Unraveling the distribution of ionized gas in the Galactic plane with radio recombination lines.

Size: px
Start display at page:

Download "Unraveling the distribution of ionized gas in the Galactic plane with radio recombination lines."

Transcription

1 Unraveling the distribution of ionized gas in the Galactic plane with radio recombination lines. Jorge Pineda, Shinji Horiuchi, Tom Kuiper, Geoff Bryden, Melissa Soriano, and Joe Lazio Jet Propulsion Laboratory

2 Goal: Understand the lifecycle of the interstellar medium Far-IR tracers: [CII] 158um (Traces H 2, HI, and ionized gas ) [NII] 205 and 122um (Ionized gas) [OI] 145 and 63um (Dense and warm H 2 gas) Etc. ngvla tracers: High density molecular tracers. Radio Recombination Lines Radio Continuum

3 Goal: Understand the lifecycle of the interstellar medium Far-IR tracers: [CII] 158um (Traces H 2, HI, and ionized gas ) [NII] 205 and 122um (Ionized gas) [OI] 145 and 63um (Dense and warm H 2 gas) Etc. ngvla tracers: High density molecular tracers. Radio Recombination Lines Radio Continuum

4 Radio Recombination Line Survey of the Galactic Plane RRLs are spectrally resolved, unobscured tracers of ionized gas. Provide unambiguous determination of the emission measure EM=neN(H + )=ne 2 L. It allows us to study the electron density distribution. (Continuum has to be separated between thermal and non-thermal emission). Hydrogen RRLs are the brightest, but Helium and Carbon RRLs can be detected in bright sources. Line to continuum ratio gives the electron temperature (e.g. Quireza et al. 2006) They trace the number of Lyman continuum photons and thus they trace the Star Formation Rate. Observations with a broad instantaneous bandwidth can allow us to observe many RRLs simultaneously, thus significantly increasing the sensitivity (Balser 2006). Höglund and Mezger (1965)

5 Radio Recombination Line Survey of the Galactic Plane We will observe 112 GOT C+ lines-of-sight in RRL with the NASA DSS-43 70m telescope in K and X bands. (40 (K) and 110 (X) angular, <1 km/sec velocity resolution) Upcoming capabilities in of the DSS 43 will allow simultaneous observations of RRL between 18 and 24 GHz (2 pol x 8 RRLs) NASA DSS-43 Deep Space Network 70m antenna. Canberra, Australia.

6 GOT C+ [CII] 1.9 THz Survey GOT C+ is a volume weighted sample of 500 LOSs in the disk of the Milky Way. 7 LOS 10 LOS 11 LOS 11 LOS 11 LOS 6 LOS We sample the Galactic plane every one degree in the inner galaxy and every two in the outer galaxy. 6 LOS 7 LOS GOAL: Sample as many different clouds as possible over a wide range of physical conditions. This allow us to obtain statistical information about the clouds in the Milky Way.

7 The rotation of the Milky Way

8 The [CII] distribution of the Milky Way: Longitude-Velocity map The lines are projection of the Milky Way s spiral arms into the Longitude-Velocity map. Pineda et al. (2013) A&A 554, A103

9 Galactocentric Distribution To derive global properties of population of clouds in the Milky Way we divide it into a set of rings and calculate the radially average distribution of different tracers. Knowing the distribution of the ionized gas in the Galaxy is fundamental for the interpretation of [CII] observations.

10 Radio Recombination Line Survey of the Galactic Plane Science Objective #1: Follow techniques used in the GOT C+ survey to determine the distribution of ionized gas in the plane of the Milky Way. Determine the contribution from ionized gas to the observed [CII] emission.

