Detection of bearing faults in high speed rotor systems

Size: px
Start display at page:

Download "Detection of bearing faults in high speed rotor systems"

Transcription

1 Detection of bearing faults in high speed rotor systems Jens Strackeljan, Stefan Goreczka, Tahsin Doguer Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau Institut für Mechanik, Universitätsplatz 2, Magdeburg, Germany , Abstract Classical roller bearing faults detection methods may fail if the shaft speed of the rotor is very high. Laboratory centrifuges or high speed pumps with rotational speeds higher than rpm typical devices where such problem could occur. Features derived from the signal structure of typical single faults in the outer or inner race (envelop technique, kurtosis) are not sufficient, because the rate of excitation of the bearing and corresponding structure is too fast. In this paper, fault diagnosis of high speed rolling element bearings due to localized defects are only one aspect. Our experience from different investigations is that high speed rotor systems require a complete other definition of faults, because even strong vibrations are generated by very small geometrical imperfections on the different bearing components. In consequence a complete new strategy for the signal processing step and the feature selection is necessary. The paper describes as well experimental results as theoretical studies based on an advanced bearing fault simulation software tool. This helps to improve the understanding of the measured time signals and offers opportunities to change parameters and estimate fault signals. 1. Introduction Rolling element bearings are vital parts for rotating machinery, so that it is very important to understand vibrational signal characteristics for condition monitoring and for the life time prediction. For this purpose simulations may supply a considerable help because the acquisition of data from the real machinery for an investigation may be time-consuming and cost-intensive. About the simulation of bearing vibrations previous work can be found in literature (1-5) and fault simulation have been proposed by several authors. In this paper focus is given to the investigation of fault induced bearing vibrations using a self written multi-body program in MATLAB. The relevant size of faults to be simulated was determined according to real world applications. Pitting and spalling, which are representatives of fatigue, are caused by repeated stresses on a finite volume and result in material loss from the surface, leaving craters and cavities with a depth of µm. Further, brinelling is caused by excessive local load, resulting in plastic deformations on the raceway due to rolling element indentation. Besides, false brinelling can occur without excessive load, due to vibrations and micromotions between contact partners in non-rotating times, leaving marks on the surface with a very small depth to width ratio, compared to brinelling. Especially wind

2 turbines, vehicle wheel bearings and pumps are affected by this fault type. Extended faults can be considered as raceway imperfections, which appear in a region with increased roughness and surface irregularity, compared to the rest of the surface. The length of such faults is usually beyond the distance between the adjacent rolling elements in circumferencal direction. Further, the whole circumference can be affected, depending on the operating conditions such as speed, load and service time. Such faults are also referred to as generalised roughness. The difficulty in detecting such faults is that they do not necessarily exhibit distinct frequencies in vibrational signals. Typical representatives of extended faults can be found in high speed vacuum pumps, which operate at up to 530 Hz. Despite of the frequent incidence of bearing faults due to generalised roughness in industrial applications, the literature concerning the detection and diagnosis of such faults is rather rare, compared to the investigations on local faults. Generalised roughness can be a more challenging task, compared to detection of local surface defects, owing to the fact that such faults not necessarily exhibit characteristic defect frequencies. Investigations in simulation, failure diagnosis and condition monitoring can lead to improved productivity, reliability, safety of personnel and machine. For the development of new, reliable techniques realistic vibration signal is essential. In contrast to measuring the healty signature on a normal operating machine, gaining the data, which posesses the signature of seeded faults, may be a more time-consuming and cost-intensive task. Simulations can deliver realistic vibrational data and they can supply a considerable help in defining characteristics of surface imperfections, in form of localised and extended faults, and developing new methods for fault detection and diagnosis. Simulated data can be used for feature extraction and feature selection, thus can be fed to the clasifiers as learning set (6-9). 2 Rolling element bearing model We model the rolling element bearing as a multi body system with rigid bodies, consisting of inner ring, outer ring, rolling elements and cage. Each element has three degrees of freedom (DoF). The motion on the plane is defined by two orthogonal translational directions x i, y i and one rotational direction φ i. Bearing components are connected by spring and damper elements to the origin of the inertial system. Figure 1 shows the model basically. Governing equation of the bearing system is a second order differential equation, which can be expressed as... (1) where mass matrix M, damping matrix D and stiffness matrix C possess entries on main diagonal and contain the variables for mass m, moment of inertia J, damping d and stiffness c. Displacement, velocity and acceleration of each element are contained in the vectors u, and in translational and rotational directions. 2

