A STUDY OF CENTAURUS A AT 31 CENTIMETERS. J. G. Bolton and B. G. Clark. California Institute of Technology Radio Observatory Owens Valley, California

Size: px
Start display at page:

Download "A STUDY OF CENTAURUS A AT 31 CENTIMETERS. J. G. Bolton and B. G. Clark. California Institute of Technology Radio Observatory Owens Valley, California"

Transcription

1 A STUDY OF CENTAURUS A AT 31 CENTIMETERS J. G. Bolton and B. G. Clark California Institute of Technology Radio Observatory Owens Valley, California The radio source Centaurus A was one of the first to be discovered, and shortly after its discovery it was identified with the peculiar galaxy NGC Interferometry by Mills 1 showed that there was a central source of dimensions 6' X 3', and Bolton, Westfold, Stanley, and Slee 2 found that there was an associated extended source of dimensions of the order of 2. The extended object was also observed at 400 Mc/s by McGee, Slee, and Stanley, with a pencil-beam antenna, 3 and by Piddington and Trent at 600 Mc/s. 4 The latter investigators suggested that the extension might form a bridge between NGC 5128 and our own galaxy. The true extent of this object has only really become apparent since the studies by Sheridan 5 with the 85 Mc/s Mills cross (beam width SO 7 ) and by Shain 6 with the 19.7 Mc/s Mills cross (beam width 1?4). These observations show an elongated object nearly 10 in length lying almost along a line of constant right ascension. The present study was carried out with a 90-foot equatorially mounted radio telescope at a frequency of 960 Mc/s. At this wavelength the beam width is about 50 minutes of arc. The receiver used had a conventional crystal mixer with an excess noise temperature of about 300 K. No image rejection was employed ; thus the signal was received in two bands at 930 and 990 Mc/s, each 10 Mc/s wide. The receiver input was switched at 400 cycles per second with a diode switch between the main horn feed pointed at the reflector and a reference horn directed away from the reflector. The 400 cycles per second difference signal was recorded. The observations consisted of a series of drift curves taken with the telescope fixed on a particular declination. Due to the low altitude of this object, only three observations (at different hour angles), each lasting about 40 minutes, were made on each night. One of these was for calibration purposes at declination 42 40'. The maximum signal received from the direction of the central source corresponded to an antenna temperature of 50 K, but the 29

2 30 J. G. BOLTON AND B. G. CLARK receiver stability was such that complete reliance could be placed on signals of only 0?5 K from the outer regions of the source. The results are shown on the equal-area chart of Figure 1, where the contours are in units of 0?5 K. The contours are dashed in the extended feature around 44 and toward larger right ascensions, as these depend on a rather long extrapolation of the zero baseline. It is believed that this feature is indeed part of the source complex, but the possibility that it may belong to our galaxy cannot be entirely excluded. This feature is one of the new Fig. 1. Observed brightness distribution of 960 Mc/s radiation from NGC 5128/Centaurus A on an equal-area chart. Contour lines are steered through observed points shown as dots. Contours are in units of approximately 0 5 K; antenna temperature intervals were chosen to avoid undue crowding. Dashed lines in the left hand part of the diagram are in regions where the observations are somewhat uncertain. Dashed lines in the central region are contours that result from the subtraction of a point source of 92 units. Crosses mark the highest points in the observed drift curves.

3 CENTAURUS A AT 31 CENTIMETERS 31 results of the present work. Another is that a distinct trough exists between the central concentration and the southern ex- tended region. This does not show as distinctly in the 85 Mc/s contour map, possibly because the antenna pattern of the Mills cross has somewhat broader skirts than that of the 90-foot re- flector. It has already been established by Mills at lower frequencies that there is a source of relatively small dimensions coincident with the optical center of NGC An inspection of the 960 Mc/s contours suggests that the major contribution to them in the vicinity of a = 13 h 23 m, ô = 42 40' is due to the same small source. As a first step in the analysis, an attempt was made to determine the contribution of the point source. This was done by trial subtractions of contours representing the known antenna pattern of sources of various flux densities. The upper limit to the correct value was obviously set by the fact that negative residuals could not be permitted. The most plausible residual contours con- sistent with no negative values were obtained by subtracting a source of flux density corresponding to 92 units, or 460 X watts m -2 (c/s) -1. These residual contours are shown by the dashed lines in Figure 1. Separate integrations of the residual contours were then car- ried out for the three regions: (a) north of ô = 42 43'; (b) south of ô = /, but west of a = 13 h 38 5 ; and (c) the re- mainder, being the long southeast extension. The values of flux density are as follows : Flux Density Percentage Source [lo -26 watts m~ 2 (c/s)- 1 ] of Total Center North South East If the east source is omitted, the central source contributes 26% of the total. This value is to be compared with 25% at 85 Mc/s, estimated by Sheridan, and 11% at 19.7 Mc/s, estimated by Shain.

