Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST

Size: px
Start display at page:

Download "Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST"

Transcription

1 Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST Jean Schneider, A. Boccaletti, P. Baudoz, G. Tinetti, D. Stam, R. Gratton,...

2 Eth Zurich Univ. of Leiden Univ. Amsterdam CSL IAP Univ. of Torun Obs. Tauntenburg LUAN Univ. Nantes Obs. Geneva LAOG UCL London ULg LUTH LESIA Instituto de astrofisica de Canaria 2

3 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 3

4 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 4

5 How are you doing mate? not yet 5

6 Complementarity of techniques 6

7 Complementarity of techniques Gaia Astrometry Sim 7

8 Complementarity of techniques Geometrical probability Light curve quality 8

9 Complementarity of techniques Larger telescopes Dedicated instruments 9

10 Complementarity of techniques 2/3 ~Time m/s cm/s 10

11 Complementarity of techniques 11

12 Complementarity of techniques Direct imaging Transit SPECTRA & POLARIZATION 12

13 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 13

14 Ground/space complementarity We are here Space-based 2011 Ground-based >

15 Ground/space complementarity We are here HST m + OA Silla, CFH Space-based > m + OA VLT, Keck, Gemini Ground-based 15

16 Ground/space complementarity HST m + OA Silla, CFH Space-based We are here m + OA VLT, Keck, Gemini > m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based 16

17 Ground/space complementarity HST m + OA Silla, CFH Space-based We are here m + OA VLT, Keck, Gemini m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based > /42m + XAO EPICS, PFI, etc with ELTs NIR : EGPs intermediate Old + Super-Earth? 17

18 Ground/space complementarity Space-based We are here HST SPICA MIR: Old EGPs JWST NIR + MIR: Old EGPs m + OA Silla, CFH m + OA VLT, Keck, Gemini m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based > /42m + XAO EPICS, PFI, etc with ELTs NIR : EGPs intermediate Old + Super-Earth? 18

19 Ground/space complementarity Space-based We are here HST SPICA MIR: Old EGPs? Darwin/TPF-I MIR: Earth TPF-C Vis: Earth JWST NIR + MIR: Old EGPs m + OA Silla, CFH m + OA VLT, Keck, Gemini m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based? > /42m + XAO EPICS, PFI, etc with ELTs NIR : EGPs intermediate Old + Super-Earth? 19

20 Ground/space complementarity Space-based We are here HST? SPICA MIR: Old EGPs Opportunity for space projects JWST NIR + MIR: Old EGPs m + OA Silla, CFH m + OA VLT, Keck, Gemini m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based Darwin/TPF-I MIR: Earth TPF-C Vis: Earth Visible light? Old giants & super-earths > /42m + XAO EPICS, PFI, etc with ELTs NIR : EGPs intermediate Old + Super-Earth? 20

21 Ground/space complementarity Space-based We are here HST JWST NIR + MIR: Old EGPs m + OA Silla, CFH m + OA VLT, Keck, Gemini m + XAO SPHERE / GPI / HICIAO NIR : EGPs young/massive/nearby Ground-based? SPICA MIR: Old EGPs Darwin/TPF-I MIR: Earth TPF-C Vis: Earth SEE COAST Vis/NIR Old Jupiter + Super Earth ? > /42m + XAO EPICS, PFI, etc with ELTs NIR : EGPs intermediate Old + Super-Earth? 21

22 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 22

23 See Coast will characterize : What's expected : Mature Jupiter (~5Gyr) Super Earth Brighter Atmosphere, climate Variations, habitable Around nearby star Exo-zodiacal disk And unexpected objects! Stay open-minded (cf. hot Jupiter in 1995) 23

24 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 24

25 Spectroscopy : chemical composition Solid planets Giant planets 25

26 Polarimetry : physical informations Clouds / albedo Polarization Spectrum Jupiter-like planet - Stam et al

27 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 27

28 How many detections? Nearby stars (<20pc) 1e-6 1e-7 =600nm 1e-5 IWA Planet-star contrast (V band) 1e-4 Gratton et al. 1e-8 1e-9 1e-10 1e Planet-star (arcsec) Raphaëlseparation Galicher 10 28

