THEMIS-ARTEMIS Status

Size: px
Start display at page:

Download "THEMIS-ARTEMIS Status"

Transcription

1 THEMIS- Status Vassilis Angelopoulos THEMIS mini-swt 1 SSL/UCB Dec.19, 2009

2 First 10 months: Commissioning and Coast Phase Observations TH-B TH-C TH-D TH-E TH-A P1 P2 P3 P4 P Launch= Y GSE X GSE THEMIS mini-swt 2 SSL/UCB Dec.19, 2009

3 First year baseline orbit (FY08) Y GSE Tail X GSE Dayside TH-B TH-C TH-D TH-E TH-A P1 P2 P3 P4 P5 Second year baseline orbit (FY09) Y GSE Dayside 2 Til2 Tail X GSE THEMIS mini-swt 3 SSL/UCB Dec.19, 2009

4 Current Orbits, 2 nd Dayside (FY09) + THEMIS mini-swt 4 SSL/UCB Dec.19, 2009

5 Extended Phase Mission Concept THEMIS = THEMIS baseline + THEMIS mini-swt 5 SSL/UCB Dec.19, 2009

6 THEMIS Mission Status All instruments functioning nominally Cross calibration, inter-calibration performed during coast-phase Team discoveries are changing the field, excite the public Science discoveries piling up >100 papers in refereed journals GRL special issue on THEMIS, on Coast Phase JGR special issue on THEMIS First Results ICS10 meeting coming up special issue in JGR (THEMIS-centric) Data collected per plan, and widely disseminated First tail season showed thinner tail than expected Preliminary results published; adjusted 2 nd tail season orbit Second tail season results are a resounding success More than a dozen substorms collected: unique features on quiet time substorms Mission completion on time, on budget by September 2009 Constellation available in good health for extended mission: FY Extended Phase Approved in Senior Review (Jun 09) thru Sep 2012 THEMIS and comprise the THEMIS Extended Phase Instruments checked out especially for low field conditions THEMIS extended phase planning has started Clustered configuration, unique at inner magnetosphere; at km Preparing the ground for MMS that will revisit the region in technical implementation going very well THEMIS mini-swt 6 SSL/UCB Dec.19, 2009

7 THEMIS+: Financial Status THEMIS in late FY09 and extended phase has incurred a 40% reduction in force Science and operations for THEMIS had to be reduced significantly, but is now stable Early reductions due to support of that could not be covered by available cash-flow Personnel plan has stabilized, plan fits available budget Philosophy: Support youngest team members with partial support for senior members. Maintain only critical mission operations, science/instrument processing functions Reduced community support to: 1. sustaining already developed tools and 2. continue training Discovery potential is tremendous, as THEMIS tools mature & data quality improves THEMIS is a gold mine, due to already collected data and regions to be visited in the next 2 years It is important for team members to obtain NASA/SR&T, NSF support. 1. Solar/Heliospheric SR&T (LOI December 4, 2009, Proposals February 5, 2010) GI due in May, SR&T due July, TR&T due October, NSF: Space Weather in January, Base: Jul-Sep THEMIS FY12-14: 14: additional ~25% decrease expected (Requires ops reduction) has been funded by HPS Senior Review 08, for operations only Plans now: get to the moon, ensure data comes back, processed and released Contract to be executed with proposed personnel plan (by January) Planetary goals : proposal submitted but in a joint Helio+Planetary decision not evaluated Helio MO&DA program over-committed cash-flow status in 2010 is unclear THEREFORE: HQ requested that a Helio+Planetary Senior Review proposal be submitted jointly Separate from THEMIS, will be evaluated by joint panel of experts Upon (positive) re-evaluation, cash-flow will be committed for remainder of the year THEMIS mini-swt 7 SSL/UCB Dec.19, 2009

8 Statement of Task for this SWT THEMIS proposal Evaluate proposed plans for FY10-12 and revise as necessary Maximize scientific productivity and quality science How can the team advance the field forward? Discuss main mission objectives for FY Keep mission operationally simple, yet scientifically productive Increase synergy with RBSP Increase synergy with ERG and Orbitals Plan out FY14-16 and request appropriate budget planning for it Synergy with MMS is significant; advance planning required proposal Evaluate proposed plans for FY10-12 Take into account recent Geotail and Kaguya results, look into synergy with LRO & LADEE Discuss plans for FY12-14; probes will continue to be in-orbit about the moon Look into synergy with LADEE prime/extended and upcoming International Lunar Network THEMIS mini-swt 8 SSL/UCB Dec.19, 2009

9 P3,4,5 tail science Significant capability beyond THEMIS Probes P3,4,5 in an R plane, never achieved before, measure: Cross-tail and field aligned currents under invariance (ideal 3-point tail constellation) Tailward expansion speeds using timing, lateral expansion using finite gyroradius :00:00 Z Y P5 P4 P3 P3 X P4 X P5 THEMIS mini-swt 9 SSL/UCB Dec.19, 2009

