Hyper-minimisation of weighted finite automata

Size: px
Start display at page:

Download "Hyper-minimisation of weighted finite automata"

Transcription

1 Hyper-minimistion of weighted finite utomt Dniel Quernheim nd ndres Mletti Institute for Nturl Lnguge Processing, University of Stuttgrt ugust 18, Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

2 Outline Unweighted cse Weighted cse onclusion. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

3 Outline Unweighted cse Weighted cse onclusion. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

4 Minimistion Prolem given DF, return equivlent DF such tht ll equivlent DF re lrger Theorem (Hopcroft 1971) DF minimistion cn e done in time O(n log n) n: numer of sttes. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

5 Minimistion Prolem given DF, return equivlent DF miniml Theorem (Hopcroft 1971) DF minimistion cn e done in time O(n log n) n: numer of sttes. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

6 Hyper-minimistion Definition DF, B lmost equivlent if L() nd L(B) hve finite difference Prolem [Bdr et l. 2009] given DF, return lmost equivlent DF such tht ll lmost equivlent DF re lrger Theorem (Holzer, 2009, Gwrychowsky, Jeż 2009) DF hyper-minimistion cn e done in time O(n log n). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

7 Hyper-minimistion Definition DF, B lmost equivlent if L() nd L(B) hve finite difference Prolem [Bdr et l. 2009] given DF, return lmost equivlent DF hyper-miniml Theorem (Holzer, 2009, Gwrychowsky, Jeż 2009) DF hyper-minimistion cn e done in time O(n log n). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

8 lmost equivlence Sttes re lmost equivlent if their right lnguges differ finitely q = {w Σ δ(q, w) F} E G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

9 Kernel nd premle sttes Definition premle stte: finite left lnguge kernel stte: infinite left lnguge q = {w Σ δ(q 0, w) = q} E G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

10 Structurl chrcteristion Theorem (Bdr et l. 2009) DF is hyper-miniml iff miniml no premle stte is lmost equivlent to nother stte. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

11 Structurl chrcteristion Theorem (Bdr et l. 2009) DF is hyper-miniml iff miniml no premle stte is lmost equivlent to nother stte Exmple (Not hyper-miniml) E G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

12 Hyper-minimistion premle lmost equivlent B D F E Tle: Merges E G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

13 Hyper-minimistion premle lmost equivlent B D F E Tle: Merges E G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

14 Motivtion ppliction In nturl lnguge processing utomt often deterministic for efficient evlution DF tend to e very ig good reduction potentil Often pproximtive dt lossy compression ok. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

15 Motivtion ppliction In nturl lnguge processing utomt often deterministic for efficient evlution DF tend to e very ig good reduction potentil Often pproximtive dt lossy compression ok ut DF re weighted onclusion Let s do hyper-minimistion for weighted DF!. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

16 Outline Unweighted cse Weighted cse onclusion. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

17 Weight structure Generl pproch works for semifields (semirings with mult. inverses). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

18 Weight structure Generl pproch works for semifields (semirings with mult. inverses) Presenttion here we use the field of rel numers Exmple (WDF) E 2 weight of is = 16 weight of is 0 G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

19 Weighted merge E 2 G I Weighted merge of F into E with fctor 2. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

20 Weighted merge E G I 2 Weighted merge of F into E with fctor 2. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

21 lmost equivlence Definition Two WDF, B re lmost equivlent if (w) B(w) for only finitely mny w Σ Definition Two sttes p, q re lmost equivlent if there is k R \ {0} such tht p (w) k q (w) for only finitely mny w Σ [Borchrdt: The Myhill-Nerode theorem for recognizle tree series. DLT 2003]. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

22 Exmple E 2 G I ɛ G I G nd I lmost equivlent. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

23 Exmple 0 B D F 4 H E G I G nd I lmost equivlent E nd F lmost equivlent (with fctor 2) E F Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

24 Exmple 0 B D F 4 H E G I G nd I lmost equivlent E nd F lmost equivlent (with fctor 2) nd B not lmost equivlent! B Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