29 How many detections? Nearby stars (<20pc) 1e-7 =1.2 m Gratton et al. IWA 1e-6 =600nm 1e-5 IWA Planet-star contrast (V band) 1e-4 1e-8 1e-9 1e-10 1e Planet-star (arcsec) Raphaëlseparation Galicher 10 29

30 How many detections? Nearby stars (<20pc) 1e-7 =1.2 m 1e-6 Gratton et al. IWA 1e-5 =600nm IWA =400nm IWA Planet-star contrast (V band) 1e-4 1e-8 1e-9 1e-10 1e Planet-star (arcsec) Raphaëlseparation Galicher 10 30

31 How many detections? Nearby stars (<20pc) 1e-7 =1.2 m 1e-6 Gratton et al. IWA 1e-5 =600nm IWA =400nm IWA Planet-star contrast (V band) 1e-4 1e-8 1e-9 1e-9 1e-10 1e-10 1e Planet-star (arcsec) Raphaëlseparation Galicher 10 31

32 How many detections? Nearby stars (<20pc) 1e-6 1e-7 1e-8 =1.2 m 1e-5 =600nm IWA =400nm Planet-star contrast (V band) 1e-4 Gratton et al. 1) 1e-10 contrast 2) Small inner working angle 1e-9 1e-9 1e-10 1e-10 1e Planet-star (arcsec) Raphaëlseparation Galicher 10 32

33 Outline Why direct imaging? Why from space (SEE COAST)? Which kinds of objects? Spectroscopy and polarimetry interest? What's detected by 1.5meter telescope? Which technology? 33

34 SEE Coast : proposed to Cosmic Vision Parameter Value Hyperbolic secondary mirror 4,85m long Entrance pupil diameter D > 1.5m Spectral Range 0.4 to 1.2 µ m Spectral Resolution R>40 Contrast (after speckle 2 λ /D < 10-9 Contrast (after speckle 4 λ /D < Orbit for 6 months visibility, high thermal stability L2 Lagrangian Two folding mirrors Focal plane Parabolic primary mirror Submitted in 2007 to ESA Cosmic Vision 34

35 SEE Coast : proposed to Cosmic Vision Parameter Value 1) Coronagraph Entrance pupil diameter D > 1.5m Range 0.4 to 1.2 µ m 2) Wavefront control (aspectral few nm rms from science image) R>40 3) Differential imagingspectral Resolution Contrast (after speckle < 10 2 λ /D 4) Integral field spectrometer/polarimeter -9 Hyperbolic secondary mirror 4,85m long Contrast (after speckle 4 λ /D < Orbit for 6 months visibility, high thermal stability L2 Lagrangian Two folding mirrors Focal plane Parabolic primary mirror Submitted in 2007 to ESA Cosmic Vision 35

36 Achromatic coronagraph Laboratory planet Multi-stage four quadrant phase mask coronagraph Contrast : at 4.5 /D = 20% Visible light Baudoz et al. 2007, 08 36

37 Wavefront sensor in the science image Speckle nulling in a limited FOV with a DM (JPL) 37

38 Wavefront sensor in the science image Speckle nulling in a limited FOV with a DM (JPL) SCC measure Actuator position SH measure Self-coherent camera (SCC) Galicher et al. 2008, 2009 Remember Marion Mas' talk 38

39 Integral Field Spectrometer + Self coherent camera Aberrations = function of (Fresnel propagation) Wavelength Classical IFS strongly limited Wavelength One solution : SCC IFS Field of view position 39

40 Summary Direct imaging : unexplored domain of parameter space Space telescope : visible light See coast requires : 1e 10 contrast and small IWA (2 /D) Spectrometry low resolution spectra of young/old Jupiter (<20pc, 8 10 AU) colors of super Earths (<10pc, 4 5 AU) low resolution spectra of self luminous planets (NIR) Polarimetry : more physical informations See coast next steps : refine optical design and derive science cases technology with coronagraphy, wavefront control, differential imaging Cosmic vision proposal in late

41 Tha nk you fo r your atte ntio n If you want to participate in this project, please contact :, raphael.galicher 'at' obspm.fr Jean Schneider, jean.schneider 'at' obspm.fr 41

