Introducing Sample Proportions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Introducing Sample Proportions"

Transcription

1 Itroducig Sample Proportios Probability ad statistics Aswers & Notes TI-Nspire Ivestigatio Studet 60 mi Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO, reported that 40% of respodets thought of climate chage i terms of atural temperature variability, rather tha i terms of huma-iduced temperature chage. (Referece: How reliable is this proportio, which is based o a radom sample? Does this statistic reflect the proportio of the etire Australia populatio with this belief about climate chage? I this activity, you will ivestigate how much we ca expect proportios from radom samples to vary from sample to sample. Simulatig radom samplig for attitudes to climate chage Ope the TI-Nspire documet Sample_proportios. You will be usig this documet to geerate radom samples from a large populatio. To esure that your results are ot idetical to those of other studets, you will seed the radom umber geerator, as follows. Navigate to Page.. I the Math Box, after the RadSeed commad, iput a space followed by a umber uique to you such as the last 4 digits of your phoe umber. Press eter to execute the commad. Questio Why do you thik that you might get idetical results to those of other studets i the room, if you do ot seed the radom umber geerator of your hadheld? The techology uses a algorithm (rule) to geerate pseudo-radom umbers. The algorithm will geerate the same umbers for hadhelds with default factory settigs. Seedig with a umber uique to you will iitialise or reset the radom umber geerator..0 Drawig radom samples of size 50 I this sectio, you will simulate drawig radom samples of size 50 from a large populatio. You will use the sample results to estimate the proportio of the populatio who believe that climate chage is due to atural temperature variability (hereafter referred to as atural climate chage). Let deote the sample size; therefore, i this sectio, 50. Let p deote proportio of the populatio who believe i atural climate chage. Let X deote the umber, i radom samples, who believe i atural climate chage, ad let x deote the values of the variable, X. Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

2 Itroducig sample proportios Aswers & Teacher Notes Let ˆP deote the proportio, i radom samples, who believe i atural climate chage, ad let ˆp deote the values of the variable, ˆP. The values, ˆp, are estimators of the true populatio proportio, p.. Numerical represetatio of sample proportios: = 50 Navigate to Page.. Adjust the slider value to k, to simulate drawig a sigle radom sample from a large populatio, where the value of the populatio proportio, p, is ukow to you. The umber of people, x, i the sample, who believe i atural climate chage is displayed. Note that the values of x are displayed i the spreadsheet (i the colum amed x ) ad as a list i the left-had pael. Questio a. I the Math Box idicated, use the observed value of x to calculate a poit estimate of the proportio of the populatio who believe i atural climate chage. x, where x ca be the variable symbol, or its value. The computed value is the poit estimate. 50 b. How likely do you thik it is that the poit estimate, calculated above, eds up beig idetical to the true populatio proportio? It is possible, but ulikely, that the poit estimate is exactly equal to the true sample proportio. O Page., press /+e util the spreadsheet pael of the split scree is selected. Press /+R to simulate drawig a differet sample of size 50 from the populatio. Questio 3 a. Use 3 more observed value of x, obtaied after pressig /+R, to calculate 3 more poit estimates of the proportio of the populatio who believe i atural climate chage. It is likely that each poit estimate has a differet value. b. How much variability is there betwee poit estimates obtaied from the differet samples? Aswers will vary. c. Isert a ew Mathbox (/+M) i the left-had pael. I this Math Box, calculate the mea of the four poit estimates. mea x, or similar, to compute the mea sample proportio. 50 d. Explai why the mea of the four sample proportios is likely to give a better estimate of the populatio proportio tha the idividual poit estimates. It is likely that some poit estimates are greater ad some less tha the true populatio proportio. The mea should balace the over-estimates ad uder-estimates Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