25 Finding lmost equivlent sttes Definition co-kernel stte: infinite right lnguge co-premle stte: finite right lnguge E 2 G I. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

26 Signture stndrdistion Definition signture of q: ( δ(q, σ), c(q, σ) ) σ Σ Stndrdistion select miniml σ 0 Σ such tht δ(q, σ 0 ) is co-kernel djust trnsition weights: c (q, σ) = { c(q,σ) c(q,σ 0 ) if δ(q, σ) is co-kernel 1 otherwise. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

27 Signture stndrdistion E 2 G I Stndrdised signture of F F I leds to co-premle. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

28 Signture stndrdistion E 2 G I Stndrdised signture of F F I leds to co-premle c (F, ) = 1. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

29 Signture stndrdistion E 2 G I Stndrdised signture of F F I leds to co-premle c (F, ) = 1 F 4 H leds to co-kernel. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

30 Signture stndrdistion E 2 G I Stndrdised signture of F F I leds to co-premle c (F, ) = 1 F 4 H leds to co-kernel c (F, ) = 4 4 = 1. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

31 Signture stndrdistion E 2 G I Stndrdised signture of F F I leds to co-premle c (F, ) = 1 F 4 H leds to co-kernel c (F, ) = 4 4 = 1 Stndrdised signture ( I, 1, H, 1 ). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

32 Finding lmost equivlent sttes E G I 2 Signture mp:, 1,, 1 Blocks: {, I} sig(i) = (, 1,, 1 ) in mp! dd I to lock of (nd merge). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

33 Finding lmost equivlent sttes E G I 2 Signture mp:, 1,, 1 H, 1,, 1 H Blocks: {, I} sig(h) = ( H, 1,, 1 ) dd to mp. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

34 Finding lmost equivlent sttes E G I 2 Signture mp:, 1,, 1 H, 1,, 1 H Blocks: {, I, G} sig(g) = (, 1,, 1 ) in mp! dd G to (nd merge). Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

35 Finding lmost equivlent sttes 0 B D F 4 H E G I sig(f) = (, 1, H, 1 ) dd to mp Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F Blocks: {, I, G}. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

36 Finding lmost equivlent sttes 0 B D F 4 H E G I sig(e) = (, 1, H, 1 ) in mp! dd E to F (nd merge with fctor 1 2 ) Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F Blocks: {, I, G} {F, E}. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

37 Finding lmost equivlent sttes 0 B D F 4 H 4 E G I sig(d) = (, 1, F, 1 ) dd to mp Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D Blocks: {, I, G} {F, E}. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

38 Finding lmost equivlent sttes 0 B D F 4 H 4 E G I sig() = (, 1, F, 1 ) in mp! dd to D (nd merge) Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

39 Finding lmost equivlent sttes 4 4 E G I sig(b) = ( D, 1,, 4 ) dd to mp Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D D, 1,, 4 B Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

40 Finding lmost equivlent sttes 4 4 E Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D D, 1,, 4 B D, 1,, 1 G sig() = ( D, 1,, 1 ) dd to mp I Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

41 Finding lmost equivlent sttes 4 4 E G I sig(0) = (, 1, B, 1 ) dd to mp Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D D, 1,, 4 B D, 1,, 1, 1, B, 1 0 Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

42 Finding lmost equivlent sttes 4 4 E G I Blocks represent lmost equivlence Scling fctors used in merges Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D D, 1,, 4 B D, 1,, 1, 1, B, 1 0 Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

43 Finding lmost equivlent sttes 4 4 E G I Blocks represent lmost equivlence Scling fctors used in merges ut we merged kernel sttes Signture mp:, 1,, 1 H, 1,, 1 H, 1, H, 1 F, 1, F, 1 D D, 1,, 4 B D, 1,, 1, 1, B, 1 0 Blocks: {, I, G} {F, E} {D, }. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

44 Weighted merges merge of F into E with fctor 2 merge of D into with fctor E G I 2. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

45 onclusion Solved hyper-minimistion for WDF over semifields Open Optimise numer of errors Incrementl construction Extensions to WNF, more weight structures, etc.. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