4 32 J. G. BOLTON AND B. G. CLARK Again neglecting the east source for comparison with other observers, the total flux densities are 19.7 Mc/s 2.8x Mc/s 8.7 X Mc/s 1.8 X10-23 These values fit closely a simple power spectrum of flux density oc À 0-7, and thus it seems unlikely that Shain s relatively lower percentage for the central source is due to an intrinsically higher value for the extended region. Shain finds on comparison of the profiles along lines of constant declination that the extended source is somewhat wider in declination at 19.7 Mc/s than at 85 Mc/s. A similar comparison of the profiles at 85 Mc/s and 960 Mc/s shows practically no difference. As there is probably some uncertainty in the form of the antenna beam of the 19.7 Mc/s cross and as ionospheric effects would produce additional smearing, it is suggested that the differences in the profiles and in the percentage contribution of the central source could both be due to observational uncertainties. In any event, there appears to be no variation of the spectrum with position over an elevento-one frequency range between 960 and 85 Mc/s and possibly very little over a forty-to-one range.* In general, contours in the neighborhood of extended sources indicate a width of the source greater than that of the antenna pattern. Consequently the actual brightness distribution differs only slightly from the observed distribution. Figure 2 represents the result of an attempt to partially remove the effect of the antenna pattern by the method described by Bolton and Westfold. 7 For this purpose a rather simple overlying grid was used to represent the antenna pattern ; the grid consisted of an inner circle, two intermediate annuli, each divided into two parts, all of equal weight, and an outer annulus of weight one-half. While such a process * Note added in proof : Mr. C. A. Shain has kindly informed the writers that further observations have substantiated his previous results, and that he believes the ionospheric influence on them to be relatively small. He suggests that the lower ratio of the intensity of the central source to the integrated intensity at 19.7 Mc/s may be due to absorption in H n regions.

5 CENTAURUS A AT 31 CENTIMETERS 33 Fig. 2. The basic data of Figure 1 with the effects of the central source removed and with partial corrections made for the effects of the antenna pattern. cannot recover certain detail that is irretrievably lost in the original observations, a comparison of the observed and deduced contours does at least reveal the areas in which the observational smoothing is serious. The most appreciable changes between the observed and the recovered contours appear in the intensification of the southern source and in the sharpening of low-level contours along the western edge of the southern source, suggesting that this edge is sharply bounded. Edges that are just as sharply defined occur at the north edge of the south source and south edge of the north source, but they could be produced as a consequence of the removal of the central source. The contour pattern shown in Figure 2 suggests that both of the extended sources may be double. The north source could consist of a sharply defined but still somewhat extended object at a = 13 h 25 m, b = 41 45' and a more diffuse object farther

6 34 J. G. BOLTON AND B. G. CLARK north. The southern source may split into a sharply defined object at a = 13 h 20 m, ô = 44 30' and a diffuse object to the southeast of this. The sharp and diffuse objects may possibly be pairs centered on NGC No observations were made at lesser right ascensions than 13 h 10 m, in the region where an object symmetrically opposite to the east source could exist. Unfortunately, the possibility of this was not realized until after the region had passed into the daytime sky. Neglecting the east source, the brightness distribution in Figure 2 bears a remarkable resemblance to that of the Cygnus A source deduced from interferometry by Jennison 8 and his coworkers. Jennison finds that the Cygnus source consists of two objects of relative flux density 1 and 1.2, each about 50" by less than 30" in extent; the centers of the two objects are separated by 82". The observations would admit complications within the individual objects and possibly up to 10% of the total radiation in a point source at the center. If NGC 5128 were studied in the same manner, the results would probably indicate, in addition to a central point source, two extended objects of relative flux density 1 and 1.4, each about 3 by less than 2 in extent, whose centers are separated by 4. This remarkable similarity between the two radio distributions is very surprising in view of the disparity between the optical counterparts. The radio dimensions of NGC 5128 are about 200 times those of Cygnus A. The sizes of the optical counterparts out to the faintest outer regions are 25' X 25' for NGC 5128 and 18" X 30" for Cygnus A. Thus the radio size/optical size ratio is about three times as large in the case of NGC 5128 as in the case of the Cygnus A nebulosity. A similar result is obtained from consideration of the apparent magnitudes of the two systems. The true extent of the radio source is difficult to determine, as the distance of NGC 5128 is not known. Probably the most reliable estimate has been made recently by Sersic (private communication via Minkowski) from a study of the H n regions. Sersic s value is 4 X 10 6 parsecs. Thus the over-all dimensions of the north-south source complex cannot be less than 7 X 10 5 parsecs, as corrections for projection effects could only increase the size. The distance from the center to the extreme edge of the