3 Itroducig sample proportios Aswers & Teacher Notes 3. Simulatig multiple samples: = 50 O Page., adjust the slider value to k 0, which simulate drawig 0 radom samples of size 50. The umber of atural climate chage believers i each simulated sample is displayed i the list ad i the spreadsheet. I the Math Box from Questio a, calculate the sample proportios by iputtig the expressio: 50 x. Store these proportios as a variable, ˆp ; i.e. press Ë(/+h), the Ð(/+k) ad select symbol, ˆp. Press to execute the calculatio. Questio 4 Compare the largest ad smallest umber of atural climate chage believers i the samples, ad their correspodig sample proportios. Calculate the percetage differece betwee these two proportios (i.e. the magitude of the differece, divided by the maximum value ad multiplied by 00). 00 pˆ pˆ Calculatio of the form, pˆ ˆ p. pˆ I the Math Box from Questio 3c, calculate the mea value of all the sample proportios, by iputtig mea p ˆ, ad pressig to execute the calculatio. the expressio: Icremetally icrease the umber of samples draw by chagig the value of k to 40, 60, Questio 5 Do you otice ay patter i the mea of the sample proportios, as the umber of samples, k, icreases? Aswers will vary. Patter ulikely, with the mea likely to fluctuate.3 Graphical represetatio of sample proportios: = 50 Navigate to Page 3.. I Problem 3 you will simulate drawig samples of size 50 from a large populatio where the populatio proportio of atural climate chage believers is kow to be p 0.4. Of course, i practice we would ot carry out samplig if we already kew the value of the populatio proportio. I this activity, the purpose of samplig is to uderstad how samplig behaves. O Page 3. you ca view umerical represetatios of the simulatios, similar to that of Problem. However, i the pages that follow, you will see the graphical represetatio of these results. Navigate to Page 3.3 ad adjust the slider value to k, to simulate drawig a sigle radom sample of size 50, from a populatio where p 0.4. The umber of people, x, i the sample, who believe i atural climate chage is displayed graphically. Adjust the slider value to simulate drawig, 3, 0 samples from this populatio. The vertical lie idicates the mea value. Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

4 Itroducig sample proportios Aswers & Teacher Notes 4 Questio 6 a. For your 0 samples ( k 0 ), what are the observed maximum, miimum ad mea umber of atural climate chage believers? Aswers will vary. b. I a sample of 50 people, how may atural climate chage believers would you expect, if the populatio proportio is 0.4? Why is t this expected umber obtaied each time you draw a sample? Expected umber = There is variability betwee samples is the expected log ru sample proportio. c. Adjust the slider value to k 00. I how may of the 00 samples was the observed value of x equal to the expected value? Aswers will vary..4 The sample cout as a radom variable I the precedig activities, you have see that the value, x, couts the umber of atural climate chage believers i a sample. The cout ca therefore be cosidered as radom variable X, whose values, x, vary from sample to sample. Furthermore, X is biomially distributed, with parameters (sample size) X Bi, p. ad p (populatio proportio); that is Questio 7 Assume that coutig a atural climate chage believer deotes success. Explai why X is a biomial radom variable, with the populatio proportio beig the probability of success i a sigle trial. A sigle trial cosists of determiig whether a radomly chose idividual believes i atural climate chage. X is biomial because the idividual either believes i atural climate chage ( success ), or they do ot ( failure ).5 The sample proportio as a radom variable Navigate to Page 3.4, ad icremetally icrease the umber of samples observed, by adjustig the value of k, up to k 00. The observed sample proportio for each of the k samples is displayed graphically. The vertical lie shows the mea of the sample proportios. If you avigate back to Page 3.3, you will observe a aalogous graphical patter for the success cout, for the samples of size 50. Questio 8 a. Explai why the graphs i Pages 3.3 ad 3.4 have idetical shapes. The two graphs have idetical shapes because the two quatities, x ad ˆp are related by a costat ratio b. For a particular sample, what is the relatioship betwee the sample cout of successes, x, ad the sample proportio of successes, ˆp. ˆp x Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

5 Itroducig sample proportios Aswers & Teacher Notes 5 You will have observed that each time you take a radom sample from a large populatio, the sample cout of successes, x, ad the sample proportio of successes, ˆp, vary from sample to sample; x furthermore, for a particular sample of size, ˆp. Just as the cout ca be cosidered a radom variable X, whose values, x, vary from sample to sample, the sample proportio ca, likewise, be cosidered a radom variable ˆP, whose values, ˆp, vary i the same fashio as x. Therefore, cosiderig the radom variables, ˆP X.. Expectatio ad stadard deviatio of the sample proportio Navigate to Page 3.5, ad icremetally icrease the umber of samples observed, by adjustig the value of k, up to k 00. The observed frequecies of sample proportios for the k samples is displayed as a histogram. Navigate to Page 3.6 to view the same data, displayed as a boxplot. From these, we observe that the sample proportio has a distributio, for which a mea ad stadard deviatio ca be computed. Below we will cosider the theoretical expectatio (mea) ad stadard deviatio of the sample proportio. Questio 9 Recall that ˆP Further, if Y X ax, where X Bi, p. Also, for a biomial radom variable, E X, where a is a costat, the EY ae X a. Usig the above iformatio, show that EPˆ E ˆ X P E E X p E Pˆ p p. p. b. Explai the sigificace of the result obtaied i part a. above. The mea of the distributio of sample proportios gives the populatio proportio. As the distributio is cetred at p, i the log ru, o average, the sample proportio will either overestimate or uder-estimate the value of p. Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

