Lab VI Light Emitting Diodes ECE 476

Size: px
Start display at page:

Download "Lab VI Light Emitting Diodes ECE 476"

Transcription

1 Lab VI Light Emitting Diodes ECE 476 I. Purpose This experiment examines the properties of light emitting diodes. The use of the monochromator for studying the spectrum of light sources is also examined. II. Background The Oriel Spectrometer System The spectrum of the LEDs will be examined using a grating monochromator. Diffraction grating were studied in an earlier experiment. The monochromator we will be using has a 1200 line/mm grating with a narrow slit at the input of the monochromator. The narrower the slit is for the input of the light, the higher the resulting spectral resolution. In order to automate the spectrum data collection, the output spectrum from the monochromator is measured using an array of 512 diodes. This diode array is interfaced to a computer that displays and prints the spectrum. Instructions for the Oriel Spectrometer System: A-1. Log into the computer using your engineering domain username and password. A-2. Launch the program: Start Menu->All Programs->SpectraArray SL->SpectraArray SL A-3. Three graphs are displayed when the program starts. The graph to the right is the sample graph; select this graph by clicking on the upper right corner. The square in the upper right corner should be blue to indicate that this is the selected graph. A-4. Select Mode->Spectrum from the menu. Make sure that Sample (raw data) and Nanometers are selected. Press OK. A-5. Set the monochromator center wavelength by setting the micrometer dial. For a center wavelength of 400 nm -- set the micrometer to 4.0 mm. For a center wavelength of 500 nm -- set the micrometer to 5.0 mm. For a center wavelength of 600 nm -- set the micrometer to 6.0 mm. etc. For a center wavelength of 900 nm -- set the micrometer to 9.0 mm. Note: The micrometer needs to be set to 4.0, 5.0, 6.0, 7.0, 8.0 or 9.0 mm. The monochromator typically measures center wavelength plus/minus nm. A-6. Select "Setup->Wavelength Calibration" from the menu. Enter the C0, C1 and C2 coefficients appropriate for the micrometer setting. The table below gives the appropriate

2 coefficients. Micrometer Setting C0 C1 C2 4.0 mm e mm e mm e mm e mm e mm e-6 A-7. Select "realtime mode" icon. Align spectrometer with the light source to be measured. When a spectrum signal is obtained and it looks good, use the mouse to select the "single spectrum" icon to record the spectrum of interest. If the size of the spectrum signal exceeds 3500 or the peaks are flat at the top, the detector is saturating and the light source either needs to be attenuated (or moved further away), or the integration time needs to be reduced (use the clock symbol icon). If the signal is too weak-- either the alignment of the light source to the monochromator needs to be improved, the light source needs to be placed closer to the monochromator, or the integration time needs to be increased (use the clock symbol icon). The appearance of the spectrum graph can be adjusted using the zoom and move icon symbols. A view of just the sample window can be obtained by clicking window-> open sample window-> channel 1. Watts to lumens conversion for a monochromatic source Figure 1: Graph for Watts to lumens conversion.

3 For the desired wavelength, find the "relative sensitivity" from the graph and divide it by 100. Multiply this by 673 lm/w. Then multiply that by the optical power of the source (in Watts). The result should be luminous flux, given in units of lumens. If the wavelength of the light is beyond the range of the graph, assume a measurement of 0 lumens. Luminous_Flux = Relative_Sensitivity/100 * Power * 673 lm/w Remember that this conversion only works for monochromatic light sources (i.e. intensity highly concentrated around one wavelength). This is an OK approximation to make for LEDs. III. Procedure Part A: Light Output versus Input Current Set-up 1. In this experiment the optical output power of two LEDs will be measured as a function of the input current. There is a vector board with all of the LEDs on it in your cabinet. The board can be seen below in figure 2. Figure 2: LED board.