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. & E. Pantin, Complementarity of techniques

More information

EPICS: A planet hunter for the European ELT

EPICS: A planet hunter for the European ELT EPICS: A planet hunter for the European ELT M. Kasper, C. Verinaud, J.L. Beuzit, N. Yaitskova, A. Boccaletti, S. Desidera, K. Dohlen, T. Fusco, N. Hubin, A. Glindemann, R. Gratton, N. Thatte 42-m E-ELT

More information

ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations

ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations ExoPlanets Imaging Camera Spectrograph for the European ELT Simulations Christophe Vérinaud,Visa Korkiakoski Laboratoire d Astrophysique - Observatoire de Grenoble, France and EPICS consortium EPICS for

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

EPICS, the exoplanet imager for the E-ELT

EPICS, the exoplanet imager for the E-ELT 1st AO4ELT conference, 02009 (2010) DOI:10.1051/ao4elt/201002009 Owned by the authors, published by EDP Sciences, 2010 EPICS, the exoplanet imager for the E-ELT M. Kasper 1,a, J.-L. Beuzit 2, C. Verinaud

More information

Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich

Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich Imaging polarimetry of exo-planets with the VLT and the E-ELT Hans Martin SCHMID, ETH Zurich Collaborators: ETH Zurich: E. Buenzli, F. Joos, C. Thalmann (now at MPIA) VLT SPHERE: J.L. Beuzit, D. Mouillet,

More information

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD)

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) Searching for extrasolar planets with SPHERE Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) The field of extrasolar planets today At the moment 2017 planets have been discovered.

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Science with EPICS, the E-ELT planet finder

Science with EPICS, the E-ELT planet finder The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Proceedings IAU Symposium No. 276, 2010 c International Astronomical Union 2011 A. Sozzetti, M. G. Lattanzi & A. P.

More information

Direct imaging and characterization of habitable planets with Colossus

Direct imaging and characterization of habitable planets with Colossus Direct imaging and characterization of habitable planets with Colossus Olivier Guyon Subaru Telescope, National Astronomical Observatory of Japan University of Arizona Contact: guyon@naoj.org 1 Large telescopes

More information

Christian Marois Lawrence Livermore National Laboratory

Christian Marois Lawrence Livermore National Laboratory Christian Marois Lawrence Livermore National Laboratory -Detecting Exoplanets -Speckle noise attenuation techniques with specialized observation schemes and post-processing algorithms -Current On-sky performances

More information

Exoplanet High Contrast Imaging Technologies Ground

Exoplanet High Contrast Imaging Technologies Ground Exoplanet High Contrast Imaging Technologies Ground KISS Short Course: The Hows and Whys of Exoplanet Imaging Jared Males University of Arizona Telescope Diameter (Bigger is Better) Diameter: Collecting

More information

Application of Precision Deformable Mirrors to Space Astronomy

Application of Precision Deformable Mirrors to Space Astronomy Application of Precision Deformable Mirrors to Space Astronomy John Trauger, Dwight Moody Brian Gordon, Yekta Gursel (JPL) Mark Ealey, Roger Bagwell (Xinetics) Workshop on Innovative Designs for the Next

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT Ground-based Instrumentation for VLT, VLTI and E-ELT Raffaele Gratton (with strong help by Sandro D Odorico) VLT 2 nd generation instruments Launched in 2001, completed 2012 HAWK-I (2007): wide field (7.5

More information

Direct detection: Seeking exoplanet colors and spectra

Direct detection: Seeking exoplanet colors and spectra Direct detection: Seeking exoplanet colors and spectra John Trauger, JPL / Caltech Keck Institute for Space Studies Workshop Caltech -- 10 November 2009 (c) 2009 California Institute of Technology. Government

More information

The High Order Test Bench: Evaluating High Contrast Imaging Concepts for SPHERE and EPICS

The High Order Test Bench: Evaluating High Contrast Imaging Concepts for SPHERE and EPICS Telescopes and Instrumentation The High Order Test Bench: Evaluating High Contrast Imaging Concepts for SPHERE and EPICS Patrice Martinez 1 Emmanuel Aller-Carpentier 1 Markus Kasper 1 1 ESO The High Order