6 Itroducig sample proportios Aswers & Teacher Notes 6 Questio 0 For a biomial radom variable, var X p p. Further, if Y ax, where a is a costat, the var Y a var X. a. Usig the above iformatio, ad Questio 9, show that the stadard deviatio of the sample proportio, SDPˆ var Pˆ p p. X var var X p p p p b. The variace ad stadard deviatio of ˆP have i the deomiator. Explai the implicatios of this, i terms of the spread of the distributio of ˆP. A key implicatio is that as (large sample size), ˆ SD P 0 (the spread of the distributio of ˆP is small). Sice the distributio is cetred at p (see Q. 0b), a small spread makes it more likely that the sample proportio is close to the true value of the populatio proportio. The cocepts itroduced i this activity are explored further i the activity titled Distributio of sample proportios. Texas Istrumets 05. You may copy, commuicate ad modify this material for o-commercial educatioal purposes provided all ackowledgemets associated with this material are maitaied. Author: Frak Moya

Distribution of Sample Proportions

Distribution of Sample Proportions Distributio of Samle Proortios Probability ad statistics Aswers & Teacher Notes TI-Nsire Ivestigatio Studet 90 mi 7 8 9 10 11 12 Itroductio From revious activity: This activity assumes kowledge of the

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

Y i n. i=1. = 1 [number of successes] number of successes = n

Y i n. i=1. = 1 [number of successes] number of successes = n Eco 371 Problem Set # Aswer Sheet 3. I this questio, you are asked to cosider a Beroulli radom variable Y, with a success probability P ry 1 p. You are told that you have draws from this distributio ad

More information

Median and IQR The median is the value which divides the ordered data values in half.

Median and IQR The median is the value which divides the ordered data values in half. STA 666 Fall 2007 Web-based Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5-umber summary mea ad stadard deviatio Media

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

NCSS Statistical Software. Tolerance Intervals

NCSS Statistical Software. Tolerance Intervals Chapter 585 Itroductio This procedure calculates oe-, ad two-, sided tolerace itervals based o either a distributio-free (oparametric) method or a method based o a ormality assumptio (parametric). A two-sided

More information

Successful HE applicants. Information sheet A Number of applicants. Gender Applicants Accepts Applicants Accepts. Age. Domicile

Successful HE applicants. Information sheet A Number of applicants. Gender Applicants Accepts Applicants Accepts. Age. Domicile Successful HE applicats Sigificace tests use data from samples to test hypotheses. You will use data o successful applicatios for courses i higher educatio to aswer questios about proportios, for example,

More information

Final Examination Solutions 17/6/2010

Final Examination Solutions 17/6/2010 The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

The Poisson Distribution

The Poisson Distribution MATH 382 The Poisso Distributio Dr. Neal, WKU Oe of the importat distributios i probabilistic modelig is the Poisso Process X t that couts the umber of occurreces over a period of t uits of time. This

More information

Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?

Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters? CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter

More information

CURRICULUM INSPIRATIONS: INNOVATIVE CURRICULUM ONLINE EXPERIENCES: TANTON TIDBITS:

CURRICULUM INSPIRATIONS:  INNOVATIVE CURRICULUM ONLINE EXPERIENCES:  TANTON TIDBITS: CURRICULUM INSPIRATIONS: wwwmaaorg/ci MATH FOR AMERICA_DC: wwwmathforamericaorg/dc INNOVATIVE CURRICULUM ONLINE EXPERIENCES: wwwgdaymathcom TANTON TIDBITS: wwwjamestatocom TANTON S TAKE ON MEAN ad VARIATION

More information

Elementary Statistics

Elementary Statistics Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics 8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

Statistical Intervals for a Single Sample

Statistical Intervals for a Single Sample 3/5/06 Applied Statistics ad Probability for Egieers Sixth Editio Douglas C. Motgomery George C. Ruger Chapter 8 Statistical Itervals for a Sigle Sample 8 CHAPTER OUTLINE 8- Cofidece Iterval o the Mea