4 1. Connect the variable DC power supply to the high-efficiency red LED. Using the specifications sheet provided in the lab, look up the wavelength and maximum allowable input current of the LED. Calibrate the optical power meter to the wavelength of the LED. Measure the LED output light as the current is increased from 5 to 25mA. Record the light output at 5mA current increments. Plot the results. Note: It is impossible to measure current to an accuracy of 5 ma using the DC power supply. 2. Repeat this measurement with the infrared LED provided. Also use the IR sensor card to examine the shape of the light output, and describe it in your lab report. Part B: LED Efficiency 1. LED efficiency is a percent: (light power out)/(electrical power in) * 100. Different LEDs have different efficiencies. Measure the efficiency of several LEDs at a current of 25 ma. To get the electrical power to the LED you will need to measure the voltage across the LED. To get the most accurate light power measurements, change the wavelength setting of the optical power meter to match that of the LED that you are measuring. Measure the efficiency of the following LEDs: Infrared High-efficiency red Standard red Yellow Green Blue 2. Construct a table showing the following data for each of the six LEDs: LED color Wavelength Light power in watts at 25 ma Electrical power in watts at 25 ma Efficiency Light output in lumens at 25 ma (the curve to convert from watts to lumens was handed out earlier in class) Part C: LED Spectrum Set-up 1. You will be measuring light spectrums using the Oriel Spectrometer System in the lab. Follow the instructions given in the Background section to set up and operate the system. 1. Set the center wavelength on the dial to 600 nm (6.0mm on the dial). Direct light from the room s lights into the monochromator by adjusting its position. Take a spectrum

5 measurement. You should observe a strong signal at nm and two small signals at nm and nm (to see the small signals you may have to increase the integration time considerably). These are spectral lines of mercury, which is one of the elements in the light bulb. The line is a strong green emission line of mercury and the two other lines are called the yellow doublet lines of mercury. The other gas in the light bulb is argon. Note: If the intensity of the light is 3500 on the computer display, the diodes have saturated because of too much light. Adjust the monochromator position and repeat your measurement. If the peaks are very small (<100) and noisy, you need to increase the light level. Often the alignment of the light entering the monochromator needs to be improved. Either print out the spectrum you measured, or capture the screenshot and save it to your network drive to include in your lab report. 2. Measure the spectrum of the high efficiency red LED. Obtain printouts. From your printout determine the width of the LED emission (in nm) at half the peak output power. IV. Conclusion Draw conclusions on the comparison of different LEDs as well as the usefulness of the spectroscopy system.

Measuring Planck s Constant By Martin Hackworth

Measuring Planck s Constant By Martin Hackworth Measuring Planck s Constant By Martin Hackworth Historical Perspective and Physics Theory Max Planck (1858-1947) was born in Kiel Germany and attended schools in Munich and Berlin. Planck was an early

More information

Experiment 4 Radiation in the Visible Spectrum

Experiment 4 Radiation in the Visible Spectrum Experiment 4 Radiation in the Visible Spectrum Emission spectra can be a unique fingerprint of an atom or molecule. The photon energies and wavelengths are directly related to the allowed quantum energy

More information

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy Physics 476LW Atomic Spectroscopy 1 Introduction The description of atomic spectra and the Rutherford-Geiger-Marsden experiment were the most significant precursors of the so-called Bohr planetary model

More information

A Determination of Planck s Constant with LED s written by Mark Langella

A Determination of Planck s Constant with LED s written by Mark Langella A Determination of Planck s Constant with LED s written by Mark Langella The purpose of this experiment is to measure Planck s constant, a fundamental physical constant in nature, by studying the energy

More information

where c m s (1)

where c m s (1) General Physics Experiment 6 Spectrum of Hydrogen s Emission Lines Objectives: < To determine wave lengths of the bright emission lines of hydrogen. < To test the relationship between wavelength and energy

More information

Observation of Atomic Spectra

Observation of Atomic Spectra Observation of Atomic Spectra Introduction In this experiment you will observe and measure the wavelengths of different colors of light emitted by atoms. You will first observe light emitted from excited

More information

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Phys316 Exploration 2: Verifying Stefan-Boltzmann Relationship Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Where A is the effective radiating area,

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm).

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm). Modern Physics Laboratory Spectra and Spectrometers, Balmer Spectrum of Hydrogen In this experiment, we display continuous and discrete emission spectra and explore the use of several types of spectrometers.

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Physics 197 Lab 11: Spectrometer

Physics 197 Lab 11: Spectrometer Physics 197 Lab 11: Spectrometer Equipment: Item Part # Qty per Team # of Teams Red Tide Spectrometer Vernier V-Spec 1 7 7 Computer with Logger Pro 1 7 7 Optical Fiber Assembly For Red Tide 1 7 7 Ring

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Modern Physics Laboratory MP2 Blackbody Radiation

Modern Physics Laboratory MP2 Blackbody Radiation Purpose MP2 Blackbody Radiation In this experiment, you will investigate the spectrum of the blackbody radiation and its dependence on the temperature of the body. Equipment and components Tungsten light

More information

Experiment P05: Position, Velocity, & Acceleration (Motion Sensor)

