enough scale (large compared

More information

Non Baryonic Nature of Dark Matter

Non Baryonic Nature of Dark Matter Non Baryonic Nature of Dark Matter 4 arguments MACHOs Where are the dark baryons? Phys 250-13 Non Baryonic 1 Map of the territory dark matter and energy clumped H 2? gas baryonic dust VMO? MACHOs Primordial

More information

It is possible for a couple of elliptical galaxies to collide and become a spiral and for two spiral galaxies to collide and form an elliptical.

It is possible for a couple of elliptical galaxies to collide and become a spiral and for two spiral galaxies to collide and form an elliptical. 7/16 Ellipticals: 1. Very little gas and dust an no star formation. 2. Composed of old stars. 3. Masses range from hundreds of thousands to 10's of trillions of solar masses. 4. Sizes range from 3000 ly

More information

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from

More information

arxiv:hep-ph/ v2 9 Sep 2005

arxiv:hep-ph/ v2 9 Sep 2005 Indirect Signals from Dark Matter in Split Supersymmetry Asimina Arvanitaki and Peter W. Graham Institute for Theoretical Physics Department of Physics Stanford University Stanford, CA 94305 USA email:

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

The Mystery of Dark Matter

The Mystery of Dark Matter The Mystery of Dark Matter Maxim Perelstein, LEPP/Cornell U. CIPT Fall Workshop, Ithaca NY, September 28 2013 Introduction Last Fall workshop focused on physics of the very small - elementary particles

More information

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 1 Scineghe07 Aldo Morselli Proceedings in Frascati Physics series Deadline 25 of July 8 pages (4 pages for posters ) in

More information

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias)

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) In collaboration with: F. Prada, A. Cuesta, A. Domínguez, M. Fornasa, F. Zandanel (IAA/CSIC) E. Bloom, D. Paneque (KIPAC/SLAC) M. Gómez, M.

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

1 The beginning of Cosmic Ray Physics, the balloons BACKGROUND REJECTION AND DATA ANALYSIS. Aldo Morselli a and Piergiorgio Picozza a.

1 The beginning of Cosmic Ray Physics, the balloons BACKGROUND REJECTION AND DATA ANALYSIS. Aldo Morselli a and Piergiorgio Picozza a. BACKGROUND REJECTION AND DATA ANALYSIS FOR THE PAMELA EXPERIMENT Aldo Morselli a and Piergiorgio Picozza a a INFN, Sezione di Roma II, via della Ricerca Scientifica, Roma, Italy and Dipartimento di Fisica,

More information

The Fermi Large Area Telescope and the Quest for Dark Matter signals Aldo Morselli INFN Roma Tor Vergata on behalf of the

The Fermi Large Area Telescope and the Quest for Dark Matter signals Aldo Morselli INFN Roma Tor Vergata on behalf of the The Fermi Large Area Telescope and the Quest for Dark Matter signals Aldo Morselli INFN Roma Tor Vergata on behalf of the Fermi LAT Collaboration γ in Z γ-ray diffuse Emission Meeting in Zurich 18 November

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018 Big-Bang nucleosynthesis, early Universe and relic particles Alexandre Arbey Lyon U. & CERN TH Moriond Cosmology 2018 La Thuile, Italy March 23rd, 2018 Introduction Alexandre Arbey Moriond Cosmology 2018

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Summary on parallel sessions: "EAS and Gamma Detection" and "Gamma Detection

Summary on parallel sessions: EAS and Gamma Detection and Gamma Detection Summary on parallel sessions: "EAS and Gamma Detection" and "Gamma Detection Aldo Morselli INFN Roma Tor Vergata RICAP07 21-06-07 Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

The Fermi Large Area Telescope and the Quest for Dark Matter signals. Aldo Morselli INFN Roma Tor Vergata on behalf of the. Fermi LAT Collaboration

The Fermi Large Area Telescope and the Quest for Dark Matter signals. Aldo Morselli INFN Roma Tor Vergata on behalf of the. Fermi LAT Collaboration The Fermi Large Area Telescope and the Quest for Dark Matter signals Aldo Morselli INFN Roma Tor Vergata on behalf of the Fermi LAT Collaboration LAUNCH 09: Neutrinos and Beyond November 9-12 Max-Planck-Institute