More information

MEI Casio Tasks for Further Pure

MEI Casio Tasks for Further Pure Task Complex Numbers: Roots of Quadratic Equatios. Add a ew Equatio scree: paf 2. Chage the Complex output to a+bi: LpNNNNwd 3. Select Polyomial ad set the Degree to 2: wq 4. Set a=, b=5 ad c=6: l5l6l

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Central Limit Theorem the Meaning and the Usage

Central Limit Theorem the Meaning and the Usage Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

STAT 203 Chapter 18 Sampling Distribution Models

STAT 203 Chapter 18 Sampling Distribution Models STAT 203 Chapter 18 Samplig Distributio Models Populatio vs. sample, parameter vs. statistic Recall that a populatio cotais the etire collectio of idividuals that oe wats to study, ad a sample is a subset

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

This is an introductory course in Analysis of Variance and Design of Experiments.

This is an introductory course in Analysis of Variance and Design of Experiments. 1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Statistics 20: Final Exam Solutions Summer Session 2007

Statistics 20: Final Exam Solutions Summer Session 2007 1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Confidence Intervals QMET103

Confidence Intervals QMET103 Cofidece Itervals QMET103 Library, Teachig ad Learig CONFIDENCE INTERVALS provide a iterval estimate of the ukow populatio parameter. What is a cofidece iterval? Statisticias have a habit of hedgig their

More information

Topic 6 Sampling, hypothesis testing, and the central limit theorem

Topic 6 Sampling, hypothesis testing, and the central limit theorem CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio

More information

Measures of Spread: Variance and Standard Deviation

Measures of Spread: Variance and Standard Deviation Lesso 1-6 Measures of Spread: Variace ad Stadard Deviatio BIG IDEA Variace ad stadard deviatio deped o the mea of a set of umbers. Calculatig these measures of spread depeds o whether the set is a sample

More information

Dotting The Dot Map, Revisited. A. Jon Kimerling Dept. of Geosciences Oregon State University

Dotting The Dot Map, Revisited. A. Jon Kimerling Dept. of Geosciences Oregon State University Dottig The Dot Map, Revisited A. Jo Kimerlig Dept. of Geoscieces Orego State Uiversity Dot maps show the geographic distributio of features i a area by placig dots represetig a certai quatity of features

More information

Issues in Study Design

Issues in Study Design Power ad Sample Size: Issues i Study Desig Joh McGready Departmet of Biostatistics, Bloomberg School Lecture Topics Re-visit cocept of statistical power Factors ifluecig power Sample size determiatio whe

More information

Solutions to Odd Numbered End of Chapter Exercises: Chapter 4

Solutions to Odd Numbered End of Chapter Exercises: Chapter 4 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd Numbered Ed of Chapter Exercises: Chapter 4 (This versio July 2, 24) Stock/Watso - Itroductio to Ecoometrics

More information

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram. Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Activity 3: Length Measurements with the Four-Sided Meter Stick

Activity 3: Length Measurements with the Four-Sided Meter Stick Activity 3: Legth Measuremets with the Four-Sided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a four-sided meter

More information

Essential Question How can you use properties of exponents to simplify products and quotients of radicals?

Essential Question How can you use properties of exponents to simplify products and quotients of radicals? . TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A.7.G Properties of Ratioal Expoets ad Radicals Essetial Questio How ca you use properties of expoets to simplify products ad quotiets of radicals? Reviewig Properties

More information

Analysis of Experimental Data

Analysis of Experimental Data Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both

More information

DISTRIBUTION LAW Okunev I.V.

DISTRIBUTION LAW Okunev I.V. 1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulatio Modelig ad Performace Aalysis with Discrete-Evet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 4

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 4 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 4 (This versio August 7, 204) 205 Pearso Educatio, Ic. Stock/Watso

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

1036: Probability & Statistics

1036: Probability & Statistics 036: Probability & Statistics Lecture 0 Oe- ad Two-Sample Tests of Hypotheses 0- Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso

More information

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!! A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited

More information

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Variace of Discrete Radom Variables Class 5, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goals 1. Be able to compute the variace ad stadard deviatio of a radom variable.. Uderstad that stadard deviatio

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES 9 SEQUENCES AND SERIES INTRODUCTION Sequeces have may importat applicatios i several spheres of huma activities Whe a collectio of objects is arraged i a defiite order such that it has a idetified first