46 onclusion Solved hyper-minimistion for WDF over semifields Open Optimise numer of errors Incrementl construction Extensions to WNF, more weight structures, etc. Thnk you for your ttention!. Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

47 References ndrew Bdr, Vilim Geffert, nd In Shipmn. Hyper-minimizing minimized deterministic finite stte utomt. RIRO Theor. Inf. ppl., 43(1), Json Eisner. Simpler nd more generl minimiztion for weighted finite-stte utomt. In Proc. HLT-NL, Pweł Gwrychowski nd rtur Jeż. Hyper-minimistion mde efficient. In Proc. MFS, volume 5734 of LNS, Mrkus Holzer nd ndres Mletti. n n log n lgorithm for hyper-minimizing (minimized) deterministic utomton. Theor. omput. Sci., 411(38 39), John E. Hopcroft. n n log n lgorithm for Minimizing the Sttes in Finite utomton. In The Theory of Mchines nd omputtions. cdemic Press, Mletti nd D. Quernheim Hyper-minimistion of weighted finite utomt ugust 18, / 21

Myhill-Nerode Theorem

Myhill-Nerode Theorem Overview Myhill-Nerode Theorem Correspondence etween DA s nd MN reltions Cnonicl DA for L Computing cnonicl DFA Myhill-Nerode Theorem Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute

More information

Learning Moore Machines from Input-Output Traces

Learning Moore Machines from Input-Output Traces Lerning Moore Mchines from Input-Output Trces Georgios Gintmidis 1 nd Stvros Tripkis 1,2 1 Alto University, Finlnd 2 UC Berkeley, USA Motivtion: lerning models from blck boxes Inputs? Lerner Forml Model

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Lecture 09: Myhill-Nerode Theorem

Lecture 09: Myhill-Nerode Theorem CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

On Determinisation of History-Deterministic Automata.

On Determinisation of History-Deterministic Automata. On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

More information

Nondeterministic Biautomata and Their Descriptional Complexity

Nondeterministic Biautomata and Their Descriptional Complexity Nondeterministic Biutomt nd Their Descriptionl Complexity Mrkus Holzer nd Sestin Jkoi Institut für Informtik Justus-Lieig-Universität Arndtstr. 2, 35392 Gießen, Germny 23. Theorietg Automten und Formle

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages lgorithms & Models of omputtion S/EE 374, Spring 209 NFs continued, losure Properties of Regulr Lnguges Lecture 5 Tuesdy, Jnury 29, 209 Regulr Lnguges, DFs, NFs Lnguges ccepted y DFs, NFs, nd regulr expressions

More information

Model Reduction of Finite State Machines by Contraction

Model Reduction of Finite State Machines by Contraction Model Reduction of Finite Stte Mchines y Contrction Alessndro Giu Dip. di Ingegneri Elettric ed Elettronic, Università di Cgliri, Pizz d Armi, 09123 Cgliri, Itly Phone: +39-070-675-5892 Fx: +39-070-675-5900

More information

Good-for-Games Automata versus Deterministic Automata.

Good-for-Games Automata versus Deterministic Automata. Good-for-Gmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt

More information

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1 Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation 9/6/28 Stereotypicl computer CISC 49 Theory of Computtion Finite stte mchines & Regulr lnguges Professor Dniel Leeds dleeds@fordhm.edu JMH 332 Centrl processing unit (CPU) performs ll the instructions

More information

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38 Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

Theory of Computation Regular Languages

Theory of Computation Regular Languages Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

More information

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton 25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1 Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages Algorithms & Models of Computtion CS/ECE 374, Fll 2017 NFAs continued, Closure Properties of Regulr Lnguges Lecture 5 Tuesdy, Septemer 12, 2017 Sriel Hr-Peled (UIUC) CS374 1 Fll 2017 1 / 31 Regulr Lnguges,

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Deterministic Finite Automata