7 CENTAURUS A AT 31 CENTIMETERS 35 southeast source is at least 5 X 10 5 parsecs. These dimensions are much greater than the separation of individual galaxies in some clusters. Similar dimensions for a radio galaxy are also demanded for the source Hercules A, if its identification with a nineteenth-magnitude elliptical suggested by Roberts, Bolton, and Harris 9 is correct. There is evidence that other galaxies that are abnormal radio emitters, such as M 87, NGC 1316, NGC 1275, and Hydra A, have extensions much larger than the visible galaxies ; however, the ratios are comparable to that of Cygnus A. It may be significant that these last five are members of clusters, whereas NGC 5128 and the proposed optical counterpart for Hercules A are field galaxies. 1 B. Y. Mills, Aust. J. Phys., 6, 452, J. G. Bolton, K. C. Westfold, G. J. Stanley, and O. B. Slee, Aust. J. Phys., 7, 96, R. X. McGee, O. B. Slee, and G. J. Stanley, Aust. J. Phys., 8, 347, J. H. Piddington and G. H. Trent, Aust. J. Phys., 9, 74, K. V. Sheridan, Aust. J. Phys., 11, 400, C. A. Shain, Aust. J. Phys., 11, 517, J. G. Bolton and K. C. Westfold, Aust. J. Sei. Res., Ser. A, 3, 19, R. C. Jennison, in Paris Symposium on Radio Astronomy, R. N. Bracewell, ed. (Stanford, Calif. : Stanford University Press, 1959), p J. A. Roberts, J. G. Bolton, and D. E. Harris, Pub. A.S.P., 72, 5, 1960.

Early Australian Optical and Radio Observations of Centaurus A

Early Australian Optical and Radio Observations of Centaurus A Early Australian Optical and Radio Observations of Centaurus A Peter Robertson A Bruce Slee A, B and Wayne Orchiston A A Centre for Astronomy, James Cook University, Townsville, Qld 4811, Australia B Australia

More information

RADIO SOURCE MEASUREMENTS AT 960 MC/S

RADIO SOURCE MEASUREMENTS AT 960 MC/S RADIO SOURCE MEASUREMENTS AT 960 MC/S by D. E. Harris and J. A. Roberts California Institute of Technology Radio Observatory Owens Valley, California I. INTRODUCTION The major surveys of radio sources

More information

ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE*

ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE* ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE* R. W. Shorthill, H. C. Borough, and J. M. Conley Boeing Airplane Co. Aero-Space Division, Seattle, Washington In an attempt to detect variations

More information

7) CARINAE AND THE TRUMPLER 16 CLUSTER. Alejandro Feinstein* Observatorio Astronómico Universidad Nacional de La Plata, Argentina

7) CARINAE AND THE TRUMPLER 16 CLUSTER. Alejandro Feinstein* Observatorio Astronómico Universidad Nacional de La Plata, Argentina 7) CARINAE AND THE TRUMPLER 6 CLUSTER Alejandro Feinstein* Observatorio Astronómico Universidad Nacional de La Plata, Argentina A large number of investigations, many of them quoted and discussed by Burbidge,

More information

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al.

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. ApJ, 561:218-237, 2001 Nov 1 1 Fun With Acronyms BIMA Berkely

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

ANALYSIS OF LIMB BRIGHTENING ON THE QUIET SUN AT 21 CM USING A THREE-ELEMENT INTERFEROMETER

ANALYSIS OF LIMB BRIGHTENING ON THE QUIET SUN AT 21 CM USING A THREE-ELEMENT INTERFEROMETER ANALYSIS OF LIMB BRIGHTENING ON THE QUIET SUN AT 21 CM USING A THREE-ELEMENT INTERFEROMETER Jonathon Oiler Alan E.E. Rogers MIT Haystack Observatory ABSTRACT During the summer, three small radio telescopes

More information

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Radio Observation of Milky Way at MHz. Amateur Radio Astronomy Observation of the Milky Way at MHz from the Northern Hemisphere

Radio Observation of Milky Way at MHz. Amateur Radio Astronomy Observation of the Milky Way at MHz from the Northern Hemisphere Amateur Radio Astronomy Observation of the Milky Way at 1453.5MHz from the Northern Hemisphere Dr David Morgan February 2011 Introduction The measurements reported here were made in March and April 2007

More information

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

THE TRANSVERSE MOTIONS OF THE SOURCES OF SOLAR RADIO BURSTS

THE TRANSVERSE MOTIONS OF THE SOURCES OF SOLAR RADIO BURSTS PAPER 32 THE TRANSVERSE MOTIONS OF THE SOURCES OF SOLAR RADIO BURSTS J. P. WILD, K. V. SHERIDAN, AND G. H. TRENT Radiophysics Laboratory, Commonwealth Scientific and Industrial Research Organization, Sydney,

More information

Galactic Structure Mapping through 21cm Hyperfine Transition Line

Galactic Structure Mapping through 21cm Hyperfine Transition Line Galactic Structure Mapping through 21cm Hyperfine Transition Line Henry Shackleton MIT Department of Physics (Dated: May 14, 2017) Using a Small Radio Telescope (SRT), we measure electromagnetic radiation

More information

Interpreting the Solar Eclipse Data

Interpreting the Solar Eclipse Data Interpreting the Solar Eclipse Data Joachim Köppen, DF3GJ, Inst.f.Theoret.Physik u.astrophysik, Univ.Kiel in collaboration with Jean-Jacques Maintoux, F1EHN, Observatoire d'orsay, France April 2015 Introduction