10 P3,4,5 dayside science Significant capability beyond THEMIS Probes P3,4,5 in an R plane, never achieved before, measure: Magnetopause and field aligned currents under under invariance (ideal 3-point dayside constellation) Bracket reconnection site, measure inflow and outflow conditions :00:00 Z 1 st, 2 nd, 3 rd extended dayside Scales: R E, P3 out P4 P3 P5 X THEMIS mini-swt 10 SSL/UCB Dec.19, 2009

11 Extended THEMIS (P3,P4,P5) At the Magnetotail, Study: Nature of the near-earth current sheet Dissipation of bursty fast flows Result: Ability to map and model key instability region With first ever: Simultaneous dr-dz separations, 0.1-1R E Clustered orbits study the 8-12R E region :00:00 Z X FAST P4 P5 P3 X Y Courtesy: Pulkkinen and Wiltberger THEMIS mini-swt 11 SSL/UCB Dec.19, 2009

12 Extended THEMIS (P3,P4,P5) At Subsolar Magnetopause, study: Asymmetric reconnection: dynamics, evolution and role of cold ions Internal FTE structure and electron acceleration Result: Hall-physics of subsolar magneto-pause reconnection, paves way to MMS :00:00 Z 1 st, 2 nd, 3 rd extended dayside Scales: R E, P3 out Using novel: Simultaneous dr-dz separations at R E monitor inflow and outflow Cluster-like separations at subsolar region P4 P3 P5 X [THEMIS Coast Phase Mozer et al. GRL] THEMIS mini-swt 12 SSL/UCB Dec.19, 2009

13 Extended THEMIS (P3,P4,P5) At Inner Magnetosphere, Study Role of: ULF/VLF/EMIC waves on ion, electron energization/losses Large electric fields on storm time ring current Result: Comprehensive AC waves and E-fields models Using novel: 0.1-2R E separations to resolve temporal/spatial evolution of gradients daily conjunctions: PFISR, S-DARN P3 P4 P5 THEMIS mini-swt 13 SSL/UCB Dec.19, 2009

14 Beyond Substorm Timing, 2 nd tail (FY09) + Continue analysis of prime mission 2 nd year tail, present at upcoming AGU: Macroscale interactions: flow diversion or tailward retreat of X-line? Means of ionospheric i coupling Coupling to local instabilities: ballooning, interchange and whistler modes Statistics of triggers under a variety of solar wind conditions Beyond prime: resolve open questions on substorms: What causes gradual auroral brightening ahead of onset? What process enables the current sheet to reconnect? Does tail history dictate onset mechanism, location? Extended mission is ideally positioned to go beyond timing studies THEMIS mini-swt 14 SSL/UCB Dec.19, 2009

15 (P1,P2) in FY10,11,12: Mission Concept FY10: Translunar injection FY11-12: 6mo in Lissajous orbits + 17 mo in Lunar orbits Magnetotail Lunar Wake Formation/Evolution THEMIS P1 X P2 Moon Turbulent wake? Last closed field line Geotail P2 P1 Diffusive Particle Acceleration Solar Wind Shock tangent Foreshock waves THEMIS mini-swt 15 SSL/UCB Dec.19, 2009

16 Translunar injection phase (Oct 09 Oct 10) No Science, just get there. Note: Orbit Raise Maneuvers (ORMs) start: July 2009, in parallel with THEMIS 2 nd dayside operations (THEMIS dayside requirements met already since 1 st dayside season) Phases Lissajous Phase (Oct 10 Apr 11) Note: First 3 months: opposite sides, Next 3 months: same side Lunar Orbit Phase (May 11 Sep 12) Note: P1 retrograde, and P2 prograde, such that orbital separations and separation vectors cover full parameter space THEMIS mini-swt 16 SSL/UCB Dec.19, 2009

17 Science Objectives, #1 In the Magnetosphere, study: Particle acceleration: X-line or O-line? Reconnection: 3D character; global effects Turbulence: Drivers and effects Result: Reveal 3D distant tail, dynamics In conjunction with: Solar wind monitors: ACE, WIND, STEREO Inner magnetosphere monitors: Cluster, Geotail, FAST Using the first: Two point: dx, dy measurements at scales from ion gyroradius to several R E Even single point measurements are critical in this region THEMIS mini-swt 17 SSL/UCB Dec.19, 2009

18 Science Objectives, #2 In the Solar Wind, study: Particle acceleration at shocks Nature and extent of elusive low-shear reconnection Properties of inertial range of turbulence Result: Advance our understanding of particle acceleration and turbulence in Heliosphere In conjunction with: Other solar wind monitors: ACE, WIND, STEREO is: High-fidelity solar wind monitor In beacon mode if requested Using first of a kind: two point measurements at scales 1-10 R E, ideal for study of particle evolution in shocks, at foreshock and inertial range of turbulence WIND can replace one of two probes in this study THEMIS mini-swt 18 SSL/UCB Dec.19, 2009