3 In the force vector forces in translational directions and momentum around the rotational axis are considered for each element. The total load on each element results from the addition of contact force, friction force, gravity load, applied external force and momentum around the rotational axis. In order to obtain the solution, Equation 1 is represented in state space, which then takes the typical form of an initial value problem. Numerical integration is performed, using the initial values of and. Built-in solvers in Matlab can be used for the time integration. Figure 1. Interaction between bearing components based on Kelvin-Voigt-Formulation 3 Models for bearing faults Major bearing faults can be categorised into localised and extended faults. Three models are implemented in the proposed simulation program to consider both fault types. Localised faults can be taken into account by two models. The simplest form is to introduce a time varying stiffness on the left hand side of (1) in matrix C, however application of this model is not presented in this paper. In the second model, assuming a small gap, the local fault is established by circular fault elements (FE), which are attached tangentially to the raceway or to the surface of the rolling element. FE are body fixed and placed by using simple trigonometric constrains. A gap can simply be introduced by its position, width, radius of FE and the number of FEs. Circular form of FE allows the application of Herzian contact theory as the rolling element enters and leaves the gap. Thus, impact is introduced to the right hand side of (1) in. Response signal exhibits decaying form according to the damping characteristics of the system. Further, several distributed gaps on the raceway and roughsurfaces can be modeled, though this could be a time consuming task, due to contact detection. The third model is proposed for simulation of extended faults, generalised roughness and raceway waviness. Main idea is to represent the radius deviation of the considered body depending on the location. Thus, waviness and irregularity can be introduced to raceways or to rolling elements. 3

4 3.1 Model for surface imperfections The waviness of the profile at a position function can be described by a simple sinusoidal,... (2) where a and λ represent amplitude and wavelength, respectively. Resulting profile is shown in Figure 2. Figure 2. Definition of raceway imperfection for a single sinusoidal function More complex surface irregularities can be approximated by extending (2). In this case, the profile can be thought as the sum of sinusoidal components:,... (3) where and are random numbers between zero and one. Random amplitudes are represented by and random frequencies by, respectively. The position for the considered time step is obtained by means of the ring radius and the angular position of the rolling element:,...(4) When obtaining, the angular position of the ring must also be taken into account, due to its rotational degree of freedom (see, Figure 4). Variation of raceway radius is referred to as and can be scaled by an arbitrary value and :,...(5) Finally the ring radius with variation due to raceway imperfection time step of integration can be written as in the considered,... (6) 4

5 Outer ring raceway imperfection of a ball bearing Type 6003 is shown in Figure 3. The dimensions of this bearing can be found in manufacturer s catalog. Number of sinusoidal components was 50 and the maximum deviation was set to 0.5 µm, thus the maximum range of a sample was 1 µm. Note that the y axis is in µm and the x-axis is in mm. Figure 3. Raceway imperfection as sum of sinusoidal components Figure 4. Model of outer ring with raceway imperfection (body fixed) In Figure 4 the continuous curve shows the variation of raceway radius in an overstated way. Dashed circle is the ideal raceway. In the simulations was given in µm and the number of sinusoidal components was much higher than illustrated in the plot. 4. Applications 4.1 Unbalance and rough surface The test object was a high speed pumpe with a vertical rotor orientation at a fixed rotor speed of 530 Hz. The shaft is supported in two roller bearings (type 6003). The signal data was acquired from the lower roller bearing with an acceleration sensor, which was mounted directly on the bearing with a rate of samples/s. Figure 5 shows the raw signal for the intact situation in a time scale of one second and in a zoom covering 5

6 15 ms. The exact balancing quality could not be determined but in general the rotor is excellent balanced to avoid a high vibration level. Figure 5. Measured acceleration signal of the outer race vibration and zoom the the signal The spectra give no additional information. It doesn t contain a significant peak at the rotational frequency or an excitation of eigenfrequencies. Figure 6. Spectrum of measured signal of outer race vibration from Figure 5 The measured signals for the faulty state combine influences of unbalance and roughness on the outer ring acceleration. An unbalance force of approximately 100 N was generated by a small mass which rotates which the rotorspeed. The acceleration 6

7 level increases to maximum values of 1500 m/s 2 (Figure 7). For the validation we use exactly the force of 100 N. A possible natural unbalance of the rotor was neglected but we the estimate the effect much lower than 100 N. The roughness is fixed to 1.3 µm in accordance to Eq. 2 (Figure 8). Figure 7. Measured signal of outer race vibration with unbalance and imperfect outer race Due the the very time consuming simulation the time length in Figure 8 is imitated to 15 ms. The simulation is in very good accordance to the measured signal in Figure 7. Figure 8. Simulated signal of the outer race vibration with unbalance and an imperfect outer race 7