More information

Making Lunar Scans with the ESA-Dresden radio telescope

Making Lunar Scans with the ESA-Dresden radio telescope Making Lunar Scans with the ESA-Dresden radio telescope Joachim Köppen, Observatoire de Strasbourg and International Space University First tries The first fully successful lunar scan was done on 26 April

More information

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys W. J. Welch Radio Astronomy Laboratory, Depts of EECS and Astronomy University of California Berkeley, CA 94720 Tel: (510) 643-6543

More information

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate PHY 475/375 Lecture 2 (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate By the 1920 s a debate had developed over whether some of the spiral nebulae catalogued in the 18th century by

More information

A Tour of the Messier Catalog. ~~ in ~~ Eight Spellbinding and Enlightening Episodes. ~~ This Being Episode Three ~~

A Tour of the Messier Catalog. ~~ in ~~ Eight Spellbinding and Enlightening Episodes. ~~ This Being Episode Three ~~ A Tour of the Messier Catalog ~~ in ~~ Eight Spellbinding and Enlightening Episodes ~~ This Being Episode Three ~~ Globulars and Galaxies Warm-up for The Realm M83 Spiral Galaxy Constellation Hydra

More information

Next Generation Very Large Array Memo No. 1

Next Generation Very Large Array Memo No. 1 Next Generation Very Large Array Memo No. 1 Fast switching phase calibration at 3mm at the VLA site C.L. Carilli NRAO PO Box O Socorro NM USA Abstract I consider requirements and conditions for fast switching

More information

Imaging Capability of the LWA Phase II

Imaging Capability of the LWA Phase II 1 Introduction Imaging Capability of the LWA Phase II Aaron Cohen Naval Research Laboratory, Code 7213, Washington, DC 2375 aaron.cohen@nrl.navy.mil December 2, 24 The LWA Phase I will consist of a single

More information

Detection of TeV Gamma-Rays from Extended Sources with Milagro

Detection of TeV Gamma-Rays from Extended Sources with Milagro Detection of TeV Gamma-Rays from Extended Sources with Milagro P. M. Saz Parkinson for the Milagro Collaboration Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, Santa

More information

Solar System Objects. Bryan Butler National Radio Astronomy Observatory

Solar System Objects. Bryan Butler National Radio Astronomy Observatory Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

New calibration sources for very long baseline interferometry in the 1.4-GHz band

New calibration sources for very long baseline interferometry in the 1.4-GHz band New calibration sources for very long baseline interferometry in the 1.4-GHz band M K Hailemariam 1,2, M F Bietenholz 2, A de Witt 2, R S Booth 1 1 Department of Physics, University of Pretoria, South

More information

Measurements of the DL0SHF 8 GHz Antenna

Measurements of the DL0SHF 8 GHz Antenna Measurements of the DL0SHF 8 GHz Antenna Joachim Köppen, DF3GJ Inst.Theoret.Physik u.astrophysik, Univ. Kiel September 2015 Pointing Correction Position errors had already been determined on a few days

More information

TECHNICAL REPORT NO. 86 fewer points to average out the noise. The Keck interferometry uses a single snapshot" mode of operation. This presents a furt

TECHNICAL REPORT NO. 86 fewer points to average out the noise. The Keck interferometry uses a single snapshot mode of operation. This presents a furt CHARA Technical Report No. 86 1 August 2000 Imaging and Fourier Coverage: Mapping with Depleted Arrays P.G. Tuthill and J.D. Monnier 1. INTRODUCTION In the consideration of the design of a sparse-pupil

More information

Radio Astronomy with a Satellite Dish

Radio Astronomy with a Satellite Dish Radio Astronomy with a Satellite Dish Michael Gaylard Hartebeesthoek Radio Astronomy Observatory September 13, 2012 1 Theory 1.1 Radio Waves Radio waves are electromagnetic waves having wavelengths greater

More information

GERMAN TYPE EQUATORIAL MOUNT (FM 51/52 - FM 100/102 - FM150) USER MANUAL

GERMAN TYPE EQUATORIAL MOUNT (FM 51/52 - FM 100/102 - FM150) USER MANUAL GERMAN TYPE EQUATORIAL MOUNT (FM 51/52 - FM 100/102 - FM150) USER MANUAL NOMENCLATURE MANUAL KNOB WORM DRIVE TIGHTENING SCREW FIXING CLUTCH CONTROL PLUG POLAR SCOPE PEEP HOLE PLATFORM ALTITUDE MOUNTING

More information

Winds on Titan: First results from the Huygens Doppler Wind Experiment

Winds on Titan: First results from the Huygens Doppler Wind Experiment 1 Winds on Titan: First results from the Huygens Doppler Wind Experiment Supplementary Discussion. It was realized during the DWE design phase that Earth-based Doppler measurements could be combined with

More information

PARALLAX AND PROPER MOTION

PARALLAX AND PROPER MOTION PARALLAX AND PROPER MOTION What will you learn in this Lab? We will be introducing you to the idea of parallax and how it can be used to measure the distance to objects not only here on Earth but also

More information

The Discovery of Cosmic Radio Noise

The Discovery of Cosmic Radio Noise The Discovery of Cosmic Radio Noise Natural radio emission from our Galaxy was detected accidentally in 193 by Karl Guthe Jansky, a physicist working as a radio engineer for Bell Telephone Laboratories.