More information

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 SEARCHES FOR ANTIMATTER DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 OUTLINE Early History Baryon Asymmetry of the Universe? Current Limits on Antimatter Nuclei from Distant Galaxies

More information

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München Neutrino bounds on dark matter Alejandro Ibarra Technische Universität München NOW 2012 10 September 2012 Introduction Many pieces of evidence for particle dark matter. However, very little is known about

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

Astro-2: History of the Universe. Lecture 5; April

Astro-2: History of the Universe. Lecture 5; April Astro-2: History of the Universe Lecture 5; April 23 2013 Previously.. On Astro-2 Galaxies do not live in isolation but in larger structures, called groups, clusters, or superclusters This is called the

More information

Detecting Anti-Matter with GLAST

Detecting Anti-Matter with GLAST Gamma-ray Large Area Space Telescope Detecting Anti-Matter with GLAST July 12, 2005 Gary Godfrey SLAC most pieces of talk from Paolo Coppi 2004 SLAC Summer School godfrey@slac.stanford.edu 650-926-2919

More information

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years Daniel Mazin 1 and Martin Raue 2 1: IFAE, Barcelona 2: MPIK, Heidelberg This research

More information

Comic Gamma-Ray Background from Dark Matter Annihilation

Comic Gamma-Ray Background from Dark Matter Annihilation TeV Particle Astrophysics II Madison (Aug. 29, 2006) Comic Gamma-Ray Background from Dark Matter Annihilation Shin ichiro Ando (California Institute of Technology) S. Ando & E. Komatsu, Phys. Rev. D 73,

More information

Aldo Morselli INFN Roma Tor Vergata On behalf of Marco Tavani and the AGILE Team

Aldo Morselli INFN Roma Tor Vergata On behalf of Marco Tavani and the AGILE Team the AGILE space mission Aldo Morselli INFN Roma Tor Vergata On behalf of Marco Tavani and the AGILE Team Annapolis Sept. 18 2014 10th INTEGRAL Workshop A Synergistic View of the High Energy Sky Aldo Morselli,

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration

Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration ALPS-II TDR Review, DESY Site Zeuthen, 07 November 2012 Strong case for particles beyond the Standard Model > Standard

More information

Five Years of PAMELA in orbit

Five Years of PAMELA in orbit 32nd International Cosmic Ray Conference, Beijing 2011 Five Years of PAMELA in orbit P. Picozza on behalf of PAMELA collaboration 1,2;1) 1 University of Rome Tor Vergata, Department of Physics, I-00133,

More information

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Etat actuel et Perspectives de la Physique d'astro-particule Daniel Haas DPNC Geneva Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition Selected Experiments & Results

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

The Hunt for Dark Photons

The Hunt for Dark Photons The Hunt for Dark Photons Although the idea of heavy photons has been around for almost 30 years, it gained new interest just a few years ago when theorists suggested that it could explain why several

More information

Dark Matter Decay and Cosmic Rays

Dark Matter Decay and Cosmic Rays Dark Matter Decay and Cosmic Rays Christoph Weniger Deutsches Elektronen Synchrotron DESY in collaboration with A. Ibarra, A. Ringwald and D. Tran see arxiv:0903.3625 (accepted by JCAP) and arxiv:0906.1571

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

The Dark Matter Puzzle: On the Home Stretch

The Dark Matter Puzzle: On the Home Stretch The Dark Matter Puzzle: On the Home Stretch 10 August 2007 Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Quarks & Cosmos Dark Matter is the Central Front of Quarks

More information

Today. Gravitational Lenses 11/19/2013. Astronomy Picture of the Day

Today. Gravitational Lenses 11/19/2013. Astronomy Picture of the Day ASTR 1020: Stars & Galaxies November 15, 2013 Reading for Monday: Chapter 23, section 23.1-23.3. MasteringAstronomy homework on Galaxy Evolution is due tonight at midnight. Exam 3 is on Wednesday, Nov.