Experiment P05: Position, Velocity, & Acceleration (Motion Sensor) PASCO scientific Physics Lab Manual: P05-1 Experiment P05: Position, Velocity, & Acceleration (Motion Sensor) Concept Time SW Interface Macintosh file Windows file linear motion 30 m 500 or 700 P05 Position,

More information

How Do We Get Light from Matter: The Origin of Emission

How Do We Get Light from Matter: The Origin of Emission 1 How Do We Get Light from Matter: The Origin of Emission Lines ORGANIZATION Pre-Lab: Origins of Lines Mode: inquiry, groups of 2 Grading: lab notes and post-lab questions Safety: no special requirements

More information

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA PHYSICS 1/14 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA The purpose of this laboratory is to study energy levels of the Hydrogen atom by observing the spectrum of emitted light when Hydrogen atoms make transitions

More information

Exp. P-6 Blackbody Radiation

Exp. P-6 Blackbody Radiation Exp. P-6 Blackbody Radiation Updated Feb 2019 by A. Azelis, M. Hohlmann Equipment Prism Spectrophotometrer Kit Optics Bench (60 cm) Spectrophotometer Accessory Kit Aperture Bracket High Sensitivity Light

More information

2. To measure the emission lines in the hydrogen, helium and possibly other elemental spectra, and compare these to know values.

2. To measure the emission lines in the hydrogen, helium and possibly other elemental spectra, and compare these to know values. 4.1. Purpose 1. To record several elemental emission spectra using arc lamps filled with each element using the Ocean Optics USB650 spectrometer. 2. To measure the emission lines in the hydrogen, helium

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

Lab 6: Spectroscopy Due Monday, April 10

Lab 6: Spectroscopy Due Monday, April 10 Lab 6: Spectroscopy Due Monday, April 10 The aim of this lab is to provide you with hands-on experience obtaining and analyzing spectroscopic data. In this lab you will be using a spectrograph to obtain

More information

Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration

Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration Representations of Motion in One Dimension: Speeding up and slowing down with constant acceleration Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and supports, PASCO Smart Cart, two cart

More information

Jasco V-670 absorption spectrometer

Jasco V-670 absorption spectrometer Laser Spectroscopy Labs Jasco V-670 absorption spectrometer Operation instructions 1. Turn ON the power switch on the right side of the spectrophotometer. It takes about 5 minutes for the light source

More information

Pre-Lab Exercises Lab 2: Spectroscopy

Pre-Lab Exercises Lab 2: Spectroscopy Pre-Lab Exercises Lab 2: Spectroscopy 1. Which color of visible light has the longest wavelength? Name Date Section 2. List the colors of visible light from highest frequency to lowest frequency. 3. Does

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law The primary objective of this experiment is to determine the concentration of an unknown cobalt (II) chloride solution. You will use a Vernier SpectroVis

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Physics Lab #2: Spectroscopy

Physics Lab #2: Spectroscopy Physics 10263 Lab #2: Spectroscopy Introduction This lab is meant to serve as an introduction to the science of spectroscopy. In this lab, we ll learn about how emission and absorption works, and we ll

More information

THERMAL RADIATION. The electromagnetic radiation emitted by a hot tungsten filament will be studied.

THERMAL RADIATION. The electromagnetic radiation emitted by a hot tungsten filament will be studied. THERMAL.1 THERMAL RADIATION The electromagnetic radiation emitted by a hot tungsten filament will be studied. Theory: The Stefan-Boltzmann Law relates the rate at which an object radiates thermal energy

More information

EMISSION SPECTROSCOPY

EMISSION SPECTROSCOPY IFM The Department of Physics, Chemistry and Biology LAB 57 EMISSION SPECTROSCOPY NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - Understand the principle of atomic emission spectra. - Know how to acquire

More information

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens

More information

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law.