8 A more detailed view offers the spectra of the measured and the simulated data in Figure 9. The peaks at 530 Hz are more or less on the same level and the amplitudes and frequencies in the range between 8-10 khz fits well together. Figure 9. Comparison between the spectra of the measured signal and the simulated data (lower) of an outer race vibration with unbalance and imperfect outer race The situation will complety change if the the fault type is a local defect. It is widely known that these kinds of faults exhibit a character of decaying pulse train. A series of bursts occur due to the impact between the rolling element and the local defect, which can be shown, for instance, on the basis of time signals. At very high speeds though, this typical character vanishes. Due to the high rate of pulse generation the bursts are moved closer together on the time axis. In other words, the damping is not sufficient enough, so that before the one burst can vanish completely, the following pulse already occurs. To be more certain about this problem, the simulated signals in Figure 10 were presented. The time signals in Figure 10 clearly show the difficulty. On a first confrontation with such a signal and without any knowledge about the operating conditions, one can only guess, what type of a fault the bearing possesses. The first two suggestions could be the unbalance and/or the local defect. The Spectra delivere some insight. In both graphics the first peak from the left at 576 Hz gives the rotational speed f I, which indicates the presence of unbalance. The second peak from the left is at the outer ring ball pass frequency f obp (2384 Hz), which at 8

9 first sight indicates a local defect. But it is very small, so that it cannot clearly be associated with a local defect. Its appearance could also be governed by the preload due to the mounting of bearing. It can clearly be seen that the amplitude of the peak at about 7 khz rises from 400 m/s 2 to 550 m/s 2. This can be a good indicator for a growing local defect on the outer ring. Figure 10. Raw time signal and spectrum of outer ring acceleration in vertical direction. Local defect with a extension of 1 mm A closer look at one of the time signals can help to extract some information. Thus, Figure 11 shows a zoomed section of the raw time signal from Figure 10. The first two adjacent data from the left delivere a frequency, which corresponds to the natural frequency of the outer ring f 0. The next two adjacent datatips point out the outer ring ball pass frequency f obp. Figure 11. Zoom in raw time signal from Figure 10 (left) 9

10 One can see the excited bursts due to the local defect, which decay according to f 0. The number of excitations per one revolution of the inner ring can be given by n = f obp / f I, which in this case can be rounded to four. The bursts are repeated at a distance about 0.4 ms (f obp ), so that also four bursts can be counted per one revolution in the signal. Although they highly differ in form due to unbalance, based on the two randomly picked adjacent bursts in Figure 11, it can clearly be shown that the former burst cannot vanish completely when the following one arises. If a classifier should automatically generate feature from signals like this a couple of classical techniques like envelope spectra may fail. It would a challenge to derive feature and reliable classifiers for this conditions. References 1. S Sassi, B Badri, M Thomas, A Numerical Model to Predict Damaged Bearing Vibrations. Journal of Vibration and Control 2007; 13; , N Sawalhi, Diagnostics, prognostics and fault simulation for rolling element bearings. Dissertation, University of New South Wales, T Doguer and J Strackeljan, Simulation of vibrations due to bearing race imperfections, The eighth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2011, 20th - 22th June T Doguer and J Strackeljan, Simulation of fault and clearance induced effects in rolling element bearings, The seventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, 21 st 24 th June T Doguer, J Strackeljan and P Tkachuk, Using a dynamic roller bearing model under varying fault parameters, The sixth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, pp , 22 th 25 th S Lahdelma and E Juuso. Advanced Signal Processing in Mechanical Fault Diagnosis, Proceedings of The fifth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, pp , June S Lahdelma and E Juuso, Generalised lp Norms in Vibration Analysis of Process Equipment, Proceedings of The seventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, June S Lahdelma and E Juuso J Strackeljan, Using Condition Indices and Generalised Norms for Complex Fault Detection, Proceedings of the Aachener Kolloquium für Instandhaltung, Diagnose und Anlagenüberwachung, T Doguer and J Strackeljan, New time domain method for the detection of roller bearing defects, Proceedings of The fifth International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, pp , June

A 3D-ball bearing model for simulation of axial load variations

A 3D-ball bearing model for simulation of axial load variations A 3D-ball bearing model for simulation of axial load variations Petro Tkachuk and Jens Strackeljan Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau Institut für Mechanik Universitätsplatz

More information

Simulation of fault and clearance induced effects in rolling

Simulation of fault and clearance induced effects in rolling Simulation of fault and clearance induced effects in rolling element earings Tahsin Doguer, Jens Strackeljan Otto-von-Guericke-Universität Magdeurg, Fakultät für Maschinenau Institut für Mechanik, Universitätsplatz