More information

Active Galaxies and Quasars

Active Galaxies and Quasars Active Galaxies and Quasars Radio Astronomy Grote Reber, a radio engineer and ham radio enthusiast, built the first true radio telescope in 1936 in his backyard. By 1944 he had detected strong radio emissions

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS

A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS Cara Denise Battersby MIT Haystack Observatory REU Summer 2004 Mentors: Preethi Pratap and Phil Shute ABSTRACT Class I methanol masers have been detected

More information

Multi-frequency imaging of Cygnus A with LOFAR

Multi-frequency imaging of Cygnus A with LOFAR Netherlands Institute for Radio Astronomy Multi-frequency imaging of Cygnus A with LOFAR John McKean (ASTRON) and all the imaging busy week team! ASTRON is part of the Netherlands Organisation for Scientific

More information

Development of Radio Astronomy at the Bosscha Observatory

Development of Radio Astronomy at the Bosscha Observatory Proceedings of the Conference of the Indonesia Astronomy and Astrophysics, 29-31 October 2009 Premadi et al., Eds. c HAI 2010 Development of Radio Astronomy at the Bosscha Observatory T. Hidayat 1, M.

More information

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01 Background-subtracted gamma-ray count map of SNR G78.2+2.1 showing the VERITAS detection (VER2019+407). For details, see Figure 1 below. Reference: E. Aliu et al. (The VERITAS Collaboration), Astrophysical

More information

BAS - Monthly Sky Guide

BAS - Monthly Sky Guide BAS - Monthly Sky Guide September 2018 In the early evenings of September the centre of our Milky Way Galaxy stretching across the western sky and is heading for the horizon. Now is a good time to explore

More information

CORRECTING FOR GAUSSIAN AERIAL SMOOTHING. [Manuscript received August 25, 1954] Summary

CORRECTING FOR GAUSSIAN AERIAL SMOOTHING. [Manuscript received August 25, 1954] Summary CORRECTING FOR GAUSSIAN AERIAL SMOOTHING By R. N. BRACEWELL* [Manuscript received August 25, 1954] Summary Let a. two-dimensional survey with a Gaussian aerial beam establish values at intervals of '\1'2

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

PUBLICATIONS OF THE NATIONAL RADIO ASTRONOMY OBSERVATORY. Volume 1 April 1961 Number 1 A MODEL OF THE ORION NEBULA DERIVED FROM RADIO OBSERVATIONS

PUBLICATIONS OF THE NATIONAL RADIO ASTRONOMY OBSERVATORY. Volume 1 April 1961 Number 1 A MODEL OF THE ORION NEBULA DERIVED FROM RADIO OBSERVATIONS PUBLICATIONS OF THE NATIONAL RADIO ASTRONOMY OBSERVATORY Volume 1 April 1961 Number 1 A MODEL OF THE ORION NEBULA DERIVED FROM RADIO OBSERVATIONS T. K. Menon Abstract The 85-foot Howard E. Tatel telescope

More information

arxiv: v1 [astro-ph] 2 Aug 2007

arxiv: v1 [astro-ph] 2 Aug 2007 Extragalactic Jets: Theory and Observation from Radio to Gamma Ray ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** T. A. Rector and D. S. De Young (eds.) Searching For Helical Magnetic

More information

Lab 2 Working with the X-Band Interferometer

Lab 2 Working with the X-Band Interferometer Lab 2 Working with the X-Band Interferometer Abhimat Krishna Gautam 6 March 2012 ABSTRACT Lab 2 performed experiments with the X-Band Interferometer consisting of two dishes placed along an East-West axis.

More information

Mounts and Coordinate Systems

Mounts and Coordinate Systems Mounts and Coordinate Systems Part 3: Some Advanced Techniques For Mounts Last month we looked at the basic mount types and methods for aligning them. This month s article, and the last for this series

More information

Cosmology. Stellar Parallax seen. The modern view of the universe

Cosmology. Stellar Parallax seen. The modern view of the universe Cosmology The modern view of the universe SC/NATS 1730, XXVIIICosmology 1 Stellar Parallax Copernicus said stellar parallax couldn t be seen because the stars were so far away. A strictly ad hoc explanation

More information

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA.