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

- A Bayesian approach

- A Bayesian approach DM in the Constrained MSSM - A Bayesian approach Leszek Roszkowski CERN and Astro Particle Theory and Cosmology Group, Sheffield, England with Roberto Ruiz de Austri (Autonoma Madrid), Joe Silk and Roberto

More information

Milagro A TeV Observatory for Gamma Ray Bursts

Milagro A TeV Observatory for Gamma Ray Bursts Milagro A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los Alamos National Laboratory University of Maryland, University of California Santa Cruz, University of California

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

DARK MATTERS. Jonathan Feng University of California, Irvine. 2 June 2005 UCSC Colloquium

DARK MATTERS. Jonathan Feng University of California, Irvine. 2 June 2005 UCSC Colloquium DARK MATTERS Jonathan Feng University of California, Irvine 2 June 2005 UCSC Colloquium 2 June 05 Graphic: Feng N. Graf 1 WHAT IS THE UNIVERSE MADE OF? An age old question, but Recently there have been

More information

Dark Matter and Supersymmetry

Dark Matter and Supersymmetry Dark Matter and Supersymmetry We don t know it, because we don t see it! WdB, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, EGRET excess of diffuse Galactic Gamma Rays as Tracer of DM, astro-ph/0508617,

More information

Models of New Physics for Dark Matter

Models of New Physics for Dark Matter Models of New Physics for Dark Matter Carlos Muñoz instituto de física teórica ift-uam/csic departamento de física teórica dft-uam 1 PPC 2010, Torino, July 12-16 Crucial Moment for SUSY in next few years:

More information

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

Origin and Propagation of Cosmic Rays. Vladimir Zdravković

Origin and Propagation of Cosmic Rays. Vladimir Zdravković UNIVERSITÀ DEGLI STUDI ROMA 2 Dipartimento di Fisica Dottorato di Ricerca in Fisica - XVII Ciclo Origin and Propagation of Cosmic Rays Vladimir Zdravković Coordinatore prof. Piergiorgio Picozza Tutore

More information

PoS(idm2008)089. Minimal Dark Matter (15 +5 )

PoS(idm2008)089. Minimal Dark Matter (15 +5 ) Institut de Physique Théorique, CNRS, URA 2306 & CEA/Saclay, F-91191 Gif-sur-Yvette, France E-mail: marco.cirelli@cea.fr Alessandro Strumia Dipartimento di Fisica dell Università di Pisa & INFN, Italia

More information

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Cosmology Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Energy density versus scale factor z=1/a-1 Early times,

More information

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Cosmic Ray panorama.  Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 1912 1932 Cosmic Ray panorama http::// Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 Pamela : < 0.1 evt year/gev Flux E α α 2.7 / 3.3 Statistical precision

More information

HIGH-ENERGY COSMIC RAYS PART 2

HIGH-ENERGY COSMIC RAYS PART 2 HIGH-ENERGY COSMIC RAYS PART 2 Rene A. Ong SLAC Summer Institute University of California, Los Angeles 4 August 2003 Cosmic Acceleration: Recap To build a HE cosmic accelerator, we need the following parts:

More information

Physics case for axions and other WISPs. Andreas Ringwald (DESY)

Physics case for axions and other WISPs. Andreas Ringwald (DESY) Physics case for axions and other WISPs. Andreas Ringwald (DESY) Mini-workshop on searches for new particles with high power lasers, Forschungszentrum Jülich/Institut für Kernphysik, 24./25. Oktober 2012

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

Detectors for 20 kev 10 MeV

Detectors for 20 kev 10 MeV Gamma-Ray Bursts Detectors for 20 kev to 10 MeV Discovery The early years BATSE Fast versus slow bursts Uniformity and log N log S relation BeppoSAX and discovery of afterglows Redshift measurements Connection

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter F. Pilo for the

More information

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Michel H.G. Tytgat Université Libre de Bruxelles Belgium Rencontres de Moriond: EW Interactions and Unified Theories March 2011 There are

More information

Summarising Constraints On Dark Matter At The Large Hadron Collider

Summarising Constraints On Dark Matter At The Large Hadron Collider Summarising Constraints On Dark Matter At The Large Hadron Collider Isabelle John Thesis submitted for the degree of Bachelor of Science Project Duration: Sep Dec 2016, half-time Supervised by Caterina