19 Science Objectives, #3 At the Moon/Wake: Study 3D structure and evolution of wake Understand particle acceleration at wake Understand wake refilling under various SW conditions Result: Advance our understanding of wakes at planetary moons, plasma void refilling around large objects (Shuttle, ISS, Hubble) Using first of a kind: two point measurements at scales R E, ideal for twopoint correlations within wake and between wake and solar wind Comprehensively instrumented satellites have never studied wake from various vantage points, thus even single point measurements are critical. THEMIS mini-swt 19 SSL/UCB Dec.19, 2009

20 Summary THEMIS has delivered on its promises Major discoveries from coast phase in GRL, JGR, SSR special issues Baseline mission accomplished, substorm trigger identified, 2 nd year data collected New results in dayside and inner magnetosphere are taking the field to new heights THEMIS extended phase A Cluster incarnation in equatorial orbits in FY10-12 LWS synergy in FY12-14: Continuous coverage of rad. belt sources; 6 rad. belt traversals daily In excellent position to support MMS in FY14-17 THEMIS+: Continue to fully embrace community All Data Open in CDF, IDL Analysis Code on-line, VMO/SPASE Help line available; Mirror sites proliferating; Software tutorials at main meetings THEMIS+ in FY10-12: 12: Is The Cornerstone of Heliophysics Observatory In novel orbits, with comprehensive instrumentation, address pressing Heliophysics questions THEMIS baseline = Clustered at equator : uniquely suited to address current dynamics, dissipation = Two probes, address fundamental physics in Tail, Solar wind and at the Lunar distances A bridge in Heliophysics discipline, between ISTP+Cluster era and RBSP, MMS era Complement existing missions and provide context for new ones (e.g., RBSP, ERG, Orbitals, MMS) THEMIS mini-swt 20 SSL/UCB Dec.19, 2009

Mission accomplishments, status

Mission accomplishments, status ARTEMIS Mission accomplishments, status Wiehle et al. al 2011, 2011 JGR GRL, Special Issue 2008 Issue, Halekas et al. 2010, SSR Tao et al., 2011, JGR Special Issue, 2008 Bortnik et al. 2008 Science JGR

More information

NASA s Contribution to International Living With a Star

NASA s Contribution to International Living With a Star NASA s Contribution to International Living With a Star Madhulika Guhathakurta Office of Space Science, CodeSS NASA Headquarters October 17,2002 Sun-Earth Connection (Sec) Program Planet Varying Radiation

More information

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC NASA Future Magnetospheric Missions J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC Future Magnetospheric Missions Strategic Missions Radiation Belt Storm Probes (LWS/2011) Magnetospheric

More information

DYNAMICS OF THE EARTH S MAGNETOSPHERE

DYNAMICS OF THE EARTH S MAGNETOSPHERE DYNAMICS OF THE EARTH S MAGNETOSPHERE PROF JIM WILD j.wild@lancaster.ac.uk @jim_wild With thanks to: Stan Cowley, Rob Fear & Steve Milan OUTLINE So far: Dungey cycle - the stirring of the magnetosphere

More information

Time Series of Images of the Auroral Substorm

Time Series of Images of the Auroral Substorm ESS 7 Lecture 13 October 27, 2010 Substorms Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite shows changes that occur during an auroral substorm.

More information

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Bruce Jakosky Laboratory for Atmospheric and Space Physics University of Colorado at Boulder USA MAVEN

More information

The Dynamic Magnetosphere. Ioannis A. Daglis. National Observatory of Athens, Greece

The Dynamic Magnetosphere. Ioannis A. Daglis. National Observatory of Athens, Greece 310/1749-42 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 The Dynamic Magnetosphere: Reaction to and Consequences of Solar Wind Variations Yannis DAGLIS

More information

Planned talk schedule. Substorm models. Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted)

Planned talk schedule. Substorm models. Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted) Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted) Today: Example of dynamics/time variation Review of intro to auroral substorms Substorm models How do we know a substorm is occurring?