More information

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements

A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements A nonlinear dynamic vibration model of defective bearings: The importance of modelling the finite size of rolling elements Alireza Moazenahmadi, Dick Petersen and Carl Howard School of Mechanical Engineering,

More information

Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads

Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads Observation and analysis of the vibration and displacement signature of defective bearings due to various speeds and loads Alireza-Moazen ahmadi a) Carl Howard b) Department of Mechanical Engineering,

More information

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 - 1 - Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 In version 4.3 nonlinear rolling element bearings can be considered for transient analyses. The nonlinear forces are calculated with a

More information

New Representation of Bearings in LS-DYNA

New Representation of Bearings in LS-DYNA 13 th International LS-DYNA Users Conference Session: Aerospace New Representation of Bearings in LS-DYNA Kelly S. Carney Samuel A. Howard NASA Glenn Research Center, Cleveland, OH 44135 Brad A. Miller

More information

CHAPTER 4 FAULT DIAGNOSIS OF BEARINGS DUE TO SHAFT RUB

CHAPTER 4 FAULT DIAGNOSIS OF BEARINGS DUE TO SHAFT RUB 53 CHAPTER 4 FAULT DIAGNOSIS OF BEARINGS DUE TO SHAFT RUB 4.1 PHENOMENON OF SHAFT RUB Unwanted contact between the rotating and stationary parts of a rotating machine is more commonly referred to as rub.

More information

ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM

ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM ON NUMERICAL ANALYSIS AND EXPERIMENT VERIFICATION OF CHARACTERISTIC FREQUENCY OF ANGULAR CONTACT BALL-BEARING IN HIGH SPEED SPINDLE SYSTEM Tian-Yau Wu and Chun-Che Sun Department of Mechanical Engineering,

More information

Improved 2D model of a ball bearing for the simulation of vibrations due to faults during run-up

Improved 2D model of a ball bearing for the simulation of vibrations due to faults during run-up Journal of Physics: Conference Series Improved D model of a ball bearing for the simulation of vibrations due to faults during run-up To cite this article: Matej Tadina and Miha Boltežar J. Phys.: Conf.

More information

Validation of a physics-based model for rolling element bearings with diagnosis purposes

Validation of a physics-based model for rolling element bearings with diagnosis purposes 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 Validation of a physics-based model for rolling element bearings with diagnosis

More information

Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment

Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment 5 th Australasian Congress on Applied Mechanics, ACAM 007 10-1 December 007, Brisbane, Australia Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment Abdul Md Mazid Department

More information

Bearing fault diagnosis based on EMD-KPCA and ELM

Bearing fault diagnosis based on EMD-KPCA and ELM Bearing fault diagnosis based on EMD-KPCA and ELM Zihan Chen, Hang Yuan 2 School of Reliability and Systems Engineering, Beihang University, Beijing 9, China Science and Technology on Reliability & Environmental

More information

Numerical run-up simulation of a turbocharger with full floating ring bearings

Numerical run-up simulation of a turbocharger with full floating ring bearings Numerical run-up simulation of a turbocharger with full floating ring bearings E. Woschke, C. Daniel, S. Nitzschke, J. Strackeljan Institut für Mechanik, Otto-von-Guericke Universität Magdeburg, Germany

More information

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Paper ID No: 23 Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Dr. Magnus Karlberg 1, Dr. Martin Karlsson 2, Prof. Lennart Karlsson 3 and Ass. Prof. Mats Näsström 4 1 Department

More information

Detection of Severity of Bearing Cage fault of Induction Motor with Externally Induced Vibration

Detection of Severity of Bearing Cage fault of Induction Motor with Externally Induced Vibration Detection of Severity of Bearing Cage fault of Induction Motor with Externally Induced Vibration Abhishek Gupta 1,Rohank Agarwal 2, Manan Temani 3, Rahul Kr. Gangwar 4 B.Tech Student, Dept. of EE, Indian

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support radial loads under high speed operating conditions.

More information

Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing

Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing Journal of Engineering Mechanics and Machinery (207) Vol. 2, Num. Clausius Scientific Press, Canada Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing Y. Chen,a,*, G.F.

More information

RAMS seminar. Vibration by Viggo Pedersen

RAMS seminar. Vibration by Viggo Pedersen RAMS seminar Vibration by Viggo Pedersen Vibration and Machine Learning Features Label Predictive maintenance Probability of failure Remaining useful life Machine learning when: Complex process Large amounts

More information

Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces

Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces Ball Bearing Model Performance on Various Sized Rotors with and without Centrifugal and Gyroscopic Forces Emil Kurvinen a,, Jussi Sopanen a, Aki Mikkola a a Lappeenranta University of Technology, Department

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life.

Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life. Design, Modelling and Analysis of a Single Raw Four Point Angular Contact Split Ball Bearing to Increase its Life. Pranav B. Bhatt #1, Prof. N. L. Mehta *2 #1 M. E. Mechanical (CAD/CAM) Student, Department

More information

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Surendra N. Ganeriwala (Suri) & Zhuang Li Mark H. Richardson Spectra Quest, Inc Vibrant Technology, Inc 8205 Hermitage Road

More information

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS ROLLER BEARIG FAILURES I REDUCTIO GEAR CAUSED BY IADEQUATE DAMPIG BY ELASTIC COUPLIGS FOR LOW ORDER EXCITATIOS ~by Herbert Roeser, Trans Marine Propulsion Systems, Inc. Seattle Flexible couplings provide

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Mechanical Vibrations Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module - 12 Signature analysis and preventive maintenance Lecture - 3 Field balancing

More information

Due Date 1 (for confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm

Due Date 1 (for  confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm ! ME345 Modeling and Simulation, Spring 2010 Case Study 3 Assigned: Friday April 16! Due Date 1 (for email confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission):

More information

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM J. E. Jam, F. Meisami Composite Materials and Technology Center Tehran, IRAN jejaam@gmail.com N. G. Nia Iran Polymer & Petrochemical Institute, Tehran,

More information

Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques

Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques Misalignment Fault Detection in Dual-rotor System Based on Time Frequency Techniques Nan-fei Wang, Dong-xiang Jiang *, Te Han State Key Laboratory of Control and Simulation of Power System and Generation

More information

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine

Static and Dynamic Analysis of mm Steel Last Stage Blade for Steam Turbine Applied and Computational Mechanics 3 (2009) 133 140 Static and Dynamic Analysis of 1 220 mm Steel Last Stage Blade for Steam Turbine T. Míšek a,,z.kubín a aškoda POWER a. s., Tylova 57, 316 00 Plzeň,

More information

An Analysis Technique for Vibration Reduction of Motor Pump

An Analysis Technique for Vibration Reduction of Motor Pump An Analysis Technique for Vibration Reduction of Motor Pump Young Kuen Cho, Seong Guk Kim, Dae Won Lee, Paul Han and Han Sung Kim Abstract The purpose of this study was to examine the efficiency of the

More information

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load. Technical data Load Rating & Life Under normal conditions, the linear rail system can be damaged by metal fatigue as the result of repeated stress. The repeated stress causes flaking of the raceways and

More information

Department of Mechanical FTC College of Engineering & Research, Sangola (Maharashtra), India.

Department of Mechanical FTC College of Engineering & Research, Sangola (Maharashtra), India. VALIDATION OF VIBRATION ANALYSIS OF ROTATING SHAFT WITH LONGITUDINAL CRACK 1 S. A. Todkar, 2 M. D. Patil, 3 S. K. Narale, 4 K. P. Patil 1,2,3,4 Department of Mechanical FTC College of Engineering & Research,

More information

VIBRATION ANALYSIS AND REPAIR PROCESS FOR THE VENTILATION SYSTEM FOR SMOKE DRAIN IN THE THERMAL POWER PLANT

VIBRATION ANALYSIS AND REPAIR PROCESS FOR THE VENTILATION SYSTEM FOR SMOKE DRAIN IN THE THERMAL POWER PLANT Applied Engineering Letters Vol.3, No.1, 40-45 (2018) e-issn: 2466-4847 VIBRATION ANALYSIS AND REPAIR PROCESS FOR THE VENTILATION SYSTEM FOR SMOKE DRAIN IN THE THERMAL POWER PLANT Original scientific paper

More information

Structural System, Machines and Load Cases

Structural System, Machines and Load Cases Machine-Induced Vibrations Machine-Induced Vibrations In the following example the dynamic excitation of two rotating machines is analyzed. A time history analysis in the add-on module RF-DYNAM Pro - Forced

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRST Volume 3 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

MV Module 5 Solution. Module 5

MV Module 5 Solution. Module 5 Module 5 Q68. With a neat diagram explain working principle of a vibrometer. D-14-Q5 (a)-10m Ans: A vibrometer or a seismometer is an instrument that measures the displacement of a vibrating body. It can

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 113 CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 7. 1 INTRODUCTION Finite element computational methodology for rolling contact analysis of the bearing was proposed and it has several