11 Radio Recombination Line Survey of the Galactic Plane Science Objective #2: Derive the distribution of the Star Formation Rate in the plane of the Milky Way Compare the RRL derived SFR with other tracers such as [CII]. Pineda et al A&A 570, A121

12 Radio Recombination Line Survey of the Galactic Plane Science Objective #2: Derive the distribution of the Star Formation Rate in the plane of the Milky Way Compare the RRL derived SFR with other tracers such as [CII]. Pineda et al A&A 570, A121

13 Radio Recombination Line Survey of the Galactic Plane We will observe 112 GOT C+ lines-of-sight in RRL with the NASA DSS-43 70m telescope in K and X bands. (40 (K) and 110 (X) angular, <1 km/sec velocity resolution) Current status: 62 LOSs observed in X-band. NASA DSS-43 Deep Space Network 70m antenna. Canberra, Australia.

14 The RRL distribution of the Milky Way: Longitude-Velocity map The lines are projection of the Milky Way s spiral arms into the Longitude-Velocity map. Pineda et al. (2013) A&A 554, A103

15 The [CII] distribution of the Milky Way: Longitude-Velocity map The lines are projection of the Milky Way s spiral arms into the Longitude-Velocity map. Pineda et al. (2013) A&A 554, A103

16 The HI distribution of the Milky Way: Longitude-Velocity map The lines are projection of the Milky Way s spiral arms into the Longitude-Velocity map. Pineda et al. (2013) A&A 554, A103

17 The CO distribution of the Milky Way: Longitude-Velocity map The lines are projection of the Milky Way s spiral arms into the Longitude-Velocity map. Pineda et al. (2013) A&A 554, A103

18 Comparison between RRL, [CII] and [NII] lines in the MW. RRL tends to follow [NII] and [CII] emission. But [CII]/RRL and [NII]/RRL vary from place to place. Wide range of physical conditions in the observed clouds. Red: H91a and H92a Blue: [NII] 205um Black: [CII] 158um

19 [NII]/RRL ratio as a tracer of electron density. [NII] 205um intensity is proportional to the fractional population at the 3 P 1 level, f u (ne), which depends on the electron density, and the column density of N +. The RRL intensity is proportional to the electron density times the column density of H +. In LTE, the [NII]/RRL ratio is proportional to f u (ne)/ne times the nitrogen abundance. Correction needed for non-lte effects needed. We can use the [NII] 205um/RRL ratio to solve for the electron density of the gas.

20 [NII]/RRL ratio as a tracer of electron density. [NII] 205um intensity is proportional to the fractional population at the 3 P 1 level, f u (ne), which depends on the electron density, and the column density of N +. The RRL intensity is proportional to the electron density times the column density of H +. In LTE, the [NII]/RRL ratio is proportional to f u (ne)/ne times the nitrogen abundance. Correction needed for non-lte effects needed. We can use the [NII] 205um/RRL ratio to solve for the electron density of the gas.

21 [NII]/RRL ratio as a tracer of electron density. [NII] 205um intensity is proportional to the fractional population at the 3 P 1 level, f u (ne), which depends on the electron density, and the column density of N +. The RRL intensity is proportional to the electron density times the column density of H +. In LTE, the [NII]/RRL ratio is proportional to f u (ne)/ne times the nitrogen abundance. Correction needed for non-lte effects needed. We can use the [NII] 205um/RRL ratio to solve for the electron density of the gas.

22 [NII]/RRL ratio as a tracer of electron density. [NII] 205um intensity is proportional to the fractional population at the 3 P 1 level, f u (ne), which depends on the electron density, and the column density of N +. The RRL intensity is proportional to the electron density times the column density of H +. In LTE, the [NII]/RRL ratio is proportional to f u (ne)/ne times the nitrogen abundance. Correction needed for non-lte effects needed. We can use the [NII] 205um/RRL ratio to solve for the electron density of the gas. Average density in sample, 32 cm -3 Average density from 122um/205um, 44 cm -3 (Goldsmith et al. 2015) Next step: Derive ne as a function of velocity => determine the electron density distribution of the Milky Way. Pineda et al in preparation

23 Radio recombination line observations with the ngvla The large collecting area of the ngvla combined with large instantaneous bandwidths can provide extreme sensitive observations of RRLs. Our work in the Milky Way will pave the way for similar studies in external galaxies. We can learn about the properties of the ISM over different environmental conditions in galaxies as well as determine the star formation history of the universe. These data will have synergies with surveys of [CII] emission of high-z galaxies with ALMA and future Far-IR observatories.