More information

Low Hanging Fruit. Large-Scale Dynamics & Structure

Low Hanging Fruit. Large-Scale Dynamics & Structure Low Hanging Fruit Large-Scale Dynamics & Structure Global Models We plan to try to run DREAM-RB continuously with both SWx data and science data. This will be a limited model (1D, T89...) For events we

More information

Intro to magnetosphere (Chap. 8) Schematic of Bow Shock and Foreshock. Flow around planetary magnetic field obstacle. Homework #3 posted

Intro to magnetosphere (Chap. 8) Schematic of Bow Shock and Foreshock. Flow around planetary magnetic field obstacle. Homework #3 posted Intro to magnetosphere (Chap. 8) Homework #3 posted Reading: Finish Chap. 8 of Kallenrode Interaction with solar wind a. Magnetopause b. Structure of magnetosphere - open vs closed c. Convection d. Magnetotail

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP)

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Substorms at Mercury: Old Questions and New Insights Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Outline of Presentation Introduction Substorms in the Earth s Magnetosphere Prior

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Physics of Solar Wind and Terrestrial Magnetospheric Plasma Interactions With the Moon

Physics of Solar Wind and Terrestrial Magnetospheric Plasma Interactions With the Moon Physics of Solar Wind and Terrestrial Magnetospheric Plasma Interactions With the Moon R.P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley with help from J. Halekas, M.

More information

Magnetic reconnection vs. KHI: is the debate really over?

Magnetic reconnection vs. KHI: is the debate really over? Magnetic reconnection vs. KHI: is the debate really over? A. Masson et al. ESAC, 11-Mar-2016 ESA UNCLASSIFIED For Official Use Outline 1. Big picture (just an attempt) 2. Selected Cluster/DS/Themis science

More information

Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin. Sergio Toledo-Redondo

Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin. Sergio Toledo-Redondo Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin Sergio Toledo-Redondo European Space Astronomy Centre, European Space Agency, Madrid,

More information

Cluster: Highlights and Case for Extension

Cluster: Highlights and Case for Extension Cluster: Highlights and Case for Extension A.N. Fazakerley (1), C.P. Escoubet (2), M.G.G.T. Taylor (2) CLUSTER (1) UCL-MSSL, UK (2) ESA-ESTEC, NL RAS Discussion Meeting: The Geomagnetic Field: Preparing

More information

THEMIS IN RELATION TO CLUSTER AND DOUBLE STAR

THEMIS IN RELATION TO CLUSTER AND DOUBLE STAR THEMIS IN RELATION TO CLUSTER AND DOUBLE STAR 1 Vassilis Angelopoulos (1) (1) Space Sciences Laboratory, University of California, Berkeley ABSTRACT The Time History of Events and Macroscale Interactions

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause

Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause Stephen A. Fuselier, Karlheinz J. Trattner, Steven M. Petrinec Lockheed Martin Advanced Technology Center 1

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Senior Review of the Sun-Solar System Connection Mission Operations and Data Analysis Program

Senior Review of the Sun-Solar System Connection Mission Operations and Data Analysis Program Senior Review of the Sun-Solar System Connection Mission Operations and Data Analysis Program February 7, 2006 Submitted to: Richard R. Fisher, Director Heliophysics Division Science Mission Directorate

More information

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes Richard M. Thorne Department of Atmospheric and Oceanic Sciences, UCLA Electron (left) and Proton (right) Radiation Belt Models

More information

In-Situ vs. Remote Sensing

In-Situ vs. Remote Sensing In-Situ vs. Remote Sensing J. L. Burch Southwest Research Institute San Antonio, TX USA Forum on the Future of Magnetospheric Research International Space Science Institute Bern, Switzerland March 24-25,

More information

The Auroral Zone: Potential Structures in Field and Density Gradients

The Auroral Zone: Potential Structures in Field and Density Gradients The Auroral Zone: Potential Structures in Field and Density Gradients David Schriver May 8, 2007 Global Kinetic Modeling: week 10 Foreshock (week 3) Auroral zone (week 7) (week 8) Radiation Belt (week

More information

ILWS Update April 2005

ILWS Update April 2005 CLUSTER Space Plasma Missions in the Science Programme of ESA ILWS Update April 2005 Hermann J. Opgenoorth ESA ESTEC Solar and Solar Terrestrial Missions Division (SCI-SH) Research and Scientific Support

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Why Study Magnetic Reconnection?

Why Study Magnetic Reconnection? Why Study Magnetic Reconnection? Fundamental Process Sun: Solar flares, Flare loops, CMEs Interplanetary Space Planetary Magnetosphere: solar wind plasma entry, causes Aurora Ultimate goal of the project

More information

Science Overview. Vassilis Angelopoulos, ELFIN PI

Science Overview. Vassilis Angelopoulos, ELFIN PI Science Overview Vassilis Angelopoulos, ELFIN PI Science Overview-1 MPDR, 2/12/2015 RADIATION BELTS: DISCOVERED IN 1958, STILL MYSTERIOUS Explorer 1, 1958 Time Magazine, May 4, 1959 Science Overview-2

More information

Sun-Earth Connection Missions

Sun-Earth Connection Missions ACE (1997 ) Cosmic and Heliospheric Study of the physics and chemistry Advanced Composition Explorer Learning Center of the solar corona, the solar wind, http://helios.gsfc.nasa.gov/ace/ http://helios.gsfc.nasa.gov

More information

Extended Missions: Engines of Heliophysics System Science

Extended Missions: Engines of Heliophysics System Science Extended Missions: Engines of Heliophysics System Science J. G. Luhmann, J.B. Blake, J.L. Burch, J.B. Gurman, J.T. Karpen, J.W. Leibacher, D. J. McComas, C. T. Russell, R. J. Strangeway, A.J. Tylka, T.