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law. PHY222 LAB 6 AMPERE S LAW Print Your Name Print Your Partners' Names Instructions Read section A prior to attending your lab section. You will return this handout to the instructor at the end of the lab

More information

Experiment P14: Collision Impulse & Momentum (Force Sensor, Motion Sensor)

Experiment P14: Collision Impulse & Momentum (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P14-1 Experiment P14: (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 45 m 500 or 700 P14 Collision P14_COLL.SWS EQUIPMENT

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor)

Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor) Name Class Date Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P11 Impulse.DS P14 Collision P14_COLL.SWS

More information

Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P43-1 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED

More information

Lab 5: Calculating an equilibrium constant

Lab 5: Calculating an equilibrium constant Chemistry 162 The following write-up is inaccurate for the particular chemicals we are using. Please have all sections up through and including the data tables ready before class on Wednesday, February

More information

Hooke s Law. Equipment. Introduction and Theory

Hooke s Law. Equipment. Introduction and Theory Hooke s Law Objective to test Hooke s Law by measuring the spring constants of different springs and spring systems to test whether all elastic objects obey Hooke s Law Equipment two nearly identical springs,

More information

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction Introduction In this lab you will use a diffraction grating to split up light into its various colors (like a rainbow). You will assemble a spectrometer, incorporating the diffraction grating. A spectrometer

More information

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone Energy (ev) Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone Eugene T. Smith, PhD Goals: 1. Calibrate spectroscope using mercury emission source or fluorescent bulb. 2.

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information

Double-Slit Interference

Double-Slit Interference Double-Slit Interference 1. Objectives. The objective of this laboratory is to verify the double-slit interference relationship. 2. Theory. a. When monochromatic, coherent light is incident upon a double

More information

Exercise 5: The electromagnetic spectrum and spectroscopy

Exercise 5: The electromagnetic spectrum and spectroscopy Physics 223 Name: Exercise 5: The electromagnetic spectrum and spectroscopy Objectives: Experience an example of a discovery exercise Predict and confirm the relationship between measured quantities Using

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

DRAFT COPY. Leicester, U.K. Experimental Competition

DRAFT COPY. Leicester, U.K. Experimental Competition 1 of 5 07/06/2017, 21:41 DRAFT COPY 31 st International Physics Olympiad Leicester, U.K. Experimental Competition Wednesday, July 12 th, 2000 Please read this first: 1. The time available is 2 ½ hours

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

9 Reflectance Spectroscopy

9 Reflectance Spectroscopy Name: Date: 9 Reflectance Spectroscopy 9.1 Introduction With this lab, we will look at the wavelength dependence of the visible reflectance of various objects, and learn what this can tell us about the

More information

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom.

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom. Name Energy and the Electron: Atomic View and Argumentation Part I: Warm Up 1. Consider the following questions individually: a. What do you know about the structure of the atom? b. Draw what you think

More information

Lab 3 Momentum Change and Impulse

Lab 3 Momentum Change and Impulse Lab 3 Momentum Change and Impulse Objectives: < To measure the change in momentum of a cart in a collision and the impulse acting on it during the collision and to compare these values as a test of the

More information

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 007 American Society for Engineering Education Conference Proceedings

More information

CHEMISTRY SEMESTER ONE

CHEMISTRY SEMESTER ONE EMISSION SPECTROSCOPY Lab format: this lab is a remote lab activity Relationship to theory: This activity covers the relationship between colors and absorbed/emitted light, as well as the relationship

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Lab 12 - Conservation of Momentum And Energy in Collisions

Lab 12 - Conservation of Momentum And Energy in Collisions Lab 12 - Conservation of Momentum And Energy in Collisions Name Partner s Name I. Introduction/Theory Momentum is conserved during collisions. The momentum of an object is the product of its mass and its

More information

Physics P202, Lab #12. Rydberg s Constant

Physics P202, Lab #12. Rydberg s Constant Physics P0, Lab #1 Rydberg s Constant The light you see when you plug in a hydrogen gas discharge tube is a shade of lavender, with some pinkish tint at a higher current. If you observe the light through

More information

Visible spectrum 1. Spectroscope. Name:

Visible spectrum 1. Spectroscope. Name: Name: Visible spectrum 1 You know by now that different atoms have different configurations of electrons. You also know that electrons generate electromagnetic waves when they oscillate (remember that

More information

Blackbody Radiation EX-9920 ScienceWorkshop Page 1 of 8. Blackbody Radiation

Blackbody Radiation EX-9920 ScienceWorkshop Page 1 of 8. Blackbody Radiation Blackbody Radiation EX-9920 ScienceWorkshop Page 1 of 8 EQUIPMENT Blackbody Radiation INCLUDED: 1 Prism Spectrophotometer Kit OS-8544 1 Optics Bench (60 cm) OS-8541 1 Spectrophotometer Accessory Kit OS-8537

More information

Developing a Scientific Theory

Developing a Scientific Theory Name Date Developing a Scientific Theory Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1 Universal Table Clamp (ME-9376B)

More information

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY INTRODUCTION Much of what we know about the structures of atoms and molecules has been learned through experiments in which photons (electromagnetic radiation