Deterministic Finite Automata Finite Automt Deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion Sciences Version: fll 2016 J. Rot Version: fll 2016 Tlen en Automten 1 / 21 Outline Finite Automt Finite

More information

A tutorial on sequential functions

A tutorial on sequential functions A tutoril on sequentil functions Jen-Éric Pin LIAFA, CNRS nd University Pris 7 30 Jnury 2006, CWI, Amsterdm Outline (1) Sequentil functions (2) A chrcteriztion of sequentil trnsducers (3) Miniml sequentil

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Formal languages, automata, and theory of computation

Formal languages, automata, and theory of computation Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

More information

DFA minimisation using the Myhill-Nerode theorem

DFA minimisation using the Myhill-Nerode theorem DFA minimistion using the Myhill-Nerode theorem Johnn Högerg Lrs Lrsson Astrct The Myhill-Nerode theorem is n importnt chrcteristion of regulr lnguges, nd it lso hs mny prcticl implictions. In this chpter,

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

More information

GNFA GNFA GNFA GNFA GNFA

GNFA GNFA GNFA GNFA GNFA DFA RE NFA DFA -NFA REX GNFA Definition GNFA A generlize noneterministic finite utomton (GNFA) is grph whose eges re lele y regulr expressions, with unique strt stte with in-egree, n unique finl stte with

More information

Formal Language and Automata Theory (CS21004)

Formal Language and Automata Theory (CS21004) Forml Lnguge nd Automt Forml Lnguge nd Automt Theory (CS21004) Khrgpur Khrgpur Khrgpur Forml Lnguge nd Automt Tle of Contents Forml Lnguge nd Automt Khrgpur 1 2 3 Khrgpur Forml Lnguge nd Automt Forml Lnguge

More information

Designing finite automata II

Designing finite automata II Designing finite utomt II Prolem: Design DFA A such tht L(A) consists of ll strings of nd which re of length 3n, for n = 0, 1, 2, (1) Determine wht to rememer out the input string Assign stte to ech of

More information

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51 Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundmentls of Computer Science Chpter 3: NFA nd DFA equivlence Regulr expressions Henrik Björklund Umeå University Jnury 23, 2014 NFA nd DFA equivlence As we shll see, it turns out tht NFA nd DFA re equivlent,

More information

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Prefix-Free Subsets of Regular Languages and Descriptional Complexity Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek Jurj Šeej DCFS 2015 Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek, Jurj Šeej 1/22 Outline Mximl

More information

CSC 311 Theory of Computation

CSC 311 Theory of Computation CSC 11 Theory of Computtion Tutoril on DFAs, NFAs, regulr expressions, regulr grmmr, closure of regulr lnguges, context-free grmmrs, non-deterministic push-down utomt, Turing mchines,etc. Tutoril 2 Second

More information

Lecture 9: LTL and Büchi Automata

Lecture 9: LTL and Büchi Automata Lecture 9: LTL nd Büchi Automt 1 LTL Property Ptterns Quite often the requirements of system follow some simple ptterns. Sometimes we wnt to specify tht property should only hold in certin context, clled

More information

Gold s algorithm. Acknowledgements. Why would this be true? Gold's Algorithm. 1 Key ideas. Strings as states

Gold s algorithm. Acknowledgements. Why would this be true? Gold's Algorithm. 1 Key ideas. Strings as states Acknowledgements Gold s lgorithm Lurent Miclet, Jose Oncin nd Tim Otes for previous versions of these slides. Rfel Crrsco, Pco Cscuert, Rémi Eyrud, Philippe Ezequel, Henning Fernu, Thierry Murgue, Frnck

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Forml Methods in Softwre Engineering Lecture 09 orgniztionl issues Prof. Dr. Joel Greenyer Decemer 9, 2014 Written Exm The written exm will tke plce on Mrch 4 th, 2015 The exm will tke 60 minutes nd strt

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

Finite-State Automata: Recap

Finite-State Automata: Recap Finite-Stte Automt: Recp Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 09 August 2016 Outline 1 Introduction 2 Forml Definitions nd Nottion 3 Closure under