More information

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay MIRI, METIS and the exoplanets P.O. Lagage CEA Saclay French Co-PI of JWST-MIRI and Coordinator of European MIRI GTO on exoplanets Member of the ELT-METIS science team Why MIRI and METIS? Because of my

More information

Exoplanet Instrumentation with an ASM

Exoplanet Instrumentation with an ASM Exoplanet Instrumentation with an ASM Olivier Guyon1,2,3,4, Thayne Currie 1 (1) Subaru Telescope, National Astronomical Observatory of Japan (2) National Institutes for Natural Sciences (NINS) Astrobiology

More information

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA) TMT High-Contrast Exoplanet Science Michael Fitzgerald University of California, Los Angeles (UCLA) The Next Decade+ Demographics Kepler has provided rich census of radius/semimajoraxis space down to terrestrial

More information

Coronagraphic Imaging of Exoplanets with NIRCam

Coronagraphic Imaging of Exoplanets with NIRCam Coronagraphic Imaging of Exoplanets with NIRCam C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology For the NIRCam Team September 27, 2016 Copyright

More information

High Contrast Imaging: Direct Detection of Extrasolar Planets

High Contrast Imaging: Direct Detection of Extrasolar Planets High Contrast Imaging: Direct Detection of Extrasolar Planets James R. Graham University of Toronto Dunlap Institute and Astronomy & Astrophysics September 16, 2010 Exoplanet Science How and where to planets

More information

High Contrast Imaging: New Techniques and Scientific Perspectives for ELTs

High Contrast Imaging: New Techniques and Scientific Perspectives for ELTs High Contrast Imaging: New Techniques and Scientific Perspectives for ELTs Is there a path to life What game changing finding with ELTs? technologies can get us there? Olivier Guyon Subaru Telescope &

More information

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin Gemini Planet Imager from presentations provided by James Graham and Marshall Perrin Outline Ojectives The instrument Three examples of observations The GPI Exoplanet Survey 2 Objectives Radial velocity

More information

SPOCCIE. Sagan Polar Orbiting Coronagraph Camera for Imaging Exoplanets. Daniel Angerhausen Kerri Cahoy Ian Crossfield James Davidson Christoph Keller

SPOCCIE. Sagan Polar Orbiting Coronagraph Camera for Imaging Exoplanets. Daniel Angerhausen Kerri Cahoy Ian Crossfield James Davidson Christoph Keller Sagan Polar Orbiting Coronagraph Camera for Imaging Exoplanets Daniel Angerhausen Kerri Cahoy Ian Crossfield James Davidson Christoph Keller Neil Miller KaHe Morzinski Emily Rice John Trauger Ming Zhao

More information

Roadmap for PCS, the Planetary Camera and Spectrograph for the E-ELT

Roadmap for PCS, the Planetary Camera and Spectrograph for the E-ELT Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.12804 Roadmap for PCS, the Planetary Camera and Spectrograph for the E-ELT Markus

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Subaru-Australian collaboration on Technologies for Habitable Planet Spectroscopy

Subaru-Australian collaboration on Technologies for Habitable Planet Spectroscopy Subaru-Australian collaboration on Technologies for Habitable Planet Spectroscopy Mike Ireland Plus many others: thanks to Barnaby Norris and Nemanja Jovanovic for slides. Thanks to Yosuke Minowa for keeping

More information

Active wavefront control for high contrast exoplanet imaging from space

Active wavefront control for high contrast exoplanet imaging from space Active wavefront control for high contrast exoplanet imaging from space John Trauger Spirit of Lyot Conference U.C. Berkeley 6 June 2007 Testbed operations and modeling at JPL: John Trauger, Brian Kern,

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

arxiv: v1 [astro-ph.im] 10 Oct 2017

arxiv: v1 [astro-ph.im] 10 Oct 2017 Experimental parametric study of the Self-Coherent Camera arxiv:1710.03520v1 [astro-ph.im] 10 Oct 2017 Johan Mazoyer a, Pierre Baudoz a, Marion Mas ab, Gerard Rousset a,raphaël Galicher cd a LESIA, Observatoire