More information

1836. Simulation of rolling bearing vibration in diagnostics

1836. Simulation of rolling bearing vibration in diagnostics 1836. Simulation of rolling bearing vibration in diagnostics Robert Kostek 1, Bogdan Landowski 2, Łukasz Muślewski 3 University of Science and Technology, Bydgoszcz, Poland 1 Corresponding author E-mail:

More information

Effect of Amplitude at some bearing speeds and radial loads on Defective Deep Groove Ball Bearing

Effect of Amplitude at some bearing speeds and radial loads on Defective Deep Groove Ball Bearing Effect of Amplitude at some bearing speeds and radial loads on Defective Deep Groove Ball Bearing Deepak Mishra 1, Pradeep Kumar Soni 2 1P.G. Student, Department of Mechanical Engineering, M.A.N.I.T, Bhopal,

More information

Transactions on Engineering Sciences vol 1, 1993 WIT Press, ISSN

Transactions on Engineering Sciences vol 1, 1993 WIT Press,  ISSN Contact analysis in clamping-roller free-wheel clutches K. Diirkopp, W. Jorden Laboratorium fur Konstruktionslehre, Uni-GH- Paderborn, D~4 790 Paderborn, Germany ABSTRACT Free-wheels are coupling devices

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

Dynamic Analysis for Needle Roller Bearings Under Planetary Motion

Dynamic Analysis for Needle Roller Bearings Under Planetary Motion NTN TECHNICAL REVIEW No.75 2007 Technical Paper Dynamic Analysis for Needle Roller Bearings Under Planetary Motion Tomoya SAKAGUCHI A dynamic analysis tool for needle roller bearings in planetary gear

More information

Parametrically Excited Vibration in Rolling Element Bearings

Parametrically Excited Vibration in Rolling Element Bearings Parametrically Ecited Vibration in Rolling Element Bearings R. Srinath ; A. Sarkar ; A. S. Sekhar 3,,3 Indian Institute of Technology Madras, India, 636 ABSTRACT A defect-free rolling element bearing has

More information

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track...

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track... Contents 1 Introduction... 1 1.1 The Basic Function of the Wheel/rail System.... 1 1.2 Significance of Dynamics on the Operation of Rail Vehicles... 2 1.3 On the History of Research in the Field of Railway

More information

Centrifugal pumps (Agriculture) unbalance and shaft Dynamic analysis from the experimental data in a rotor system

Centrifugal pumps (Agriculture) unbalance and shaft Dynamic analysis from the experimental data in a rotor system Research Article International Journal of Current Engineering and Technology E-ISSN 77 416, P-ISSN 347-5161 14 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Centrifugal

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 8 Balancing Lecture - 1 Introduce To Rigid Rotor Balancing Till

More information

1820. Selection of torsional vibration damper based on the results of simulation

1820. Selection of torsional vibration damper based on the results of simulation 8. Selection of torsional vibration damper based on the results of simulation Tomasz Matyja, Bogusław Łazarz Silesian University of Technology, Faculty of Transport, Gliwice, Poland Corresponding author

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Dynamic Analysis of Pelton Turbine and Assembly

Dynamic Analysis of Pelton Turbine and Assembly Dynamic Analysis of Pelton Turbine and Assembly Aman Rajak, Prateek Shrestha, Manoj Rijal, Bishal Pudasaini, Mahesh Chandra Luintel Department of Mechanical Engineering, Central Campus, Pulchowk, Institute

More information

Name: Fall 2014 CLOSED BOOK

Name: Fall 2014 CLOSED BOOK Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY

CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY 81 CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY 6.1 INTRODUCTION For obtaining products of good quality in the manufacturing industry, it is absolutely

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Armin Rasch * Abstract

Armin Rasch * Abstract Optimization strategy for the identification of elastomer parameters of truck mountings for the improved adjustment of Multi-Body Simulation data with measured values on rough road conditions Armin Rasch

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

64. Measurement of vibrations of rotating elements in a folding machine

64. Measurement of vibrations of rotating elements in a folding machine 64. Measurement of vibrations of rotating elements in a folding machine K. Ragulskis 1, L. Ragulskis 2, E. Kibirkštis 3, S. V. Augutis 4, D. Vainilavičius 5, V. Miliūnas 6, D. Pauliukaitis 7 1 Kaunas University

More information

Bearing fault diagnosis based on TEO and SVM

Bearing fault diagnosis based on TEO and SVM Bearing fault diagnosis based on TEO and SVM Qingzhu Liu, Yujie Cheng 2 School of Reliability and Systems Engineering, Beihang University, Beijing 9, China Science and Technology on Reliability and Environmental