24 Beyond the Milky Way The ngvla observations will complement current (SOFIA) and future (OST) Far-Infrared observatories. SOFIA is completing a full map of M51 in the [CII] 158um line. The ngvla will be able powerful tool to map nearby galaxies in RRLs revealing the properties of the ionized gas and star formation. Pineda, Stutzki et al in preparation

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

Galactic Observations of Terahertz C+ (GOT C+): CII Detection of Hidden H2 in the ISM

Galactic Observations of Terahertz C+ (GOT C+): CII Detection of Hidden H2 in the ISM Galactic Observations of Terahertz C+ (GOT C+): CII Detection of Hidden H2 in the ISM Bill Langer GOT C+ Team: P. Goldsmith, D. Li, J. Pineda, T. Velusamy, & H. Yorke Jet Propulsion Laboratory, California

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Terahertz (THz) Astronomy from Antarctica. New opportunities for groundbreaking science

Terahertz (THz) Astronomy from Antarctica. New opportunities for groundbreaking science Terahertz (THz) Astronomy from Antarctica New opportunities for groundbreaking science The Life Cycle of matter in the Galaxy remains poorly understood. some UV, X-rays 21 cm radio???? visible light infrared

More information

Astrophysics of Gaseous Nebulae

Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Bright Nebulae of M33 Ken Crawford (Rancho Del Sol Observatory) Potsdam University Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de HST

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Connection between phenomenon of active nucleus and disk dynamics in Sy galaxies

Connection between phenomenon of active nucleus and disk dynamics in Sy galaxies Connection between phenomenon of active nucleus and disk dynamics in Sy galaxies Alexandrina Smirnova & Alexei Moiseev Special Astrophysical Observatory, Russian Academy of Sciences SAO RAS 6-m telescope

More information

arxiv: v1 [astro-ph.ga] 13 Apr 2015

arxiv: v1 [astro-ph.ga] 13 Apr 2015 Astronomy & Astrophysics manuscript no. ms c ESO 2018 September 27, 2018 Internal structure of spiral arms traced with [C ii]: Unraveling the WIM, H i, and molecular emission lanes T. Velusamy, W. D. Langer,

More information

Ram Pressure Stripping in NGC 4330

Ram Pressure Stripping in NGC 4330 The Evolving ISM in the Milky Way & Nearby Galaxies Ram Pressure Stripping in NGC 4330 Anne Abramson 1 & Jeffrey D. P. Kenney 1 1 Astronomy Department, Yale University, P.O. Box 208101 New Haven, CT 06520-8101

More information

arxiv: v1 [astro-ph.ga] 7 Aug 2017

arxiv: v1 [astro-ph.ga] 7 Aug 2017 Astronomy & Astrophysics manuscript no. AA-2017-31198-Final c ESO 2018 July 17, 2018 Ionized gas in the Scutum spiral arm as traced in [Nii] and [Cii] W. D. Langer 1, T. Velusamy 1, P. F. Goldsmith 1,

More information

Mapping the Spatial Distribution of H 2 in Nearby Galaxies with the Spitzer Infrared Spectrograph

Mapping the Spatial Distribution of H 2 in Nearby Galaxies with the Spitzer Infrared Spectrograph The Evolving ISM in the Milky Way & Nearby Galaxies Mapping the Spatial Distribution of H 2 in Nearby Galaxies with the Spitzer Infrared Spectrograph Gregory Brunner 1, Reginald Dufour 1, Kartik Sheth

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 21 Tues 3 Apr 07 zeus.colorado.edu/astr1040-toomre toomre Superbubble NGC 3079 Today in Milky Way Look at why spiral

