ACTIVE GALAXY UNIFICATION

Size: px
Start display at page:

Download "ACTIVE GALAXY UNIFICATION"

Transcription

1 ACTIVE GALAXY UNIFICATION Alan Roy Table of Contents INTRODUCTION SEYFERT GALAXIES EXTREMELY LUMINOUS FAR-INFRARED GALAXIES ACTIVE GALAXY UNIFICATION 1. INTRODUCTION Most bright galaxies are spirals, like our own, and in the nearby well-studied cases they reveal the beautiful and intricate grand-design spiral patterns that are both familiar and appealing (e.g., Sandage & Tammann 1981). At the centre of a few out of every hundred spirals there is also an extremely bright point of light. This point can be so bright that it can outshine the entire stellar output of the disc and bulge of the galaxy, and this enormous luminosity is produced from an exceedingly small volume indeed. This thesis studies aspects of these active galactic nuclei (AGNs) that inhabit some spiral galaxies. Most likely, the power is provided by the release of gravitational energy as gas in the galaxy nucleus spirals inward towards a black hole of large mass (~ 10 8 M ; Zel'dovich & Novikov 1965). The gas is continually sheared as inner orbits move faster than outlying ones. Close to the black hole, the viscous dissipation grows strong enough to heat the gas to incandescence at optical and X-ray wavelengths (Shakura & Sunyaev 1973). The disc of accreting material then radiates the enormous optical luminosity that we see (up to ~ W, H 0 =75kms -1 Mpc -1 ; Hagen et al. 1992). Optical synchrotron emission from relativistic electrons is also important in some AGNs. Although most AGNs seem to share these same sources of power, they present to us a variety of guises. For example, some AGNs produce powerful radio emission whilst others do not. Some produce broad optical emission lines, or high optical polarization, or are particularly variable, or produce powerful X-ray and gamma ray emissions, whilst others do not. AGNs seem to know about the type of host galaxy in which they reside, and take on certain characteristics accordingly (e.g., spiral galaxies host radio-quiet AGNs only, and blazars are found only in elliptical host galaxies). The causes of these diverse appearances are the focus of much current research. The taxonomy of AGNs groups together objects that share certain combinations of these properties. The zoo of nomenclature is now home to the beasts shown in Fig 1.1. Such naming schemes occasionally prove particularly useful, where they reflect differences in the underlying physics. For example, the distinction between starbursts and all other AGNs provides insight, as starbursts and AGNs are driven by different processes. In contrast, it seems less useful to distinguish between, for example, type 1 Seyfert galaxies and radio-quiet quasars (described later). These seem to be the same process, differing only in optical luminosity. 1of6

2 Figure 1.1 The main active galactic nuclei that are currently recognised. Space densities, compiled from the literature by ALR, are only approximate and depend on survey depths and incompleteness. However, they should serve for the purpose of introduction. Understanding which of these distinctions reflect fundamental differences and which are interesting illusions is a central challenge. Some AGN classes might be related by evolution (e.g., extremely luminous far-infrared galaxies (ELFs) might evolve into quasars with time). Others may be related by variability (e.g., type 2 Seyferts might be type 1s in which the central source has switched off momentarily). Many may appear different only because of our viewing angle. (AGNs obscured by patchy dust look different viewed end on or side on. Relativistic jets also have aspect-dependent appearances, due to Doppler boosting.) This thesis considers the "Seyfert" and "ELF" classes and, among other things, looks at possible relationships between these and other AGNs. 2. SEYFERT GALAXIES Seyfert galaxies were first isolated as a class by Seyfert (1943), although their unusual emission line spectra had been noticed earlier (e.g., Mayall 1934 and references therein). These otherwise normal spiral galaxies drew attention for their uncommonly luminous nuclei, and for their powerful high-excitation emission lines. (The emission lines come from clouds within a few hundred pc of the central source and are ionized by the intense radiation produced by the AGN core, e.g., Osterbrock 1987.) Two types of Seyfert galaxy were recognised by Khachikyan & Weedman (1971), based on the widths of their emission lines. Both Seyfert types produce powerful narrow forbidden lines from high excitation species like [O III] and [Ne V]. Some Seyfert galaxies also produce broad (~ km s -1 ) Balmer lines, whilst in others these lines are narrow (250 to 1000 km s -1 ). Such systems are called type 1 (Sy1) or type 2 (Sy2) Seyferts respectively. Later, the intermediate types 1.5, 1.8 and 1.9 were recognised, based on the simultaneous presence of both broad and narrow components to the Balmer lines (e.g., Osterbrock & Dahari 1983). According to the widely accepted picture of Seyfert nuclei, there are two physically distinct line-emitting regions. The broad-line region (BLR) lies close to the central continuum source, within tens of light days (Peterson et al. 1992). It has a mass of ~ 50 M, densities of to m -3, temperatures of K, and cloud speeds of 10 3 to 10 4 km s -1 and produces the broad Balmer series. The narrow-line region (NLR) spans tens to hundreds of pc, has a total mass of 10 5 to 10 6 M, densities of ±1 m -3, temperatures of to K, and cloud speeds of ~ 250 to 1000 km s -1 (Osterbrock 1987; Lawrence 1987; Haniff, Wilson & Ward 1988). Between these two regions no emission lines are seen, for reasons that are poorly understood but may involve dust absorption (Netzer & Laor 1993). The absence of forbidden lines in the BLR is due to the relatively high density of the BLR plasma. Large density leads to many collisions during the lifetimes of the excited states and collisional de-excitation is likely. In that event, the energy is carried off as kinetic energy and the forbidden transitions do not radiate. Such spectroscopic properties are an important input to unification schemes. Before reviewing those schemes I will first introduce the extremely luminous far-infrared galaxies (ELFs), which are studied later in this thesis and are related to Seyfert 2of6