More information

G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5)

G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5) G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5) (1) IAASARS-National Observatory of Athens; (2) University of Athens; (3) NASA;

More information

ILWS activity in Romania

ILWS activity in Romania Institute of Space Science romanian space agency ILWS activity in Romania Dumitru HASEGAN 1,2. Octav MARGHITU 1 1-ISS, 2-ROSA Outline A. Introduction Historical synopsis B. Research themes 1. Solar-Terrestrial

More information

The development of a quantitative, predictive understanding of solar windmagnetospheric

The development of a quantitative, predictive understanding of solar windmagnetospheric White Paper: The development of a quantitative, predictive understanding of solar windmagnetospheric coupling Authors: P. A. Cassak, West Virginia University J. E. Borovsky, Los Alamos National Laboratory

More information

Senior Review 2008 of the Mission Operations and Data Analysis Program for the Heliophysics Operating Missions. May 21, 2008.

Senior Review 2008 of the Mission Operations and Data Analysis Program for the Heliophysics Operating Missions. May 21, 2008. Senior Review 2008 of the Mission Operations and Data Analysis Program for the Heliophysics Operating Missions May 21, 2008 Submitted to: Richard R. Fisher, Director Heliophysics Division Science Mission

More information

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Blue Waters symposium 2017 Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Yi-Hsin Liu @ NASA- Goddard Space Flight Center William Daughton @ Los Alamos National Lab

More information

European SpaceCraft for the study of Atmospheric Particle Escape: Follow-on missions

European SpaceCraft for the study of Atmospheric Particle Escape: Follow-on missions 15 th European Space Weather Week - Session 9 European SpaceCraft for the study of Atmospheric Particle Escape: Follow-on missions Iannis Dandouras 1, Masatoshi Yamauchi 2, Henri Rème 1, Johan De Keyser

More information

Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field

Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field I. Alexeev, V. Kalegaev The solar wind influence on the magnetospheric state is sufficiently nonlinear

More information

participation in magnetopause reconnection: first results

participation in magnetopause reconnection: first results Structure of plasmaspheric plumes and their participation in magnetopause reconnection: first results from THEMIS 0 J. P. McFadden, C. W. Carlson, D. Larson, J. Bonnell, F. S. Mozer, V. Angelopoulos,,

More information

The Sun - Earth Connections Division

The Sun - Earth Connections Division The Sun - Earth Connections Division THE Sun-Earth Connection Division Program Overview Director, Code SS NASA HQ SEC Program Elements Strategic Plans 2002 is an important year for SEC Strategic Planning

More information

PSWS meeting Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN)

PSWS meeting Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN) PSWS meeting 2017 Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN) Background p a Bagenal+14 Planetary parameters p a Earth Jupiter Saturn Spin period (hr)

More information

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission The importance of solar wind magnetic field observations & the upcoming Sunjammer solar sail mission J. P. Eastwood The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 13 November 2013

More information

Magnetospheric Currents at Quiet Times

Magnetospheric Currents at Quiet Times Magnetospheric Currents at Quiet Times Robert L. McPherron Institute of Geophysics and Planetary Physics University of California Los Angeles Los Angeles, CA 90095-1567 e-mail: rmcpherron@igpp.ucla.edu

More information

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS, DLR, Dr. Frings Overview Update is based on previous ILWS Presentations Focus on recent developments and achievements SOL-ACES

More information

Earth s Magnetosphere

Earth s Magnetosphere Earth s Magnetosphere General Description of the Magnetosphere Shape Pressure Balance The Earth s Magnetic Field The Geodynamo, Magnetic Reversals, Discovery Current Systems Chapman Ferraro Cross Tail

More information

The CARISMA Array of Fluxgate and Induction Coil Magnetometers

The CARISMA Array of Fluxgate and Induction Coil Magnetometers The CARISMA Array of Fluxgate and Induction Coil Magnetometers David Milling CARISMA Project Manager dmilling@ualberta.ca Ian Mann CARISMA PI Canada Research Chair in Space Physics ian.mann@ualberta.ca

More information

Solar-Wind/Magnetosphere Coupling

Solar-Wind/Magnetosphere Coupling Solar-Wind/Magnetosphere Coupling Joe Borovsky Space Science Institute --- University of Michigan 1. Get a feeling for how the coupling works 2. Get an understanding of how reconnection works 3. Look at

More information

What causes auroral arcs and why we should care? Larry Kepko NASA Goddard Space Flight Center