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies? Chapter 21 Galaxy Evolution How do we observe the life histories of galaxies? Deep observations show us very distant galaxies as they were much earlier in time (old light from young galaxies). 1 Observing

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution Lecture 2: Introduction to stellar evolution and the interstellar medium Stars and their evolution The Hertzsprung-Russell (HR) Diagram (Color-Magnitude Diagram) Apparent and Absolute Magnitudes; Dust

More information

Energy Sources of the Far IR Emission of M33

Energy Sources of the Far IR Emission of M33 Energy Sources of the Far IR Emission of M33 Hinz, Reike et al., ApJ 154: S259 265 (2004). Presented by James Ledoux 24 µm 70 µm 160 µm Slide 1 M33 Properties Distance 840kpc = 2.7 Mlyr (1'' ~ 4 pc) Also

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies ASTR 101 Introduction to Astronomy: Stars & Galaxies If your clicker grade on BlackBoard is 0 and you have been in class, please send your clicker # to TA Cameron Clarke for checking The Milky Way Size

More information

6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n

6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n 6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n 2 e dl ) Measure James R. Graham University of California Berkeley NGC 891 NGC 891 AY 216 2 Techniques & Components The Warm Ionized Medium

More information

Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT

Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT Gordon Stacey Thomas Nikola, Carl Ferkinhoff, Drew Brisbin, Steve Hailey-Dunsheath, Tom Oberst, Nick Fiolet, Johannes Staguhn, Dominic

More information

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26 Brooks observing April 19-22: 9:00 PM to at least 10:15 PM Tonight is a go! April 26-29: 9:30 PM to at least 10:45 PM Regular Friday evening public observing after planetarium shows also an option Begins

More information

Sounding the diffuse ISM with Herschel/HIFI

Sounding the diffuse ISM with Herschel/HIFI PRISMAS PRobing InterStellar Molecules with Absorption line Studies Sounding the diffuse ISM with Herschel/HIFI.. W3 Maryvonne Gerin on behalf of the PRISMAS team PRISMAS PRobing InterStellar Molecules

More information

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 Presented by Shannon Guiles Astronomy 671 April 24, 2006 Image:[C II] map of the galaxy

More information

R. D. Gehrz a E. E. Becklin b, and Göran Sandell b

R. D. Gehrz a E. E. Becklin b, and Göran Sandell b Infrared Spectroscopic Studies with the Stratospheric Observatory for Infrared Astronomy (SOFIA) a E. E. Becklin b, and Göran Sandell b a University of Minnesota b Universities Space Research Association

More information

Measurement of Galactic Rotation Curve

Measurement of Galactic Rotation Curve Measurement of Galactic Rotation Curve Objective: The 21-cm line produced by neutral hydrogen in interstellar space provides radio astronomers with a very useful probe for studying the differential rotation

More information

Milky Way SKA: the ISM, star formation and stellar evolution with the SKA. Mark Thompson, Grazia Umana, and the Our Galaxy SWG

Milky Way SKA: the ISM, star formation and stellar evolution with the SKA. Mark Thompson, Grazia Umana, and the Our Galaxy SWG Milky Way SKA: the ISM, star formation and stellar evolution with the SKA Mark Thompson, Grazia Umana, and the Our Galaxy SWG Uncovering the ecology of baryons Graphic courtesy Naomi McClure- Griffiths

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

arxiv: v1 [astro-ph.ga] 11 Oct 2018

arxiv: v1 [astro-ph.ga] 11 Oct 2018 **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Imaging Molecular Gas at High Redshift arxiv:1810.05053v1 [astro-ph.ga]

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Emission lines arise from permitted (recombination) and forbidden

More information

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 20 Thur 17 Mar 2011 zeus.colorado.edu/astr1040-toomre toomre Edge-on spiral galaxy NGG 4013 On Today s s Radar Look

More information

SOFIA/GREAT observations of LMC-N 11: Does [C ii] trace regions with a large H 2 fraction?