More information

Regular Languages and Applications

Regular Languages and Applications Regulr Lnguges nd Applictions Yo-Su Hn Deprtment of Computer Science Yonsei University 1-1 SNU 4/14 Regulr Lnguges An old nd well-known topic in CS Kleene Theorem in 1959 FA (finite-stte utomton) constructions:

More information

More on automata. Michael George. March 24 April 7, 2014

More on automata. Michael George. March 24 April 7, 2014 More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

More information

1 Structural induction

1 Structural induction Discrete Structures Prelim 2 smple questions Solutions CS2800 Questions selected for Spring 2018 1 Structurl induction 1. We define set S of functions from Z to Z inductively s follows: Rule 1. For ny

More information

Introduction to ω-autamata

Introduction to ω-autamata Fridy 25 th Jnury, 2013 Outline From finite word utomt ω-regulr lnguge ω-utomt Nondeterministic Models Deterministic Models Two Lower Bounds Conclusion Discussion Synthesis Preliminry From finite word

More information

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model? CS125 Lecture 11 Fll 2016 11.1 Finite Automt Motivtion: TMs without tpe: mybe we cn t lest fully understnd such simple model? Algorithms (e.g. string mtching) Computing with very limited memory Forml verifiction

More information

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa CS:4330 Theory of Computtion Spring 208 Regulr Lnguges Equivlences between Finite utomt nd REs Hniel Brbos Redings for this lecture Chpter of [Sipser 996], 3rd edition. Section.3. Finite utomt nd regulr

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probbilistic Model Checking Michelms Term 2011 Dr. Dve Prker Deprtment of Computer Science University of Oxford Long-run properties Lst lecture: regulr sfety properties e.g. messge filure never occurs

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

CSC 473 Automata, Grammars & Languages 11/9/10

CSC 473 Automata, Grammars & Languages 11/9/10 CSC 473 utomt, Grmmrs & Lnguges 11/9/10 utomt, Grmmrs nd Lnguges Discourse 06 Decidbility nd Undecidbility Decidble Problems for Regulr Lnguges Theorem 4.1: (embership/cceptnce Prob. for DFs) = {, w is

More information

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018 CS 301 Lecture 04 Regulr Expressions Stephen Checkowy Jnury 29, 2018 1 / 35 Review from lst time NFA N = (Q, Σ, δ, q 0, F ) where δ Q Σ P (Q) mps stte nd n lphet symol (or ) to set of sttes We run n NFA

More information

State Complexity of Union and Intersection of Binary Suffix-Free Languages

State Complexity of Union and Intersection of Binary Suffix-Free Languages Stte Complexity of Union nd Intersetion of Binry Suffix-Free Lnguges Glin Jirásková nd Pvol Olejár Slovk Ademy of Sienes nd Šfárik University, Košie 0000 1111 0000 1111 Glin Jirásková nd Pvol Olejár Binry

More information

4 Deterministic Büchi Automata

4 Deterministic Büchi Automata Bernd Finkeiner Dte: April 26, 2011 Automt, Gmes nd Verifiction: Lecture 3 4 Deterministic Büchi Automt Theorem 1 The lnguge ( + ) ω is not recognizle y deterministic Büchi utomton. Assume tht L is recognized

More information

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints) C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

More information

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

Deciding the value 1 problem for probabilistic leaktight automata

Deciding the value 1 problem for probabilistic leaktight automata Deciding the vlue 1 prolem for proilistic lektight utomt Nthnël Fijlkow, joint work with Hugo Gimert nd Youssouf Oulhdj LIAFA, Université Pris 7, Frnce, University of Wrsw, Polnd. LICS, Durovnik, Croti

More information

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!) CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

More information

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

More information

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science CSCI 340: Computtionl Models Trnsition Grphs Chpter 6 Deprtment of Computer Science Relxing Restrints on Inputs We cn uild n FA tht ccepts only the word! 5 sttes ecuse n FA cn only process one letter t