What causes auroral arcs and why we should care? Larry Kepko NASA Goddard Space Flight Center What causes auroral arcs and why we should care? Larry Kepko NASA Goddard Space Flight Center Aurora are the most visible manifestation of space weather. Yet despite decades of research, the magnetospheric

More information

Extended Missions. Dr. Art Poland Heliophysics Senior Review Chair George Mason University

Extended Missions. Dr. Art Poland Heliophysics Senior Review Chair George Mason University Extended Missions Dr. Art Poland Heliophysics Senior Review Chair George Mason University My Experience Experiment scientist on Skylab 1973- Experiment scientist on SMM 1980- US project Scientist for the

More information

Heliophysics Overview Heliophysics Subcommittee Meeting June 30, 2015 Steven W. Clarke, Director

Heliophysics Overview Heliophysics Subcommittee Meeting June 30, 2015 Steven W. Clarke, Director Heliophysics Overview Heliophysics Subcommittee Meeting June 30, 2015 Steven W. Clarke, Director HPD Objectives and Programs Solar Terrestrial Probes Strategic Mission Flight Programs Living With a Star

More information

The Substorm. Eric Donovan. Department of Physics and Astronomy University of Calgary

The Substorm. Eric Donovan. Department of Physics and Astronomy University of Calgary The Substorm Department of Physics and Astronomy University of Calgary 1. Brief statement as to why the aurora is important here 2. Modes of the Magnetosphere (driven, normal, instability) 3. The substorm

More information

Ion heating during geomagnetic storms measured using energetic neutral atom imaging. Amy Keesee

Ion heating during geomagnetic storms measured using energetic neutral atom imaging. Amy Keesee Ion heating during geomagnetic storms measured using energetic neutral atom imaging Amy Keesee Outline Motivation Overview of ENA measurements Charge exchange MENA and TWINS ENA instruments Calculating

More information

Ad hoc Big Data Task Force February 16, Jeffrey J.E. Hayes Heliophysics Division Science Mission Directorate

Ad hoc Big Data Task Force February 16, Jeffrey J.E. Hayes Heliophysics Division Science Mission Directorate Ad hoc Big Data Task Force February 16, 2016 Jeffrey J.E. Hayes Heliophysics Division Science Mission Directorate Why Heliophysics? Heliophysics is the scientific endeavor to understand 3 fundamental questions

More information

Ring current formation influenced by solar wind substorm conditions

Ring current formation influenced by solar wind substorm conditions Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014909, 2010 Ring current formation influenced by solar wind substorm conditions M. D. Cash, 1 R. M. Winglee, 1

More information

ESS 7 Lectures 21 and 22 November 21 and 24, The Planets

ESS 7 Lectures 21 and 22 November 21 and 24, The Planets ESS 7 Lectures 21 and 22 November 21 and 24, 2008 The Planets Exploration Initiative Moon in 2015 Stepping Stone to Mars What will we do on the Moon? Heliophysics Science of the Moon investigating fundamental

More information

Magnetospheric Physics in China:

Magnetospheric Physics in China: SPACE SCIENCE ACTIVITIES IN CHINA Magnetospheric Physics in China: 2012 2014 AUTHORS CAO Jinbin YANG Junying Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 ABSTRACT

More information

Natalia Ganushkina (1, 2), Stepan Dubyagin (1), Ilkka Sillanpää (1)

Natalia Ganushkina (1, 2), Stepan Dubyagin (1), Ilkka Sillanpää (1) From studying electron motion in the electromagnetic fields in the inner magnetosphere to the operational nowcast model for low energy (< 200 kev) electron fluxes responsible for surface charging Natalia

More information

On the origin of plasma sheet evolution during the substorm growth phase

On the origin of plasma sheet evolution during the substorm growth phase On the origin of plasma sheet evolution during the substorm growth phase Evgeny Gordeev Victor Sergeev Maria Shukhtina Viacheslav Merkin Maria Kuznetsova (SPSU) (SPSU) (SPSU) (APL) (GSFC) [Hsieh and Otto,

More information

Numerical Simulation of Jovian and Kronian Magnetospheric Configuration

Numerical Simulation of Jovian and Kronian Magnetospheric Configuration Feb. 16, 2015 Numerical Simulation of Jovian and Kronian Magnetospheric Configuration Keiichiro FUKAZAWA 1, 2 1.Academic Center for Computing and Media Studies, Kyoto University 2.CREST, JST Context Jovian

More information

Toward a Virtual Observatory for Solar System Plasmas : an exceptional scientific opportunity.