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

Note to 8.13 students:

Note to 8.13 students: Note to 8.13 students: Feel free to look at this paper for some suggestions about the lab, but please reference/acknowledge me as if you had read my report or spoken to me in person. Also note that this

More information

Experiment 24: Spectroscopy

Experiment 24: Spectroscopy Experiment 24: Spectroscopy Figure 24.1: Spectroscopy EQUIPMENT High Voltage Power Supply Incandescent Light Source (3) Gas Discharge Tubes: 1. Helium 2. Hydrogen 3. Unknown Element Spectrometer Felt (1)

More information

LAB 3: SPECTROSCOPY. GEOL104: Exploring the Planets

LAB 3: SPECTROSCOPY. GEOL104: Exploring the Planets LAB 3: SPECTROSCOPY OBJECTIVES: I. Review the basics of spectroscopy, including how to identify different materials on the basis of spectra. II. Develop an understanding of general spectroscopic features

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Physics 231 Lab 8 & 9

Physics 231 Lab 8 & 9 Physics 231 Lab 8 & 9 Atomic Spectra and Energy & Momentum for a multi-particle system (you) Name: KEY Partner: Equipment: Force Plate, Motion Sensor mounted on high rod, hydrogen emission tubes, hand-held

More information

Force vs time. IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report

Force vs time. IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report Newton s second law may be written r r F dt = p where F is the force and p is the change in momentum. The area under the force vs. time

More information

Atomic Spectra. d sin θ = mλ (1)

Atomic Spectra. d sin θ = mλ (1) Atomic Spectra Objectives: To measure the wavelengths of visible light emitted by atomic hydrogen and verify that the measured wavelengths obey the empirical Rydberg formula. To observe emission spectra

More information

Measuring the time constant for an RC-Circuit

Measuring the time constant for an RC-Circuit Physics 8.02T 1 Fall 2001 Measuring the time constant for an RC-Circuit Introduction: Capacitors Capacitors are circuit elements that store electric charge Q according to Q = CV where V is the voltage

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

( J s)( m/s)

( J s)( m/s) Ch100: Fundamentals for Chemistry 1 LAB: Spectroscopy Neon lights are orange. Sodium lamps are yellow. Mercury lights are bluish. Electricity is doing something to the electrons of these elements to produce

More information

Pizza Box Spectrometer Data & Report

Pizza Box Spectrometer Data & Report Pizza Box Spectrometer Data & Report Team Name: Members: Section or lab meeting time: Data & Observations: 1. How do you think the grating works? Explain in several sentences. 2. If you were to use your

More information

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri 1 Name: Laboratory Exercise Atomic Spectra A Kirchoff Potpourri Purpose: To examine the atomic spectra from several gas filled tubes and understand the importance of spectroscopy to astronomy. Introduction

More information

Astronomy 101 Lab: Spectra

Astronomy 101 Lab: Spectra Name: Astronomy 101 Lab: Spectra You will access your textbook in this lab. Pre-Lab Assignment: In class, we've talked about different kinds of spectra and what kind of object produces each kind of spectrum.

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

Elementary charge and Millikan experiment Students worksheet

Elementary charge and Millikan experiment Students worksheet Tasks This experiment deals with the observation of charged oil droplets, which are accelerated between two capacitor plates.. Measure some rise and fall times of oil droplets at different voltages. Determine

More information

Laboratory Atomic Emission Spectrum

Laboratory Atomic Emission Spectrum Laboratory Atomic Emission Spectrum Pre-Lab Questions: Answer the following questions in complete sentences by reading through the Overview and Background sections below. 1. What is the purpose of the

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

Circular Motion and Centripetal Force

Circular Motion and Centripetal Force [For International Campus Lab ONLY] Objective Measure the centripetal force with the radius, mass, and speed of a particle in uniform circular motion. Theory ----------------------------- Reference --------------------------

More information

RC Circuit (Power amplifier, Voltage Sensor)

RC Circuit (Power amplifier, Voltage Sensor) Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

More information

EXPERIMENT 17: Atomic Emission

EXPERIMENT 17: Atomic Emission EXPERIMENT 17: Atomic Emission PURPOSE: To construct an energy level diagram of the hydrogen atom To identify an element from its line spectrum. PRINCIPLES: White light, such as emitted by the sun or an