SOFIA/GREAT observations of LMC-N 11: Does [C ii] trace regions with a large H 2 fraction? SOFIA/GREAT observations of LMC-N 11: Does [C ii] trace regions with a large H 2 fraction? Vianney Lebouteiller Laboratoire AIM - CEA, Saclay, France Main collaborators: F. Galliano, S. Madden, M. Chevance,

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

The formation of super-stellar clusters

The formation of super-stellar clusters The formation of super-stellar clusters François Boulanger Institut d Astrophysique Spatiale Cynthia Herrera, Edith Falgarone, Pierre Guillard, Nicole Nesvadba, Guillaume Pineau des Forets Outline How

More information

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2])

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Massive interstellar gas clouds Up to ~10 5 M 100 s of LY in diameter. Giant Molecular Clouds (GMCs) defined to be M > 10 4 M High

More information

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 27: The Galaxy Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 27 18 Apr 2007 Read: Ch. 25,26 Astronomy 114 1/23 Announcements Quiz #2: we re

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

A Science Vision for SOFIA

A Science Vision for SOFIA A Science Vision for SOFIA 3 March 2017 Harold W Yorke Director, SOFIA Science Mission Operations Setting the Stage (1/3) For NASA s space missions, Level 1 requirements are sacrosanct (NPR 7120.5E) Level

More information

ALMA Science Ex am ples

ALMA Science Ex am ples ALMA Science Ex am ples Min S. Yun (UMass/ ANASAC) ALMA Science Requirements High Fidelity Imaging Precise Imaging at 0.1 Resolution Routine Sub- mjy Continuum Sensitivity Routine mk Spectral Sensitivity

More information

- Strong extinction due to dust

- Strong extinction due to dust The Galactic Centre - Strong extinction due to dust At optical wavelemgth the absorption is almost total Information from the 21 line, IR and radio 10 Region between and cm 14 10 22 1 arcsec at the distance

More information

Nearby Universe: Rapporteur

Nearby Universe: Rapporteur Nearby Universe: Rapporteur Margaret Meixner (STScI) SAGE: Tracing the Lifecycle of Baryonic Matter: Intermediate mass stars High mass stars credit: http://hea-www.cfa.harvard.edu/champ/education/public/icons/

More information

[CII] intensity mapping with CONCERTO

[CII] intensity mapping with CONCERTO Aspen Intensity Mapping Conference, 4-9 Feb 2018 [CII] intensity mapping with CONCERTO Matthieu Béthermin on behalf of the CONCERTO team PI: Lagache (thanks for providing slides); Instrument scientist:

More information

SOFIA/GREAT [CII] observations in nearby clouds near the lines of

SOFIA/GREAT [CII] observations in nearby clouds near the lines of Page 1/24 SOFIA/GREAT [CII] observations in nearby clouds near the lines of sight towards B0355+508 and B0212+735 Jürgen Stutzki I. Physikalisches Institut, SFB 956 (Coordinated Research Center 956) Conditions

More information

Lifecycle of Dust in Galaxies

Lifecycle of Dust in Galaxies Lifecycle of Dust in Galaxies Karl Gordon Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 Email: kgordon@stsci.edu Phone: 410-338-5031 co-authors: Margaret Meixner (Space Telescope

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

From the VLT to ALMA and to the E-ELT

From the VLT to ALMA and to the E-ELT From the VLT to ALMA and to the E-ELT Mission Develop and operate world-class observing facilities for astronomical research Organize collaborations in astronomy Intergovernmental treaty-level organization

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

What is Earth Science?

What is Earth Science? What is Earth Science? A.EARTH SCIENCE: the study of Earth and its history B. Earth science is divided into 4 main branches: 1. Geology: study of the lithosphere 2. Oceanography: study of oceans 3. Meteorology:

More information

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz 10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, 70 115 GHz JVLA: Good 3mm site, elev. ~ 2200m Residual phase rms after calibration 90% coherence 550km

More information

The Interstellar Medium.