Toward a Virtual Observatory for Solar System Plasmas : an exceptional scientific opportunity. Toward a Virtual Observatory for Solar System Plasmas : an exceptional scientific opportunity. Jacquey, C. (1), K. Bocchialini (2), J. Aboudarham (3), N. Meunier (4), N. André (5), V. Génot (1), C. Harvey

More information

Global Monitoring of the Terrestrial Ring Current

Global Monitoring of the Terrestrial Ring Current Global Monitoring of the Terrestrial Ring Current Stefano Orsini Istituto di Fisica dello Spazio Interplanetario, CNR ROMA, Italy with the fruitful help of Anna Milillo and of all other colleagues of the

More information

Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers

Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers Slot region outer belt inner belt Mary K. Hudson Dartmouth College Contributions: T. Brito, Zhao Li, S. Elkington, B.

More information

NASA s STEREO Mission

NASA s STEREO Mission NASA s STEREO Mission J.B. Gurman STEREO Project Scientist W.T. Thompson STEREO Chief Observer Solar Physics Laboratory, Helophysics Division NASA Goddard Space Flight Center 1 The STEREO Mission Science

More information

Auroral Disturbances During the January 10, 1997 Magnetic Storm

Auroral Disturbances During the January 10, 1997 Magnetic Storm Auroral Disturbances During the January 10, 1997 Magnetic Storm L. R. Lyons and E. Zesta J. C. Samson G. D. Reeves Department of Atmospheric Sciences Department of Physics NIS-2 Mail Stop D436 University

More information

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& &

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Although&most&of&the&planets&in&the&Solar&System&have&an&intrinsic&magnetic&field&

More information

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop Angelika Dehn (ADehn@serco.it), Rob Koopman (Rob.Koopman@esa.int), Overview I. ERS-2 Mission History 1. Mission Plan Highlights 2. GOME Special Operations II. GOME-1 Engineering Performance 1. Routine

More information

Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms

Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms Bill Lotko Bin Zhang Oliver Brambles Sheng Xi John Lyon Tian Luo Roger Varney Jeremy Ouellette Mike Wiltberger 2 3 4 CEDAR: Storms

More information

Kelvin-Helmholtz instability: lessons learned and ways forward

Kelvin-Helmholtz instability: lessons learned and ways forward Kelvin-Helmholtz instability: lessons learned and ways forward A. Masson, K. Nykyri, C.P. Escoubet, H. Laakso SSW10, 14 November 2017, Aranjuez, Spain Outline 1. K-H instability: quick reminder 2. Lessons

More information

Large-Scale Instabilities

Large-Scale Instabilities Large-Scale Instabilities A. Bhattacharjee Center for Heliophysics Department of Astrophysical Sciences Princeton Plasma Physics Laboratory Princeton University Acknowledgements: N. Murphy, CFA, Harvard

More information

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO 2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO NAGATSUMA Tsutomu, AKIOKA Maki, MIYAKE Wataru, and OHTAKA Kazuhiro Acquisition of solar wind information before it reaches the earth

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

From Sun to Earth and beyond, The plasma universe

From Sun to Earth and beyond, The plasma universe From Sun to Earth and beyond, The plasma universe Philippe LOUARN CESR - Toulouse Study of the hot solar system Sun Magnetospheres Solar Wind Planetary environments Heliosphere a science of strongly coupled

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

Geant4 in JAXA. Masanobu Ozaki (JAXA/ISAS)

Geant4 in JAXA. Masanobu Ozaki (JAXA/ISAS) Geant4 in JAXA Masanobu Ozaki (JAXA/ISAS) Japanese Space Science Missions In Japan, most of fundamental researches relating to the on-orbit radiation environment are carried out for non-commercial (i.e.,

More information

Cluster and DEMETER Satellite Data. Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA))

Cluster and DEMETER Satellite Data. Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA)) Cluster and DEMETER Satellite Data Fabien Darrouzet (Belgian Institute for Space Aeronomy (IASB-BIRA)) 1 Outline Magnetosphere Plasmasphere Cluster Mission WHISPER Instrument and Data DEMETER Mission ISL

More information

Astrophysics. Paul Hertz Director, Astrophysics Division Science Mission

Astrophysics. Paul Hertz Director, Astrophysics Division Science Mission National Aeronautics and Space Administration Astrophysics R&A Update from the NASA Town Hall Meeting AAS 231st Meeting Washington, DC January 10, 2018 www.nasa.gov Paul Hertz Director, Astrophysics Division

More information

OUTLINE. Polar cap patches: Polar Cap Patches. Core instrumentation for UiO patch studies:

OUTLINE. Polar cap patches: Polar Cap Patches. Core instrumentation for UiO patch studies: Polar Cap Patches islands of high electron density, form on the day side and drift towards night side across the polar cap OUTLINE Background on polar cap patches 630 nm airglow observations in the - MLT

More information

Global-scale Observations of the Limb and Disk

Global-scale Observations of the Limb and Disk Global-scale Observations of the Limb and Disk R. Eastes, W. McClintock, M. Lankton, A. Aksnes, D. Anderson, L. Andersson, A. Burns*, S. Budzien, M. Codrescu R. Daniell, K. Dymond, S. England, F. Eparvier,