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Spacecraft Structures

Spacecraft Structures Tom Sarafin Instar Engineering and Consulting, Inc. 6901 S. Pierce St., Suite 384, Littleton, CO 80128 303-973-2316 tom.sarafin@instarengineering.com Functions Being Compatible with the Launch Vehicle

More information

An auto-balancer device for high spin-drying frequencies (LoWash Project)

An auto-balancer device for high spin-drying frequencies (LoWash Project) MATEC Web of Conferences 20, 03001 (2015) DOI: 10.1051/matecconf/20152003001 c Owned by the authors, published by EDP Sciences, 2015 An auto-balancer device for high spin-drying frequencies (LoWash Project)

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES von Karman Institute for Fluid Dynamics Lecture Series Programme 1998-99 AEROELASTICITY IN AXIAL FLOW TURBOMACHINES May 3-7, 1999 Rhode-Saint- Genèse Belgium STRUCTURAL DYNAMICS: BASICS OF DISK AND BLADE

More information

PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE

PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE Journal of Sound and Vibration (1997) 208(1), 1 14 PARAMETER ESTIMATION IN IMBALANCED NON-LINEAR ROTOR-BEARING SYSTEMS FROM RANDOM RESPONSE Department of Mechanical Engineering, Indian Institute of Technology,

More information

Chapter 3. Experimentation and Data Acquisition

Chapter 3. Experimentation and Data Acquisition 48 Chapter 3 Experimentation and Data Acquisition In order to achieve the objectives set by the present investigation as mentioned in the Section 2.5, an experimental set-up has been fabricated by mounting

More information

Vibration modelling of machine tool structures

Vibration modelling of machine tool structures Vibration modelling of machine tool structures F. Haase, S. Lockwood & D.G. Ford The Precision Engineering Centre, University of Huddersfield (UK) Abstract Productivity in modem machine tools is acheved

More information

Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach

Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach Cleveland State University EngagedScholarship@CSU ETD Archive 2011 Vibratory Behavior of Rolling Element Bearings: a Lagrangian Approach Phani Krishna Kalapala Cleveland State University How does access

More information

Experimental Modal Analysis of a Flat Plate Subjected To Vibration

Experimental Modal Analysis of a Flat Plate Subjected To Vibration American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-6, pp-30-37 www.ajer.org Research Paper Open Access

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION Journal of Machine Engineering, 08, Vol. 8, No., 5 5 ISSN 895-7595 (Print) ISSN 9-807 (Online) Received: December 07 / Accepted: 0 August 08 / Published online: 8 September 08 Yingying ZHANG * Volker WITTSTOCK

More information

RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS

RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS Aktuálne geotechnické riešenia a ich verifikácia, Bratislava 05.- 06. júna 2017 RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS Johannes Pistrol 1, Dietmar Adam 2 ABSTRACT: The application

More information

S.C. Rulmenti S.A. Barlad Romania Republicii Street No

S.C. Rulmenti S.A. Barlad Romania Republicii Street No SELECTION OF BEARING SIZE Basic load ratings The size of a bearing is selected considering the load in the used rolling bearing and also depends on the operational rating life and prescribed operating

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Induction Motor Bearing Fault Detection with Non-stationary Signal Analysis

Induction Motor Bearing Fault Detection with Non-stationary Signal Analysis Proceedings of International Conference on Mechatronics Kumamoto Japan, 8-1 May 7 ThA1-C-1 Induction Motor Bearing Fault Detection with Non-stationary Signal Analysis D.-M. Yang Department of Mechanical

More information

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Shengyong Zhang Assistant Professor of Mechanical Engineering College of Engineering and Technology Purdue University

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00 Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko FSD3020xxx-x_01-00 1 Content Introduction Vibration problems in EDGs Sources of excitation 2 Introduction Goal of this

More information

Experimental Study on the Velocity Dependent Drag Coefficient and Friction in an Automatic Ball Balancer

Experimental Study on the Velocity Dependent Drag Coefficient and Friction in an Automatic Ball Balancer TCHNISCH MCHANIK, 7, 1, (2017), 62 68 submitted: May 19, 2017 xperimental Study on the Velocity Dependent Drag Coefficient and Friction in an Automatic Ball Balancer L. Spannan, C. Daniel,. Woschke The

More information

ABSOLUTE AND RELATIVE VIBRATION INCONSISTENCIES IN DYNAMIC ANALYSIS OF HIGH POWER TURBOGENERATOR ROTATING SYSTEM

ABSOLUTE AND RELATIVE VIBRATION INCONSISTENCIES IN DYNAMIC ANALYSIS OF HIGH POWER TURBOGENERATOR ROTATING SYSTEM 45 ABSOLUTE AND RELATIVE VIBRATION INCONSISTENCIES IN DYNAMIC ANALYSIS OF HIGH POWER TURBOGENERATOR ROTATING SYSTEM Vytautas BARZDAITIS*, Remigijus JONUŠAS*, Rimantas DIDŽIOKAS**, Vytautas BARZDAITIS V***.