The Interstellar Medium. The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM Total mass ~ 5 to 10 x 10 9 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s

More information

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA s observational capabilities 80x Bandwidth (8 GHz, full stokes), with 4000

More information

Large Format Heterodyne Arrays for Observing Far-Infrared Lines with SOFIA

Large Format Heterodyne Arrays for Observing Far-Infrared Lines with SOFIA Large Format Heterodyne Arrays for Observing Far-Infrared Lines with SOFIA *C. Walker 1, C. Kulesa 1, J. Kloosterman 1, D. Lesser 1, T. Cottam 1, C. Groppi 2, J. Zmuidzinas 3, M. Edgar 3, S. Radford 3,

More information

An Introduction to Galaxies and Cosmology

An Introduction to Galaxies and Cosmology An Introduction to Galaxies and Cosmology 1.1 Introduction Milky Way (our galaxy - Galaxy) Fig. 1.1 A photograph of one hemisphere of the night sky. (D.di Cicco, Sky Publishing Corp.) 1011 stars 1012

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

arxiv:astro-ph/ v1 19 Feb 1999

arxiv:astro-ph/ v1 19 Feb 1999 Assessment of Tracers of 1.8 MeV Emission arxiv:astro-ph/992282v1 19 Feb 1999 J. Knödlseder 1, R.Diehl 2, U. Oberlack 5, P. vonballmoos 1, H.Bloemen 3, W. Hermsen 3, A. Iyudin 2, J. Ryan 4, and V. Schönfelder

More information

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need Exam 3 Astronomy 100, Section 3 Some Equations You Might Need modified Kepler s law: M = [a(au)]3 [p(yr)] (a is radius of the orbit, p is the rotation period. You 2 should also remember that the period

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy?

How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy? Ch 14: Mysteries of the Milky Way How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy? The Structure of the Galaxy We know that our galaxy has

More information

The Interstellar Medium

The Interstellar Medium THE INTERSTELLAR MEDIUM Total mass ~ 0.5 to 1 x 10 10 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s orbit The Interstellar http://apod.nasa.gov/apod/astropix.html

More information

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES University of Groningen Interstellar Chemistry Spaans, Marco Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES DOI: 10.1017/S1743921308024885 IMPORTANT NOTE: You are

More information

and full of surprises.

and full of surprises. Ch 14: Our Milky Way Meet our own galaxy big, spiralarmed and full of surprises. Meet the Milky Way Now, we move up to the next level: a galaxy made up of A core dense with stars. Billions of stars in

More information

Nonaxisymmetric and Compact Structures in the Milky Way

Nonaxisymmetric and Compact Structures in the Milky Way Nonaxisymmetric and Compact Structures in the Milky Way 27 March 2018 University of Rochester Nonaxisymmetric and compact structures in the Milky Way Spiral structure in the Galaxy The 3-5 kpc molecular

More information

NRAO Instruments Provide Unique Windows On Star Formation

NRAO Instruments Provide Unique Windows On Star Formation NRAO Instruments Provide Unique Windows On Star Formation Crystal Brogan North American ALMA Science Center Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank

More information

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE

ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE Snežana Stanimirović, October 6, 2014 1. Introduction This project has two goals: we want to measure the Milky Way (or Galactic) rotation curve by

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium Galaxies and the Universe Our Galaxy - The Milky Way The Interstellar Medium Our view of the Milky Way The Radio Sky COBE Image of our Galaxy The Milky Way Galaxy - The Galaxy By Visual Observation

More information

Extragalactic SMA. Sergio Martín Ruiz. European Southern Observatory

Extragalactic SMA. Sergio Martín Ruiz. European Southern Observatory Extragalactic SMA Sergio Martín Ruiz European Southern Observatory Submillimeter Array Advisory Committee Meeting Wednesday 13 th, October 2010 NEARBY GALAXIES: CO 2-1 Mapping BODEGA: Below 0 DEgree Galaxies