More information

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Kyung Sun Park 1, Dae-Young Lee 1, Myeong Joon Kim 1, Rok Soon Kim 2, Kyungsuk

More information

The THEMIS Mission. V. Angelopoulos

The THEMIS Mission. V. Angelopoulos Space Sci Rev DOI 10.1007/s11214-008-9336-1 The THEMIS Mission V. Angelopoulos Received: 29 December 2007 / Accepted: 29 February 2008 Springer Science+Business Media B.V. 2008 Abstract The Time History

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

SMD in Brief -- Status and Program Highlights Presentation to Space Studies Board November 8, 2013

SMD in Brief -- Status and Program Highlights Presentation to Space Studies Board November 8, 2013 SMD in Brief -- Status and Program Highlights Presentation to Space Studies Board November 8, 2013 Science Mission Highlights 97 missions 122 spacecraft Lunar Atmosphere and Dust Environment Explorer Objective:

More information

Planetary Science Update. David Schurr Deputy Director Planetary Science July 23, 2014

Planetary Science Update. David Schurr Deputy Director Planetary Science July 23, 2014 Planetary Science Update David Schurr Deputy Director Planetary Science July 23, 2014 Outline Planetary upcoming mission events Recent accomplishments Use of Astrophysics Telescopes R&A status Planetary

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events

Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014232, 2009 Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Overcoming Uncertainties in the Relation between Source and Aurora

Overcoming Uncertainties in the Relation between Source and Aurora Unsolved Problems in Magnetospheric Physics Scarborough, UK, 06-12 September 2015 Overcoming Uncertainties in the Relation between Source and Aurora Gerhard Haerendel Max Planck Institute for Extraterrestrial

More information

Cone angle control of the interaction of magnetic clouds with the Earth's bow shock

Cone angle control of the interaction of magnetic clouds with the Earth's bow shock Cone angle control of the interaction of magnetic clouds with the Earth's bow shock L. Turc1, P. Escoubet1, D. Fontaine2, E. Kilpua3 1 ESA/ESTEC, Noordwijk, The Netherlands 2 LPP-CNRS-Ecole Polytechnique-UPMC,

More information

Magnetosphere-Ionosphere Coupling as Revealed in Ground and Space-Based Observations of Total Electron Content

Magnetosphere-Ionosphere Coupling as Revealed in Ground and Space-Based Observations of Total Electron Content Magnetosphere-Ionosphere Coupling as Revealed in Ground and Space-Based Observations of Total Electron Content A. J. Mannucci Jet Propulsion Laboratory, California Institute of Technology Collaborator:

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere AGF-351 Optical methods in auroral physics research UNIS, 24.-25.11.2011 Anita Aikio Dept. Physics University of

More information

NASA s Planetary Science Program Status

NASA s Planetary Science Program Status NASA s Planetary Science Program Status Presentation to VEXAG James L. Green Director, Planetary Science Division October 28, 2009 1 Outline MSL status Announcements of Opportunity R&A International Agreements

More information

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere A. Y. Ukhorskiy JHU/APL My God, space is radioactive! Ernie Ray, 1958 Спутник II, III [Vernov et al., 1959]

More information

Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration

Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration X. Shao 1, L. C. Tan 1, A. S. Sharma 1, S. F. Fung 2, Mattias Tornquist 3,Dimitris Vassiliadis

More information

Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes

Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes 219 Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes M. Palmroth, T. I. Pulkkinen, T. V. Laitinen, H. E. J. Koskinen, and P. Janhunen 1. Introduction

More information

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere. A. Y. Ukhorskiy, B. Mauk, N.

RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere. A. Y. Ukhorskiy, B. Mauk, N. RBSP Mission: Understanding Particle Acceleration and Electrodynamics of the Inner Magnetosphere A. Y. Ukhorskiy, B. Mauk, N. Fox JHU/APL My God, space is radioactive! Ernie Ray, 1958 Спутник II, III [Vernov

More information

Introduction to the Sun and the Sun-Earth System

Introduction to the Sun and the Sun-Earth System Introduction to the Sun and the Sun-Earth System Robert Fear 1,2 R.C.Fear@soton.ac.uk 1 Space Environment Physics group University of Southampton 2 Radio & Space Plasma Physics group University of Leicester

More information

The World Bank Haiti Business Development and Investment Project (P123974)

The World Bank Haiti Business Development and Investment Project (P123974) Public Disclosure Authorized LATIN AMERICA AND CARIBBEAN Haiti Trade & Competitiveness Global Practice IBRD/IDA Specific Investment Loan FY 2013 Seq No: 9 ARCHIVED on 29-Dec-2016 ISR26542 Implementing

More information