More information

Development of a New Paradigm

Development of a New Paradigm P599 Seminar, April 9, 2014 Development of a New Paradigm for Direct Dark Matter Detection Jason Rose / UTK (working with Dr. Kamyshkov) Dark Matter Recap Evidence: Galactic Rotation Curves Gravitational

More information

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata Introduction to Cosmic Rays Data Analysis Issues Nicola De Simone INFN and University of Rome Tor Vergata SciNeGHE 2010 - Data Analysis Tutorial Trieste, September 8-9, 2010 The physics of PAMELA PRL 102,

More information

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton 28-29 July 05 Feng 1 Graphic: N. Graf OVERVIEW This Program anticipates

More information

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Cherenkov Telescope Array Status Report Salvatore Mangano (CIEMAT) On behalf of the CTA consortium Outline Very-High-Energy Gamma-Ray Astronomy Cherenkov Telescope Array (CTA) Expected Performance of CTA

More information

H.E.S.S. High Energy Stereoscopic System

H.E.S.S. High Energy Stereoscopic System H.E.S.S. High Energy Stereoscopic System MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg Landessternwarte Heidelberg Univ. Kiel Ecole Polytechnique, Palaiseau College de

More information

Impact of substructures on predictions of dark matter annihilation signals

Impact of substructures on predictions of dark matter annihilation signals Impact of substructures on predictions of dark matter annihilation signals Julien Lavalle Institute & Dept. of Theoretical Physics, Madrid Aut. Univ. & CSIC DESY Theory Astroparticle, Hamburg 16 V 2011

More information

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE COSMIC RAYS Discovered in 1912 by Victor Hess (Nobel Prize) Messengers from the non-thermal part of the Universe E < 15 ev: galactic E > 17

More information

SIMULATION OF THE GAMMA-RAY GALACTIC DISTRIBUTION AS SEEN BY THE AMS-02

SIMULATION OF THE GAMMA-RAY GALACTIC DISTRIBUTION AS SEEN BY THE AMS-02 SIMULATION OF THE GAMMA-RAY GALACTIC DISTRIBUTION AS SEEN BY THE AMS-02 M. Mollá 1, J.Alcaraz 1, J.Berdugo 1, J.Bolmont 2, J.Casaus 1, E.Lanciotti 1, C.Mañá 1, C.Palomares 1, E.Sánchez 1, F.J.Rodríguez

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector Teresa Lenz in Collaboration with Loic Quertenmont, Christian Sander, Peter Schleper, Lukas Vanelderen International

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

A New and Improved Spin-Dependent Dark Matter Exclusion Limit Using the PICASSO Experiment

A New and Improved Spin-Dependent Dark Matter Exclusion Limit Using the PICASSO Experiment A New and Improved Spin-Dependent Dark Matter Exclusion Limit Using the PICASSO Experiment by Kenneth John Clark A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity

More information

Gamma-ray background anisotropy from Galactic dark matter substructure

Gamma-ray background anisotropy from Galactic dark matter substructure Gamma-ray background anisotropy from Galactic dark matter substructure Shin ichiro Ando (TAPIR, Caltech) Ando, arxiv:0903.4685 [astro-ph.co] 1. Introduction Dark matter annihilation and substructure Dark

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

the CTA Consortium represented by Aldo Morselli

the CTA Consortium represented by Aldo Morselli The Dark Matter Programme of the Cherenkov Telescope Array the CTA Consortium represented by Aldo Morselli INFN Roma Tor Vergata 1 CTA PROJECT Next generation ground based Gamma-ray observatory Open observatory

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA X-Ray observability of WHIM and our new mission concept DIOS (Diffuse Intergalactic Oxygen Surveyor ) Noriko Yamasaki ISAS/JAXA 1 Cosmic Baryon Budget requires missing baryon The observed baryons are only

More information

Cosmology and fundamental physics with extragalactic TeV γ-rays?

Cosmology and fundamental physics with extragalactic TeV γ-rays? Cosmology and fundamental physics with extragalactic TeV γ-rays? Matthias Lorentz PhD with Pierre Brun at Irfu/SPP DDays 7-8 July 2016 Introduction : my PhD topic What we can learn from TeV photons propagating

More information