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA. VLA SCIENTIFIC MEMORANDUM NO. 152 Non-Closing Offsets on the VLA R. C. Walker National Radio Astronomy Observatory Charlottesville VA. March 1984 Recent efforts to obtain very high dynamic range in VLA

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

V International Astronomy Olympiad

V International Astronomy Olympiad EURO-ASIAN ASTRONOMICAL SOCIETY V International Astronomy Olympiad 20-27. 10. 2000. SAO RAS, Nizhnij Arkhyz Theoretical round. Problems to solve Group A. 1. As you know, the most widely used calendar in

More information

Photometric Studies of GEO Debris

Photometric Studies of GEO Debris Photometric Studies of GEO Debris Patrick Seitzer Department of Astronomy, University of Michigan 500 Church St. 818 Dennison Bldg, Ann Arbor, MI 48109 pseitzer@umich.edu Heather M. Cowardin ESCG/Jacobs

More information

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion). ASTRONOMY TERMS Albedo Aphelion Apogee A measure of the reflectivity of an object and is expressed as the ratio of the amount of light reflected by an object to that of the amount of light incident upon

More information

Interferometry of Solar System Objects

Interferometry of Solar System Objects Interferometry of Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy O

ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy O ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy Observatory 949 N. Cherry Ave. Tucson, AZ 85721-0655

More information

1. INTRODUCTION 2. SOURCE SELECTION

1. INTRODUCTION 2. SOURCE SELECTION THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 124:285È381, 1999 October ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. VLA IMAGES AT 5 GHz OF 212 SOUTHERN EXTRAGALACTIC

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

An Accurate, All-Sky, Absolute, Low Frequency Flux Density Scale

An Accurate, All-Sky, Absolute, Low Frequency Flux Density Scale An Accurate, All-Sky, Absolute, Low Frequency Flux Density Scale Rick Perley, Bryan Butler (NRAO) Joe Callingham (U. Sydney) Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert

More information

Mapping the North Celestial Pole

Mapping the North Celestial Pole Mapping the North Celestial Pole Name: Sarah Walsh Student ID: 26991426 Group Name: Temple Bars May 4, 2016 ABSTRACT This experiment uses the 4.5m diameter Leuschner dish in order to map the hydrogen in

More information

Welcome to Astronomy 402/602

Welcome to Astronomy 402/602 Welcome to Astronomy 402/602 Introductions Syllabus Telescope proposal Coordinate Systems (Lecture) Coordinate System Exercise Light (Lecture) Telescopes (Lecture) Syllabus Course goals Course expectations

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

Satellite Type Estination from Ground-based Photometric Observation

Satellite Type Estination from Ground-based Photometric Observation Satellite Type Estination from Ground-based Photometric Observation Takao Endo, HItomi Ono, Jiro Suzuki and Toshiyuki Ando Mitsubishi Electric Corporation, Information Technology R&D Center Takashi Takanezawa

More information

BINGO simulations and updates on the performance of. the instrument

BINGO simulations and updates on the performance of. the instrument BINGO simulations and updates on the performance of BINGO telescope the instrument M.-A. Bigot-Sazy BINGO collaboration Paris 21cm Intensity Mapping Workshop June 2014 21cm signal Observed sky Credit:

More information

Fall Messier List Observing Club

Fall Messier List Observing Club Fall Messier List Observing Club Raleigh Astronomy Club Version 1.1 24 November 2012 Introduction Welcome to the Fall Messier List Observing Club. The objects on this list represent many of the most prominent

More information

4. What is the main advantage of the celestial coordinate system over altitude-azimuth coordinates?

4. What is the main advantage of the celestial coordinate system over altitude-azimuth coordinates? SUMMARY Looking at the night sky is not only fun, it will help you understand some of the phenomena described in chapters 1 and 2. Star maps will help you identify constellations and bright stars, and

More information

4/18/17. Our Schedule. Revisit Quasar 3C273. Dark Matter in the Universe. ASTR 1040: Stars & Galaxies

4/18/17. Our Schedule. Revisit Quasar 3C273. Dark Matter in the Universe. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies HST Abell 2218 Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 25 Tues 18 Apr 2017 zeus.colorado.edu/astr1040-toomre Our Schedule Observatory Night #8 + #9 (proj

More information

Atmospheric phase correction for ALMA with water-vapour radiometers

Atmospheric phase correction for ALMA with water-vapour radiometers Atmospheric phase correction for ALMA with water-vapour radiometers B. Nikolic Cavendish Laboratory, University of Cambridge January 29 NA URSI, Boulder, CO B. Nikolic (University of Cambridge) WVR phase

More information

ESO Phase 3 Data Release Description. Data Collection ATLASGAL Release Number 1 Data Provider

ESO Phase 3 Data Release Description. Data Collection ATLASGAL Release Number 1 Data Provider ESO Phase 3 Data Release Description Data Collection ATLASGAL Release Number 1 Data Provider Frederic Schuller, K. Immer, Y. Contreras, T. Csengeri, J. S. Urquhart Date 19.01.2016 Abstract The APEX Telescope

More information

There are three main ways to derive q 0 :

There are three main ways to derive q 0 : Measuring q 0 Measuring the deceleration parameter, q 0, is much more difficult than measuring H 0. In order to measure the Hubble Constant, one needs to derive distances to objects at 100 Mpc; this corresponds

More information

Proper Motion of the GP-B Guide Star

Proper Motion of the GP-B Guide Star Proper Motion of the GP-B Guide Star Irwin Shapiro, Daniel Lebach, Michael Ratner: Harvard-Smithsonian Center for Astrophysics; Norbert Bartel, Michael Bietenholz, Jerusha Lederman, Ryan Ransom: York University;