More information

Scientific context in 2025+

Scientific context in 2025+ Outline Scientific context and goals O 2 detection on an Exoplanet with the E-ELT? PCS concept and technological challenges Timeframe for E-ELT high-contrast imaging Scientific context in 2025+ GAIA: Know

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

The WFIRST Coronagraphic Instrument (CGI)

The WFIRST Coronagraphic Instrument (CGI) The WFIRST Coronagraphic Instrument (CGI) N. Jeremy Kasdin Princeton University CGI Adjutant Scientist WFIRST Pasadena Conference February 29, 2016 The Coronagraph Instrument Optical Bench Triangular Support

More information

E-ELT s View of Exoplanetary Atmospheres

E-ELT s View of Exoplanetary Atmospheres Exo-Abundances Workshop, May 12th 14th, Grenoble E-ELT s View of Exoplanetary Atmospheres Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,

More information

Survey of Present and Future Ground-Based Imaging Systems

Survey of Present and Future Ground-Based Imaging Systems Survey of Present and Future Ground-Based Imaging Systems Olivier Guyon (guyon@naoj.org) University of Arizona Subaru Telescope With material from : Rich Dekany, Ben Oppenheimer (Palm 3000, P1640) Bruce

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Direct imaging characterisation of (exo-) planets with METIS

Direct imaging characterisation of (exo-) planets with METIS Direct imaging characterisation of (exo-) planets with METIS Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA),

More information

The SPICA Coronagraph

The SPICA Coronagraph The SPICA Coronagraph 2007, Jun 7 th, UC BERKELEY K. Enya 1, L. Abe 2, S. Tanaka 1, T. Nakagawa 1, M. Tamura 2, H. Kataza 1, O. Guyon 3, SPICA Working Group ( 1: ISAS/JAXA, 2: NAOJ, 3: NAOJ/SUBARU observatory)

More information

Characterization of Extra-Solar Planets with Direct-Imaging Techniques

Characterization of Extra-Solar Planets with Direct-Imaging Techniques Characterization of Extra-Solar Planets with Direct-Imaging Techniques Science White Paper Submitted to Astro2010 February 15, 2009 Primary Author: Giovanna Tinetti University College London g.tinetti@ucl.ac.uk

More information

Pupil mapping Exoplanet Coronagraph Observer (PECO)

Pupil mapping Exoplanet Coronagraph Observer (PECO) Pupil mapping Exoplanet Coronagraph Observer (PECO) Olivier Guyon University of Arizona Subaru Telescope Thomas Greene (NASA Ames), Marie Levine (NASA JPL), Domenick Tenerelli (Lockheed Martin), Stuart

More information

Jean- Luc Beuzit and David Mouillet

Jean- Luc Beuzit and David Mouillet ONERA Scien,fic Days / Journées Scien,fiques Onera High Contrast Imaging / Imagerie à Haute Dynamique Perspec8ves for exoplanet imaging Jean- Luc Beuzit and David Mouillet Perspec8ve: back in 8me A rela8vely

More information

Searching for Earth-Like Planets:

Searching for Earth-Like Planets: Searching for Earth-Like Planets: NASA s Terrestrial Planet Finder Space Telescope Robert J. Vanderbei January 11, 2004 Amateur Astronomers Association of Princeton Peyton Hall, Princeton University Page

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III. Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

More information

Exoplanet Science with E-ELT/METIS

Exoplanet Science with E-ELT/METIS Science with E-ELT/METIS Sascha P. Quanz (ETH Zurich) METIS Project Scientist EPSC 2015 - Nantes 1 Oct 2015 Image credit: BBC METIS is a 3-19 micron imager and spectrograph... METIS instrument baseline

More information

STATUS OF SPACE BASED CORONOGRAPHIC MISSIONS. J.M. Le Duigou (CNES, optical department)

STATUS OF SPACE BASED CORONOGRAPHIC MISSIONS. J.M. Le Duigou (CNES, optical department) STATUS OF SPACE BASED CORONOGRAPHIC MISSIONS J.M. Le Duigou (CNES, optical department) High contrast imaging meeting, ONERA, 20-21th Januray 2015 CONTENTS introduction coronographs in space : HST/NICMOS-STIS