More information

Influence of friction coefficient on rubbing behavior of oil bearing rotor system

Influence of friction coefficient on rubbing behavior of oil bearing rotor system Influence of friction coefficient on rubbing behavior of oil bearing rotor system Changliang Tang 1, Jinfu ang 2, Dongjiang Han 3, Huan Lei 4, Long Hao 5, Tianyu Zhang 6 1, 2, 3, 4, 5 Institute of Engineering

More information

Blade Group Fatigue Life Calculation under Resonant Stresses

Blade Group Fatigue Life Calculation under Resonant Stresses TEM Journal. Volume 6, Issue, Pages 73-80, ISSN 227-8309, DOI: 0.842/TEM6-25, February 207. Blade Group Fatigue Life Calculation under Resonant Stresses Zlatko Petreski, Goce Tasevski Ss. Cyril and Methodius

More information

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Journal of Robotics, Networking and Artificial Life, Vol., No. (June 24), 97-2 Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Weigang Wen School

More information

Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing

Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing G. Chen College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R.C. e-mail: cgzyx@263.net Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

Final Examination Thursday May Please initial the statement below to show that you have read it

Final Examination Thursday May Please initial the statement below to show that you have read it EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

PROJECT 2 DYNAMICS OF MACHINES 41514

PROJECT 2 DYNAMICS OF MACHINES 41514 PROJECT 2 DYNAMICS OF MACHINES 41514 Dynamics of Rotor-Bearing System Lateral Vibrations and Stability Threshold of Rotors Supported On Hydrodynamic Bearing and Ball Bearing. Ilmar Ferreira Santos, Prof.

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Dynamic Analysis of Rotor-Ball Bearing System of Air Conditioning Motor of Electric Vehicle

Dynamic Analysis of Rotor-Ball Bearing System of Air Conditioning Motor of Electric Vehicle International Journal of Mechanical Engineering and Applications 2015; 3(3-1): 22-28 Published online February 13, 2015 (http://www.sciencepublishinggroup.com/j/ijmea) doi: 10.11648/j.ijmea.s.2015030301.14

More information

Nonlinear Dynamics Analysis of a Gear-Shaft-Bearing System with Breathing Crack and Tooth Wear Faults

Nonlinear Dynamics Analysis of a Gear-Shaft-Bearing System with Breathing Crack and Tooth Wear Faults Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2015, 9, 483-491 483 Open Access Nonlinear Dynamics Analysis of a Gear-Shaft-Bearing System with Breathing

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Piedmont Chapter Vibration Institute Training Symposium 10 May, 2012 FIELD BALANCING OF ROTATING MACHINERY.

Piedmont Chapter Vibration Institute Training Symposium 10 May, 2012 FIELD BALANCING OF ROTATING MACHINERY. Piedmont Chapter Vibration Institute Training Symposium 10 May, 2012 FIELD BALANCING OF ROTATING MACHINERY WWW.PdMsolutions.com Presenter: William T. Pryor III Senior Technical Director PdM Solutions,

More information

Dynamics of assembled structures of rotor systems of aviation gas turbine engines of type two-rotor

Dynamics of assembled structures of rotor systems of aviation gas turbine engines of type two-rotor Dynamics of assembled structures of rotor systems of aviation gas turbine engines of type two-rotor Anatoly А. Pykhalov 1, Mikhail А. Dudaev 2, Mikhail Ye. Kolotnikov 3, Paul V. Makarov 4 1 Irkutsk State

More information

2108. Free vibration properties of rotate vector reducer

2108. Free vibration properties of rotate vector reducer 2108. Free vibration properties of rotate vector reducer Chuan Chen 1, Yuhu Yang 2 School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China 1 Corresponding author E-mail: 1 chenchuan1985728@126.com,

More information

VIBRATION ANALYSIS OF ROTARY DRIER

VIBRATION ANALYSIS OF ROTARY DRIER Engineering MECHANICS, Vol. 14, 2007, No. 4, p. 259 268 259 VIBRATION ANALYSIS OF ROTARY DRIER František Palčák*, Martin Vančo* In this paper the transfer of vibration from motor to the bottom group of

More information