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes. Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

CHAPTER III RESEARCH METHODOLOGY

CHAPTER III RESEARCH METHODOLOGY CHAPTER III RESEARCH METHODOLOGY A. Method of the Research I this research the writer used the experimetal method. The experimetal research was aimed to kow if there were effect or ot for the populatio

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Lecture 16 Variace Questio: Let us retur oce agai to the questio of how may heads i a typical sequece of coi flips. Recall that we

More information

Topic 18: Composite Hypotheses

Topic 18: Composite Hypotheses Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

More information

P1 Chapter 8 :: Binomial Expansion

P1 Chapter 8 :: Binomial Expansion P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Chapter Objectives. Bivariate Data. Terminology. Lurking Variable. Types of Relations. Chapter 3 Linear Regression and Correlation

Chapter Objectives. Bivariate Data. Terminology. Lurking Variable. Types of Relations. Chapter 3 Linear Regression and Correlation Chapter Objectives Chapter 3 Liear Regressio ad Correlatio Descriptive Aalysis & Presetatio of Two Quatitative Data To be able to preset two-variables data i tabular ad graphic form Display the relatioship

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Exam 2 Instructions not multiple versions

Exam 2 Instructions not multiple versions Exam 2 Istructios Remove this sheet of istructios from your exam. You may use the back of this sheet for scratch work. This is a closed book, closed otes exam. You are ot allowed to use ay materials other

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Chapter 4 - Summarizing Numerical Data

Chapter 4 - Summarizing Numerical Data Chapter 4 - Summarizig Numerical Data 15.075 Cythia Rudi Here are some ways we ca summarize data umerically. Sample Mea: i=1 x i x :=. Note: i this class we will work with both the populatio mea µ ad the

More information

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N. 3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

More information

Statistical Fundamentals and Control Charts

Statistical Fundamentals and Control Charts Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests Joural of Moder Applied Statistical Methods Volume 5 Issue Article --5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed Al-Ha Ebrahem

More information

Chapter 1 (Definitions)

Chapter 1 (Definitions) FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple

More information

General IxJ Contingency Tables

General IxJ Contingency Tables page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad cross-sectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Day 8-3. Prakash Balachandran Department of Mathematics & Statistics Boston University. Friday, October 28, 2011

Day 8-3. Prakash Balachandran Department of Mathematics & Statistics Boston University. Friday, October 28, 2011 Day 8-3 Prakash Balachadra Departmet of Mathematics & Statistics Bosto Uiversity Friday, October 8, 011 Sectio 5.: Hypothesis Tests forµ Aoucemets: Tutorig: Math office i 111 Cummigto 1st floor, Rich Hall.

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

UCLA STAT 110B Applied Statistics for Engineering and the Sciences

UCLA STAT 110B Applied Statistics for Engineering and the Sciences UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles,

More information

Chapter 4 Tests of Hypothesis

Chapter 4 Tests of Hypothesis Dr. Moa Elwakeel [ 5 TAT] Chapter 4 Tests of Hypothesis 4. statistical hypothesis more. A statistical hypothesis is a statemet cocerig oe populatio or 4.. The Null ad The Alterative Hypothesis: The structure

More information

1 Constructing and Interpreting a Confidence Interval

1 Constructing and Interpreting a Confidence Interval Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew Crae-Droesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad

More information

CH19 Confidence Intervals for Proportions. Confidence intervals Construct confidence intervals for population proportions

CH19 Confidence Intervals for Proportions. Confidence intervals Construct confidence intervals for population proportions CH19 Cofidece Itervals for Proportios Cofidece itervals Costruct cofidece itervals for populatio proportios Motivatio Motivatio We are iterested i the populatio proportio who support Mr. Obama. This sample

More information

7: Sampling Distributions

7: Sampling Distributions 7: Samplig Distributios 7.1 You ca select a simple radom sample of size = 2 usig Table 1 i Appedix I. First choose a startig poit ad cosider the first three digits i each umber. Sice the experimetal uits

More information

Posted-Price, Sealed-Bid Auctions

Posted-Price, Sealed-Bid Auctions Posted-Price, Sealed-Bid Auctios Professors Greewald ad Oyakawa 207-02-08 We itroduce the posted-price, sealed-bid auctio. This auctio format itroduces the idea of approximatios. We describe how well this

More information