More information

Exoplanetary Science with the E-ELT

Exoplanetary Science with the E-ELT SF2A, MONTPELLIER, 4-7 JUNE 2013 Exoplanetary Science with the E-ELT Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM,

More information

High-Contrast Exoplanet Gemini. Christian Marois NRC-NSI, DAO GPI DA&A

High-Contrast Exoplanet Gemini. Christian Marois NRC-NSI, DAO GPI DA&A High-Contrast Exoplanet Imaging @ Gemini Christian Marois NRC-NSI, DAO GPI DA&A Gemini Altair 2001 ADI first ever testing Exoplanet Science with Altair/NIRI GDPS/IDPS/SONIC/Janson/DavidL (young stars)

More information

arxiv:astro-ph/ v1 2 Oct 2002

arxiv:astro-ph/ v1 2 Oct 2002 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The Extra-Solar Planet Imager (ESPI) arxiv:astro-ph/0210046v1 2 Oct 2002 P. Nisenson, G.J. Melnick, J. Geary,

More information

The Large UV Optical IR survey telescope. Debra Fischer

The Large UV Optical IR survey telescope. Debra Fischer The Large UV Optical IR survey telescope Debra Fischer Yale University How do we identify worlds that are most promising for life? Host star insolation determines the probability of retaining water. Habitable

More information

Science of extrasolar Planets A focused update

Science of extrasolar Planets A focused update Science of extrasolar Planets A focused update Raffaele Gratton, INAF Osservatorio Astronomico di Padova Extrasolar planets: a rapidly growing field of astronomy Top Tenz: Top 10 most important discoveries

More information

Exoplanets at the E-ELT era

Exoplanets at the E-ELT era Towards Other Earths II: The Star Planet Connection, Porto, September 15-19 th, 2014 Exoplanets at the E-ELT era Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France ESO-Project

More information

How Giovanni s Balloon Borne Telescope Contributed to Today s Search for Life on Exoplanets

How Giovanni s Balloon Borne Telescope Contributed to Today s Search for Life on Exoplanets How Giovanni s Balloon Borne Telescope Contributed to Today s Search for Life on Exoplanets Wesley A. Jet Propulsion Laboratory, California Ins:tute of Technology Symposium for Giovanni Fazio Harvard Smithsonian

More information

Tuesday Nov 18, 2014 Rapporteurs: Aki Roberge (NASA GSFC) & Matthew Penny (Ohio State)

Tuesday Nov 18, 2014 Rapporteurs: Aki Roberge (NASA GSFC) & Matthew Penny (Ohio State) Tuesday Nov 18, 2014 Rapporteurs: Aki Roberge (NASA GSFC) & Matthew Penny (Ohio State) Speaker Neil Zimmerman Mike McElwain Ilya Poberezhskiy Doug Lisman Tiffany Glassman Avi Shporer Jennifer Yee Dave

More information

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center Comments on WFIRST AFTA Coronagraph Concept Marc Kuchner NASA Goddard Space Flight Center Exoplanet Science Has Changed Since 2010 35 Habitable Zone Kepler Planet Candidates known, ~12 confirmed planets

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Exoplanet science with ground based ELTs

Exoplanet science with ground based ELTs Exoplanet science with ground based ELTs Markus Kasper, European Southern Observatory (ESO) 1 Outline Scaling laws and Adaptive Optics Observational properties of Exoplanets E-ELT CODEX METIS EPICS (high

More information

Suppressing stellar residual light on extremely large telescopes by aperture modulation

Suppressing stellar residual light on extremely large telescopes by aperture modulation 1st AO4ELT conference, 09002 (2010) DOI:10.1051/ao4elt/201009002 Owned by the authors, published by EDP Sciences, 2010 Suppressing stellar residual light on extremely large telescopes by aperture modulation

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

PEGASE: a DARWIN/TPF pathfinder

PEGASE: a DARWIN/TPF pathfinder Direct Imaging of Exoplanets: Science & Techniques Proceedings IAU Colloquium No. 200, 2005 C. Aime and F. Vakili, eds. c 2006 International Astronomical Union doi:10.1017/s1743921306009380 PEGASE: a DARWIN/TPF

More information

Exoplanets in the mid-ir with E-ELT & METIS

Exoplanets in the mid-ir with E-ELT & METIS Exoplanets in the mid-ir with E-ELT & METIS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Sebastian Daemgen (MPIA/ESO), Kerstin Geißler (MPIA/ESO), Markus Janson (MPIA/Univ.