More information

CARBON MONOXIDE EMISSION FROM NEBULOSITY ASSOCIATED WITH HERBIG Be AND Ae TYPE STARS

CARBON MONOXIDE EMISSION FROM NEBULOSITY ASSOCIATED WITH HERBIG Be AND Ae TYPE STARS 1973ApJ185L67L THE ASTROPHYSICAL JOURNAL, 185:L67-L70, 1973 October 15 1973 The American Astronomical Society All rights reserved Printed in USA CARBON MONOXIDE EMISSION FROM NEBULOSITY ASSOCIATED WITH

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY 40-FOOT RADIO TELESCOPE OPERATOR S MANUAL

NATIONAL RADIO ASTRONOMY OBSERVATORY 40-FOOT RADIO TELESCOPE OPERATOR S MANUAL NATIONAL RADIO ASTRONOMY OBSERVATORY 40-FOOT RADIO TELESCOPE OPERATOR S MANUAL The 40 Foot Radio Telescope By: Richard F. Bradley, Benjamin Malphrus and Sue Ann Heatherly Revised 10/20/2011 The National

More information

arxiv:astro-ph/ v1 14 Jan 2002

arxiv:astro-ph/ v1 14 Jan 2002 The Central kpc of Starbursts and AGN ASP Conference Series, Vol. xxx, 2001 J. H. Knapen, J. E. Beckman, I. Shlosman, and T. J. Mahoney Molecular Gas in The Central Kpc of Starbursts and AGN Shardha Jogee

More information

Questions on Universe

Questions on Universe Questions on Universe 1. The Doppler shift may be used in the study of distant galaxies. Explain what is meant by a Doppler shift and how it is used to deduce the motion of distant galaxies. You may be

More information

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A 29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A There are 32 questions. Read through each question and all the answers before choosing. Budget your time. No whining. Walk

More information

axis at a constant 3 km while scaling down the length of the east-west axis. A point source was observed over a range of hour angles such that the air

axis at a constant 3 km while scaling down the length of the east-west axis. A point source was observed over a range of hour angles such that the air MMA Memo 119 The Optimum Elongation of the MMA A Conguration Scott M. Foster National Radio Astronomy Observatory Socorro, NM 87801 July 21, 1994 Abstract We consider the optimum north-south elongation

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Thank you for not chewing gum or anything else. January 31, Daily Objective: Today we will identify typical objects in our night sky.

Thank you for not chewing gum or anything else. January 31, Daily Objective: Today we will identify typical objects in our night sky. Thank you for not chewing gum or anything else Materials: Pencil Notebook/Folder January 31, 2014 Agenda: Bell work Constellations Daily Objective: Today we will identify typical objects in our night sky.

More information

National Aeronautics and Space Administration. Glos. Glossary. of Astronomy. Terms. Related to Galaxies

National Aeronautics and Space Administration. Glos. Glossary. of Astronomy. Terms. Related to Galaxies National Aeronautics and Space Administration Glos of Astronomy Glossary Terms Related to Galaxies Asterism: A pattern formed by stars not recognized as one of the official 88 constellations. Examples

More information

arxiv:astro-ph/ v1 27 Aug 2001

arxiv:astro-ph/ v1 27 Aug 2001 AMiBA 2001: High-z Clusters, Missing Baryons, and CMB Polarization ASP Conference Series, Vol. 999, 2002 L-W Chen, C-P Ma, K-W Ng and U-L Pen, eds ATCA and CMB anisotropies arxiv:astro-ph/0108409v1 27

More information

Figure 19.19: HST photo called Hubble Deep Field.

Figure 19.19: HST photo called Hubble Deep Field. 19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.

More information

The "SETI Efficiency" of Array Radio Telescopes. Frank Drake SETI Institute

The SETI Efficiency of Array Radio Telescopes. Frank Drake SETI Institute The "SETI Efficiency" of Array Radio Telescopes Frank Drake SETI Institute Reasonable estimates of the number of detectable civilizations in the Milky Way suggest that it will likely be necessary to examine

More information

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. Happy Thursday! The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. The exposures were made with a digital

More information

Radio Interferometry Fundamentals. John Conway Onsala Space Obs and Nordic ALMA ARC-node

Radio Interferometry Fundamentals. John Conway Onsala Space Obs and Nordic ALMA ARC-node Radio Interferometry Fundamentals John Conway Onsala Space Obs and Nordic ALMA ARC-node So far discussed only single dish radio/mm obs Resolution λ/d, for D=20m, is 30 at mm-wavelengths and 30 (diameter

More information

ATINER's Conference Paper Series PHY

ATINER's Conference Paper Series PHY ATINER CONFERENCE PAPER SERIES No: LNG2014-1176 Athens Institute for Education and Research ATINER ATINER's Conference Paper Series PHY2014-1253 On Direct Measurements of the Angular Sizes of Stars by