3 galaxies. 3. EXTREMELY LUMINOUS FAR-INFRARED GALAXIES ELFs are remarkable objects, discovered independently by a number of groups soon after the IRAS catalogue was released (see Norris, Allen & Roche 1988). These optically undistinguished galaxies produce the bulk of their enormous luminosities at far-infrared (FIR) wavelengths (30 to 300 µ m). They are probably AGNs or bursts of star formation cloaked in a large mass of gas and dust that reprocesses most of the optical photons to the FIR. This "laundering" can make it difficult to distinguish between possible alternative power sources. This has lead to considerable debate recently over the roles played by starbursts (introduced below) and Seyfert nuclei in powering ELFs and the question is not yet resolved (e.g., Harwit et al. 1987; Sanders et al. 1988b; Condon et al. 1991). Starburst galaxies convert large fractions of their interstellar medium (ISM) into stars at a furious and unsustainable rate. In contrast, star formation in most galaxies is a well regulated, orderly, slow process. Starburst galaxies produce large optical luminosities from the combined output of many high-mass stars. The bursts are sometimes triggered by galaxy-galaxy interactions. Despite the obscuring dust, parts of the life cycle of ELFs have been established. The progenitors of ELFs are thought to be normal spirals, since ELFs are rich in gas and dust. Clearly, the presently observed luminous phase must be only transitory. If ELFs are powered by starburst activity then the star formation would exhaust any reasonable supply of ISM in about 10 8 yr (Chapter 6). ELFs are often involved in interacting systems, appearing disturbed and displaying tidal tails. Interactions are efficient at driving large amounts of ISM inwards and concentrating it into the nuclear region. There, it forms a reservoir to feed star formation or an AGN. Interactions do this by tidally inducing a bar in the stellar distribution of one or both galaxies; Barnes & Hernquist Bars can funnel ISM efficiently inward since parcels of gas ahead of the bar feel a component of gravitational attraction back towards the bar. The gas decelerates and falls down the potential well. Supporting these numerical results, large concentrations of molecular material have been seen within the central kpc in many ELFs by millimetre-wave interferometers (Sanders et al. 1988a). The future in store for ELFs is not so clear. Sanders et al. (1988b) suggest that ELFs are the progenitors of quasars and that they currently harbour AGN cores that are hidden by powerful dusty circumnuclear starbursts. According to this view, they will evolve to blow away the surrounding gas and dust. Then, as the starburst fades, the full glory of the embedded quasar core will be revealed to our view. 4. ACTIVE GALAXY UNIFICATION Many schemes have been proposed to unify active galaxies. They have in common the thought that only a few underlying physical properties might account for the great range of AGN characteristics that we see. Indeed, some striking patterns of behaviour between various AGN types are suggestive. The present state of understanding has been likened to the years leading up to the construction of the periodic table; the patterns are tantalising but the meaning is only beginning to emerge. Ways that AGNs might be related are discussed in the excellent reviews by Lawrence (1987) and Antonucci (1993). Lawrence summarizes a promising unified model as follows. "There is only one type of Active Galactic Nucleus (AGN). The observed variety arises from three degrees of freedom: (1) Dust opacity, which produces the distinction between Type 1 and Type 2 AGN. (2) Viewing angle of a relativistic jet, which produces the distinction between blazars and Type 1 AGN. (3) Duty cycle of activity (i.e., fraction of time spent "on") which produces the distinction between radio-loud and radio-quiet AGN... A fourth degree of freedom is, of course, the overall luminosity." However, many aspects are still controversial, For example, Wilson & Colbert (1994) suggest that the dichotomy of radio power is intrinsic and depends on the angular momentum of the central black hole. Also, Singal (1993) questions whether the viewing angle of a relativistic jet can unify radio-loud objects. Four schemes have been proposed to unify the two main types of (radio-quiet) Seyfert galaxies (Lawrence 1987): The BLR gas might simply be lacking in type 2 Seyferts (Osterbrock & Koski 1976). Varying quantities of BLR gas are present in the intermediate "Lick" types. Seyferts might be powered by extremely hot short-lived massive stars, and by the supernovae into which they eventually evolve (e.g., Terlevich 1992). The Seyfert types may be an evolutionary sequence. (A few Seyferts have made spectacular and fast changes between 3of6