More information

Techniques for direct imaging of exoplanets

Techniques for direct imaging of exoplanets Techniques for direct imaging of exoplanets Aglaé Kellerer Institute for Astronomy, Hawaii 1. Where lies the challenge? 2. Contrasts required for ground observations? 3. Push the contrast limit Recycle!

More information

A New Era with E-ELT Drivers for circumstellar environment studies

A New Era with E-ELT Drivers for circumstellar environment studies PNPS-EELT Workshop February, 4-5th 2013, Fréjus A New Era with E-ELT Drivers for circumstellar environment studies Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France

More information

Recommended Architectures for The Terrestrial Planet Finder

Recommended Architectures for The Terrestrial Planet Finder Hubble s Science Legacy ASP Conference Series, Vol.???, 2002 Recommended Architectures for The Terrestrial Planet Finder Charles Beichman Jet Propulsion Laboratory, California Institute of Technology,

More information

A red / near-ir Spectrograph for GTC NEREA (Near Earths and high-res Exoplanet Atmospheres)

A red / near-ir Spectrograph for GTC NEREA (Near Earths and high-res Exoplanet Atmospheres) A red / near-ir Spectrograph for GTC NEREA (Near Earths and high-res Exoplanet Atmospheres) Enric Palle, Guillem Anglada, Ignasi Ribas Instituto de Astrofísica de Canarias Queen Mary University of London

More information

Cheapest nuller in the World: Crossed beamsplitter cubes

Cheapest nuller in the World: Crossed beamsplitter cubes Cheapest nuller in the World: François Hénault Institut de Planétologie et d Astrophysique de Grenoble, Université Joseph Fourier, CNRS, B.P. 53, 38041 Grenoble France Alain Spang Laboratoire Lagrange,

More information

The Future of Exoplanet Science from Space

The Future of Exoplanet Science from Space The Future of Exoplanet Science from Space Informed by a Clearer, Better, Faster, Stronger talk An Exoplanet Wishlist for ~2050 Based on talks with Giada Arney, Joshua Schlieder, Avi Mandell, Alexandra

More information

Characterization of Exoplanets in the mid-ir with JWST & ELTs

Characterization of Exoplanets in the mid-ir with JWST & ELTs Characterization of Exoplanets in the mid-ir with JWST & ELTs Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Carolina

More information

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS S. Mark Ammons LLNL Bruce Macintosh Stanford University Lisa Poyneer LLNL Dave Palmer LLNL and the Gemini Planet Imager Team ABSTRACT A long-standing challenge has

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

DIRECT DETECTION AND CHARACTERIZATION OF EXOPLANETS WITH METIS

DIRECT DETECTION AND CHARACTERIZATION OF EXOPLANETS WITH METIS DIRECT DETECTION AND CHARACTERIZATION OF EXOPLANETS WITH METIS Sascha P. Quanz (ETH Zurich) I. Crossfield (MPIA), M. Meyer (ETHZ), E. Schmalzl (Leiden), J. Held (ETHZ) EXOPLANET OBSERVATIONS WITH THE E-ELT

More information

Cosmic Vision : The scientific priorities for astrophysics and fundamental physics

Cosmic Vision : The scientific priorities for astrophysics and fundamental physics Cosmic Vision 2015-2025: The scientific priorities for astrophysics and fundamental physics Fabio Favata ESA, Astronomy & Fundamental Physics Mission Coordinator Grand themes 1. What are the conditions

More information

Proximity Glare Suppression for Astronomical Coronagraphy (S2.01) and Precision Deployable Optical Structures and Metrology (S2.

Proximity Glare Suppression for Astronomical Coronagraphy (S2.01) and Precision Deployable Optical Structures and Metrology (S2. Proximity Glare Suppression for Astronomical Coronagraphy (S2.01) and Precision Deployable Optical Structures and Metrology (S2.02) Mirror Tech Days 2015 Annapolis, MD Nov 10, 2015 Stuart Copyright 2015.