More information

Regular languages refresher

Regular languages refresher Regulr lnguges refresher 1 Regulr lnguges refresher Forml lnguges Alphet = finite set of letters Word = sequene of letter Lnguge = set of words Regulr lnguges defined equivlently y Regulr expressions Finite-stte

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

More information

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck. Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

More information

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun: CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Synchronizing Automata with Random Inputs

Synchronizing Automata with Random Inputs Synchronizing Automt with Rndom Inputs Vldimir Gusev Url Federl University, Ekterinurg, Russi 9 August, 14 Vldimir Gusev (UrFU) Synchronizing Automt with Rndom Input 9 August, 14 1 / 13 Introduction Synchronizing

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata Non-Deterministic Finite Automt http://users.comlb.ox.c.uk/luke. ong/teching/moc/nf2up.pdf 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q1 q2 2 Alphbet ={} Two choices q1 q2 3 Alphbet ={} Two choices

More information

1.4 Nonregular Languages

1.4 Nonregular Languages 74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

More information

Inductive and statistical learning of formal grammars

Inductive and statistical learning of formal grammars Inductive nd sttisticl lerning of forml grmmrs Pierre Dupont Grmmr Induction Mchine Lerning Gol: to give the lerning ility to mchine Design progrms the performnce of which improves over time pdupont@info.ucl.c.e

More information

Java II Finite Automata I

Java II Finite Automata I Jv II Finite Automt I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz Finite Automt I p.1/13 Processing Regulr Expressions We lredy lerned out Jv s regulr expression

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Converting Regular Expressions to Discrete Finite Automata: A Tutorial Converting Regulr Expressions to Discrete Finite Automt: A Tutoril Dvid Christinsen 2013-01-03 This is tutoril on how to convert regulr expressions to nondeterministic finite utomt (NFA) nd how to convert

More information

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan CS 267: Automted Verifiction Lecture 8: Automt Theoretic Model Checking Instructor: Tevfik Bultn LTL Properties Büchi utomt [Vrdi nd Wolper LICS 86] Büchi utomt: Finite stte utomt tht ccept infinite strings

More information

DFA Minimization and Applications

DFA Minimization and Applications DFA Minimiztion nd Applictions Mondy, Octoer 15, 2007 Reding: toughton 3.12 C235 Lnguges nd Automt Deprtment of Computer cience Wellesley College Gols for ody o Answer ny P3 questions you might hve. o

More information

Hyper-Minimization. Lossy compression of deterministic automata. Andreas Maletti. Institute for Natural Language Processing University of Stuttgart

Hyper-Minimization. Lossy compression of deterministic automata. Andreas Maletti. Institute for Natural Language Processing University of Stuttgart Hyper-Minimization Lossy compression of deterministic automata Andreas Maletti Institute for Natural Language Processing University of Stuttgart andreas.maletti@ims.uni-stuttgart.de Debrecen August 19,

More information

The Value 1 Problem for Probabilistic Automata

The Value 1 Problem for Probabilistic Automata The Vlue 1 Prolem for Proilistic Automt Bruxelles Nthnël Fijlkow LIAFA, Université Denis Diderot - Pris 7, Frnce Institute of Informtics, Wrsw University, Polnd nth@lif.univ-pris-diderot.fr June 20th,

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers 80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES 2.6 Finite Stte Automt With Output: Trnsducers So fr, we hve only considered utomt tht recognize lnguges, i.e., utomt tht do not produce ny output on ny input

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

Let's start with an example:

Let's start with an example: Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

More information

Lexical Analysis Finite Automate

Lexical Analysis Finite Automate Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition

More information

Worked out examples Finite Automata

Worked out examples Finite Automata Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

More information

Learning Regular Languages over Large Alphabets

Learning Regular Languages over Large Alphabets Irini-Eleftheri Mens VERIMAG, University of Grenoble-Alpes Lerning Regulr Lnguges over Lrge Alphbets 10 October 2017 Jury Members Oded Mler Directeur de thèse Lurent Fribourg Exminteur Dn Angluin Rpporteur

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information