More information

Probing the Chemistry of Luminous IR Galaxies

Probing the Chemistry of Luminous IR Galaxies Probing the Chemistry of Luminous IR Galaxies, Susanne Aalto Onsala Space Observatory, Sweden Talk Outline Luminous IR galaxies Chemistry as a tool Observations in NGC 4418 Conclusions Luminous IR Galaxies

More information

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts Zhi-Yu (Z-Y) Zhang 张智昱 U. Edinburgh/ESO Outline Background Sample description Herschel

More information

ngvla: Galaxy Assembly through Cosmic Time

ngvla: Galaxy Assembly through Cosmic Time ngvla: Galaxy Assembly through Cosmic Time Dominik A. Riechers (Cornell) On behalf of the ngvla high-z working group: Caitlin Casey, Jacqueline Hodge, Mark Lacy, Katherine Alatalo, Amy Barger, Sanjay Bhatnagar,

More information

Beyond the Visible -- Exploring the Infrared Universe

Beyond the Visible -- Exploring the Infrared Universe Beyond the Visible -- Exploring the Infrared Universe Prof. T. Jarrett (UCT) Infrared Window Telescopes ISM -- Galaxies Infrared Window Near-infrared: 1 to 5 µm Mid-infrared: 5 to 50 µm

More information

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys W. J. Welch Radio Astronomy Laboratory, Depts of EECS and Astronomy University of California Berkeley, CA 94720 Tel: (510) 643-6543

More information

Global star formation in the Milky Way from the VIALACTEA Project

Global star formation in the Milky Way from the VIALACTEA Project IRAS 100µm 47 > l > 36 Global star formation in the Milky Way from the VIALACTEA Project S. Molinari INAF/IAPS, Rome IAPS, Arcetri, Catania, Univ. Salento, Napoli, Trieste D. Elia, A.M. Di Giorgio, M.

More information

Mapping the Galaxy using hydrogen

Mapping the Galaxy using hydrogen The Swedish contribution to EU-HOU: A Hands-On Radio Astronomy exercise Mapping the Galaxy using hydrogen Daniel Johansson Christer Andersson Outline Introduction to radio astronomy Onsala Space Observatory

More information

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4 Dark Matter ASTR 333/433 Spring 2016 Today Stars & Gas essentials about stuff we can see First Homework on-line Due Feb. 4 Galaxies are made of stars - D. Silva (1990) private communication Stars Majority

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: alles@biol.wwu.edu Introduction NGC 3603 is a giant HII region in the Carina spiral arm

More information

Chapter 15 The Milky Way Galaxy

Chapter 15 The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Guidepost This chapter plays three parts in our cosmic drama. First, it introduces the concept of a galaxy. Second, it discusses our home, the Milky Way Galaxy, a natural

More information

Galactic Diffuse Gamma-Ray Emission

Galactic Diffuse Gamma-Ray Emission Galactic Diffuse Gamma-Ray Emission The Bright Gamma-Ray Sky 7 th AGILE Workshop 29 Sep - 1 Oct, 2009 Stanley D. Hunter NASA/GSFC stanley.d.hunter@nasa.gov Galactic Diffuse Emission The beginning: OSO

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

FIFI-LS Commissioning

FIFI-LS Commissioning FIFI-LS Commissioning March April 2014 Dr. Randolf Klein FIFI-LS Instrument Scientist USRA 1 The Team S. Beckmann A. Bryant S. Colditz C. Fischer F. Fumi N. Geis R. Hönle R. Klein A. Krabbe (PI) L. Looney

More information

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms (Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms Schedule for the next week Office hours: Mon 5:00 6:20pm = Baker; Thu 3:20 4:40 = Lindner + Sections A, B, F = Baker; Sections

More information

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 25 In-Class Notes: Beyond Our Solar System Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions

More information