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

Brown Dwarfs and Planets around Nearby Stars. A Coronagraphic Search for. B. R. Oppenheimer (AMNH) Morino,, H. Suto,, M. Ishii, M. K.

Brown Dwarfs and Planets around Nearby Stars. A Coronagraphic Search for. B. R. Oppenheimer (AMNH) Morino,, H. Suto,, M. Ishii, M. K. A Coronagraphic Search for Brown Dwarfs and Planets around Nearby Stars T. Nakajima, J.-I. Morino,, H. Suto,, M. Ishii, M. Tamura, N. Kaifu,, S. Miyama, H. Takami,, N. Takato, S. Oya, S. Hayashi, M. Hayashi

More information

The next-generation Infrared astronomy mission SPICA Space Infrared Telescope for Cosmology & Astrophysics

The next-generation Infrared astronomy mission SPICA Space Infrared Telescope for Cosmology & Astrophysics The next-generation Infrared astronomy mission SPICA Space Infrared Telescope for Cosmology & Astrophysics 3.5m cooled telescope mission for mid- and far-infrared astronomy Takao Nakagawa (ISAS/JAXA) for

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST 4. Future telescopes & IFU facilities Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST Next generation IFUs At ESO: KMOS (infrared) MUSE (optical) XSHOOTER & SPHERE

More information

SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team

SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team Aims Provide an overview of the SPHERE GTO program to have a clear view of what is already on-going GTO targets (for the requested observing

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas:

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas: Telescopes A Warm Up Exercise If we measure the wavelengths of emission lines and absorption lines from the same gas, we find that (ignoring any Doppler shifts) a) Some emission lines shift to the red

More information

Exoplanet Atmosphere Characterization & Biomarkers

Exoplanet Atmosphere Characterization & Biomarkers Giovanna Tinetti ESA/Institut d Astrophysique de Paris γ Exoplanet Atmosphere Characterization & Biomarkers Can we use Remote Sensing Spectroscopy, - Interaction between photon coming from the parent star

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

SPICES: spectro-polarimetric imaging and characterization of exoplanetary systems

SPICES: spectro-polarimetric imaging and characterization of exoplanetary systems DOI 10.1007/s10686-012-9290-5 ORIGINAL ARTICLE SPICES: spectro-polarimetric imaging and characterization of exoplanetary systems From planetary disks to nearby Super Earths Anthony Boccaletti Jean Schneider

More information

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Exoplanet Detection and Characterization with Mid-Infrared Interferometry Exoplanet Detection and Characterization with Mid-Infrared Interferometry Rachel Akeson NASA Exoplanet Science Institute With thanks to Peter Lawson for providing material Sagan Workshop July 21, 2009

More information

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets Jiangpei Dou 1, Deqing Ren 1,2, Yongtian Zhu 1, Xi Zhang 1 1 Astronomical Observatories/Nanjing Institute of Astronomical

More information

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST ExSoCal Conference September 18-19th 2017, Pasadena HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST Marie Ygouf HR 8799 planetary system Jason Wang / Christian Marois Keck data Giants planets and brown

More information

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise The Golden Era of Planetary Exploration: From Spitzer to TPF C. Beichman March 14, 2004 The Observational Promise In the next decade we will progress from rudimentary knowledge of gas giant planets around

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 Adaptive Optics Status & Roadmap Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 1 Analysis CASIS: VLT MCAO Imager NACO upgrade Commissioning PAC The ESO Adaptive Optics

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

High Dynamic Range and the Search for Planets

High Dynamic Range and the Search for Planets Brown Dwarfs IAU Symposium, Vol. 211, 2003 E. L. Martín, ed. High Dynamic Range and the Search for Planets A. T. Tokunaga, C. Ftaclas, J. R. Kuhn, and P. Baudoz Institute for Astronomy, Univ. of Hawaii,

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Introduction to Interferometer and Coronagraph Imaging

Introduction to Interferometer and Coronagraph Imaging Introduction to Interferometer and Coronagraph Imaging Wesley A. Traub NASA Jet Propulsion Laboratory and Harvard-Smithsonian Center for Astrophysics Michelson Summer School on Astrometry Caltech, Pasadena

More information