More information

The Quantum Model of the Hydrogen Atom

The Quantum Model of the Hydrogen Atom Physics 109 Science 1 Experiment 1 1 The Quantum Model of the Hydrogen Atom In this experiment you will use a spectrometer to determine the wavelengths of the visible lines of atomic hydrogen. The goal

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s PHYS 1040 - General Physics II Lab The Balmer Series for Hydrogen Source Purpose: The purpose of this experiment is to analyze the emission of light from a hydrogen source and measure and the wavelengths

More information

High Resolution Optical Spectroscopy

High Resolution Optical Spectroscopy PHYS 3719 High Resolution Optical Spectroscopy Introduction This experiment will allow you to learn a specific optical technique with applications over a wide variety of phenomena. You will use a commercial

More information

Laboratory Exercise. Quantum Mechanics

Laboratory Exercise. Quantum Mechanics Laboratory Exercise Quantum Mechanics Exercise 1 Atomic Spectrum of Hydrogen INTRODUCTION You have no doubt been exposed many times to the Bohr model of the atom. You may have even learned of the connection

More information

PHYS2627/PHYS2265 Introductory quantum physics LABORATORYMANUAL Experiment 1: Experiments of Thermal Radiation

PHYS2627/PHYS2265 Introductory quantum physics LABORATORYMANUAL Experiment 1: Experiments of Thermal Radiation I. Introduction PHYS2627/PHYS2265 Introductory quantum physics 2265-1LABORATORYMANUAL Experiment 1: Experiments of Thermal Radiation The electromagnetic radiation emitted by a body as a result of its temperature

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Physics Labs with Computers, Vol. 1 P05: Free Fall (Picket Fence) A

Physics Labs with Computers, Vol. 1 P05: Free Fall (Picket Fence) A Name Class Date Lab 4: Acceleration of a Freely Falling Picket Fence (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P05 Free Fall.ds P06 Free Fall Picket Fence

More information

PHYSICS 116 SPECTROSCOPY: DETERMINATION OF THE WAVELENGTH OF LIGHT

PHYSICS 116 SPECTROSCOPY: DETERMINATION OF THE WAVELENGTH OF LIGHT Name Date Lab Time Lab TA PHYSICS 116 SPECTROSCOPY: DETERMINATION OF THE WAVELENGTH OF LIGHT I. PURPOSE To use a diffraction grating to investigate the spectra produced by several unknown gas discharge

More information

Atomic Spectra & Electron Energy Levels

Atomic Spectra & Electron Energy Levels CHM151LL: ATOMIC SPECTRA & ELECTRON ENERGY LEVELS 1 Atomic Spectra & Electron Energy Levels OBJECTIVES: To measure the wavelength of visible light emitted by excited atoms to calculate the energy of that

More information

Instructor Resources

Instructor Resources SPECTROSCOPY Quantitative Analysis with Light Instructor Resources Learning Objectives The objectives of this experiment are to: identify band and line spectra, and relate the physical state of a light-emitting

More information

How to Make Photometric & Colorimetric Measurements of Light Sources using an Ocean Optics Spectrometer and SpectraSuite Software

How to Make Photometric & Colorimetric Measurements of Light Sources using an Ocean Optics Spectrometer and SpectraSuite Software How to Make Photometric & Colorimetric Measurements of Light Sources using an Ocean Optics Spectrometer and SpectraSuite Software This is a concise guide to setting up and calibrating your Ocean Optics

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010 Introduction In this lab, you will use a diffraction grating to split up light into the various colors which make up the different wavelengths of the visible electromagnetic spectrum. You will assemble

More information

Using the spectrometer

Using the spectrometer MATERIALS LIST Investigation 13.1 Stars and Spectroscopy 4 Spectrometer (also known as a spectroscope) 4 Colored pencils 4 Incandescent light source ChAPTER 13 The Universe How can we use a spectrometer

More information

Atomic Spectra HISTORY AND THEORY

Atomic Spectra HISTORY AND THEORY Atomic Spectra HISTORY AND THEORY When atoms of a gas are excited (by high voltage, for instance) they will give off light. Each element (in fact, each isotope) gives off a characteristic atomic spectrum,

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton's Laws P10 Atwood s.ds P13 Atwood's Machine P13_ATWD.SWS Equipment

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Chem 310 rd. 3 Homework Set Answers

Chem 310 rd. 3 Homework Set Answers -1- Chem 310 rd 3 Homework Set Answers 1. A double line labeled S 0 represents the _ground electronic_ state and the _ground vibrational_ state of a molecule in an excitation state diagram. Light absorption

More information