4 Seyfert types, in which the BLR switches off or on over periods as short as several months, e.g., Alloin et al. 1985). Type 2 Seyferts might harbour a BLR and central continuum source, but these are obscured from view in some directions (Antonucci & Miller 1985). The first model is probably part of the story. Some type 1 Seyferts have been seen to switch off and, in these, the difference between the Seyfert types seems to be a genuine lack of a BLR. The presence of polarized broad lines in other type 2s (see below) shows that not all Sy2s lack a BLR, and therefore this model is only part of the story. Lawrence argues that the second model runs into trouble because such schemes do not explain the similarity of the NLR line ratios in Sy1s and Sy2s. Further, it does not explain the linear radio structures seen in Seyferts. Also, Peterson et al. (1992) finds that variability time-scales and possibly the unchanging BLR line profiles argue against this model. The third model is clearly part of the story. The observed transitions between Seyfert types are too rapid to be caused by obscuration, and so it seems that the AGN shuts down, perhaps due to a momentary lack of fuel. However, there is more involved to explain the hidden BLR in some Sy2s. Also, Lawrence claims that the NLR excitation should be different from that observed if the AGN spends much of its time switched off. The final model is currently the most popular, although it too is clearly not the whole story. Obscuration forms the essence of this orientation unification scheme. A torus of dense obscuring gas and dust is thought to girdle the continuum source and BLR. Looking down the axis of the torus we can see right into the BLR and accretion disc. However, when viewed edge-on, the torus blocks our view of the BLR and absorbs hard X-rays, and so the AGN looks like a type 2 (Fig 1.2). This same torus blocks ionizing photons from reaching the NLR in some directions, hence explaining the cone-shaped NLRs that are sometimes seen. Figure 1.2. Cross-section through the structures proposed by unified models to explain the main Seyfert galaxy characteristics. The history of orientation unification is reviewed by both Lawrence (1987) and Antonucci (1993). Both attribute to Rowan-Robinson (1977) the first explicit argument that Seyferts are a single class, differing only in dust opacity. He suggested that varying amounts of dust surround the optical core and attenuate the broad-line-producing regions. Later, Veron et al. (1980) and Shuder (1980) found that narrow emission-line galaxies (NELGs) have faint broad lines and Mushotzky (1982) found they have large X-ray-absorbing columns, and so NELGs were identified as obscured type 1 Seyferts. Osterbrock (1981) inferred the importance of dust in intermediate Seyferts from their large Balmer decrements. Lawrence & Elvis (1982) also invoked obscuration to make the BLR invisible in type 2 Seyferts. However, this was rejected by Ferland & Osterbrock (1986), who found that the featureless continuum light in type 2 Seyferts is unreddened, using the similarity of the X-ray - UV spectral index to that of Sy 1s and low-redshift quasars. The situation up to the early 1980s was summarized by Osterbrock (1984). He sketched a working picture of Seyfert nuclei that featured a cylindrically symmetric BLR, from which radio plasma and ionizing photons escape along the axis and produce conical structures. The axis of symmetry is tipped relative to the galaxy disc. Antonucci & Miller (1985) found hidden polarized broad lines in the type 2 Seyfert NGC 1068 and suggested that "the continuum and broad-line regions are located inside an optically and geometrically thick disc. Continuum and broad-line photons are scattered into the line of sight by free electrons above and below the disc." This is perhaps the strongest single piece 4of6