More information

ABSOLUTE SPECTRAL ENERGY DISTRIBUTION OF THE NIGHT SKY AT PALOMAR AND MOUNT WILSON OBSERVATORIES

ABSOLUTE SPECTRAL ENERGY DISTRIBUTION OF THE NIGHT SKY AT PALOMAR AND MOUNT WILSON OBSERVATORIES Pub. Astron. Soc. Pacific, Volume 86, August 1974 ABSOLUTE SPECTRAL ENERGY DISTRIBUTION OF THE NIGHT SKY AT PALOMAR AND MOUNT WILSON OBSERVATORIES BARRY E. TURNROSE Hale Observatories, Carnegie Institution

More information

Transiting Exoplanet in the Near Infra-red for the XO-3 System

Transiting Exoplanet in the Near Infra-red for the XO-3 System Transiting Exoplanet in the Near Infra-red for the XO-3 System Nathaniel Rodriguez August 26, 2009 Abstract Our research this summer focused on determining if sufficient precision could be gained from

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

Planetary nebulae STUART R. POTTASCH* HISTORY

Planetary nebulae STUART R. POTTASCH* HISTORY 40 STUART R. POTTASCH* Planetary nebulae HISTORY Before 1917 Several hundred years ago it became apparent to astronomers that other objects were present in the sky besides stars, planets and an occasional

More information

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Exercise: Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Objectives In Part 1 you learned about Celestial Sphere and how the stars appear to move across the night

More information

THE EXPANSION RATE AND AGE OF THE UNIVERSE

THE EXPANSION RATE AND AGE OF THE UNIVERSE THE EXPANSION RATE AND AGE OF THE UNIVERSE I. Introduction: The visible Universe contains about 100 billion galaxies of several different types. The oldest galaxies are the elliptical galaxies, which show

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

A Successful Automated Search for Crouching Giants

A Successful Automated Search for Crouching Giants A Successful Automated Search for Crouching Giants Juan E. Cabanela Saint Cloud State University John M. Dickey University of Minnesota 10 January 2001 197th AAS Meeting (San Diego) #76.01 Abstract Much

More information

INTRODUCTION TO THE TELESCOPE

INTRODUCTION TO THE TELESCOPE INTRODUCTION TO THE TELESCOPE What will you learn in this Lab? For a few of the labs this semester, you will be using an 8-inch Celestron telescope to take observations. This lab will introduce you to

More information

Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations of the Small Magellanic Cloud

Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations of the Small Magellanic Cloud ASTRONOMY & ASTROPHYSICS AUGUST 1996, PAGE 263 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 118, 263-275 (1996) Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations

More information

Open Cluster Photometry: Part II

Open Cluster Photometry: Part II Project 4 Open Cluster Photometry: Part II Observational Astronomy ASTR 310 Fall 2005 1 Introduction The objective of this and the previous project is to learn how to produce color-magnitude diagrams of

More information

Multifrequency Spectra of Solar Brightness Temperature derived from Eclipse Observations

Multifrequency Spectra of Solar Brightness Temperature derived from Eclipse Observations J. Astrophys. Astr. (1983) 4, 289 293 Multifrequency Spectra of Solar Brightness Temperature derived from Eclipse Observations S. K. Alurkar, R. V. Bhonsle and S. S. Degaonkar Physical Research Laboratory,

More information

datapreviously available may be found in the two former discussions of the EXTRAGALA CTIC NEB ULAE velocity-distance relation.

datapreviously available may be found in the two former discussions of the EXTRAGALA CTIC NEB ULAE velocity-distance relation. 264 ASTRONOMY: HUBBLE AND HUMASON PRoc. N. A. S. THE VELOCITY-DISTANCE RELATION FOR ISOLATED EXTRAGALA CTIC NEB ULAE BY EDWIN HUBBLE AND MILTON L. HUMASON MouNr WILSON OBSERVATORY, CARNEGIE INSTITUTION

More information

Assignment #12 The Milky Way

Assignment #12 The Milky Way Name Date Class Assignment #12 The Milky Way For thousands of years people assumed that the stars they saw at night were the entire universe. Even after telescopes had been invented, the concept of a galaxy

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney

C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Reliability and Completeness for the GLIMPSE Survey C. Watson, E. Churchwell, R. Indebetouw, M. Meade, B. Babler, B. Whitney Abstract This document examines the GLIMPSE observing strategy and criteria

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

PoS(IX EVN Symposium)003

PoS(IX EVN Symposium)003 The 15 43-GHz Parsec-scale Circular Polarization of AGN Department of Physics, University College Cork, Republic of Ireland E-mail: gabuzda@phys.ucc.ie Vasilii M. Vitrishchak Sternberg Astronomical Institute,

More information

Part I. The Quad-Ridged Flared Horn

Part I. The Quad-Ridged Flared Horn 9 Part I The Quad-Ridged Flared Horn 10 Chapter 2 Key Requirements of Radio Telescope Feeds Almost all of today s radio telescopes operating above 0.5 GHz use reflector antennas consisting of one or more

More information