5 of evidence for orientation unification of Seyfert galaxies. The unreddened featureless continuum in Sy2s found by Ferland & Osterbrock (1986) is naturally explained in this picture. Photons are scattered into our line of sight from a "mirror" that has an unobstructed view of the nucleus. There is now much evidence to support this model, as follows. Some Sy2s show hidden BLRs. More examples like NGC 1068 have been found (Miller & Goodrich 1990), bringing the total to five and establishing this result more securely. The featureless continuum is stronger in Sy1s than in Sy2s. Sy 1s have bright star-like nuclei, whereas in Sy2s the featureless continuum and broad lines are weak or absent (e.g., Lawrence 1987). Further, Sy2s that display polarized broad lines also display a weak featureless continuum with the same polarization as the broad lines. This can be understood as something obscuring our direct view of Sy2 nuclei and only scattered light from the AGN remains visible. X-ray absorbing columns are large in Sy2s and small in Sy1s. The X-ray spectra of the few detected Sy2s and intermediate types reveal large absorbing columns (> m -2 ), whereas Sy1s have < ~ 5 to m -2 (Mushotzky 1982; Pounds et al. 1990; Rao, Singh & Vahia 1992). Sy2 X-ray luminosities are correspondingly low. However, NGC 1068 has a normal Sy1-like X-ray / broad-line flux density ratio (Elvis & Lawrence 1988; Lawrence 1987), which suggests that it harbours an obscured Sy 1 core with X-rays and BLR visible by scattering. All Seytert types possess an NLR. If the Seyfert types are intrinsically different then the similarity of the NLR properties (Cohen 1983) becomes coincidental. The NLR clouds see a stronger ionizing flux than we see directly. The optical-uv continuum flux required to ionize the NLR of Sy2s is much larger than that seen directly (the photon-deficit problem; Neugebauer et al. 1980; Binette, Fosbury & Parker 1993). This can be explained by invoking anisotropic absorption around the continuum source, although other solutions have been suggested (Binette et al. 1993). NLRs are cone-shaped. In the well-resolved cases, NLRs are sometimes cone-shaped (Pogge 1989; Evans et al. 1991, 1994). It seems that the ionizing radiation is roughly collimated before emerging into the NLR, perhaps due to an obscuring torus, or "prebeaming" by the accretion disc or its atmosphere (Kriss, Tsvetanov & Davidsen 1994). The NLR appears smaller in Sy1s than Sy2s which is consistent with projection effects expected from the standard orientation unification model (Evans 1994). NLR excitation argues against switched-off Sy1s. The space density of Seyferts is now known to be ~ 2:1 in favour of Sy2s. Lawrence (4987) claims that switched-off type 1 theories have difficulty explaining such a ratio since they predict NLR excitation properties that are different from those observed. Variability differs between Seytert types. Broad-line Seyferts produce a powerful featureless continuum that is variable on time-scales of weeks. In contrast, narrow-line Seyferts produce featureless continua that are either weak or non-existent, and do not vary (Lawrence 1987). This is consistent with both having variable cores that are directly visible only in Sy1s. It can further be understood since any scattered continuum light in Sy2s would be averaged over the large scattering region, reducing the variability. Some arguments have been raised against the obscuration hypothesis, as follows. No torus has yet been seen in a Seyfert galaxy. One torus has been found, in the powerful radio galaxy NGC 4261 (Jaffe et al. 1993). However, its size (~ 120 pc outside diameter) is larger than that implied for Seyfert galaxies, and so we may not yet have seen the long-sought torus. However, the absence of tori is probably due to the difficulty of making such an observation. Strictly, a toroidal geometry is not required. One only needs something that will cover the central continuum source and BLR, but not the scattering region or the NLR. The light absorbed in NGC 1068 is not re-radiated. Cameron (1993) found that NGC 1068 is much weaker in the mid-ir than expected if a torus was degrading much featureless continuum light into the infrared. They propose an "absent-torus" model to avoid this difficulty and still keep the orientation unification idea. Work by Storchi-Bergmann, Wilson & Baldwin (1992) found no such IR deficit in the Seyfert NGC 3281, although they lacked the spatial resolution available to Cameron et al. Some Seyferts change type rapidly. The rapid changes between types made by a few celebrated Seyferts were too fast to be caused by a cloud moving into our line of sight, and so an Intrinsic change in the AGN is implied. Perhaps then, many type 2s could be switched-off type 1s. NGC 4151 is a Sy1, yet is viewed outside the NLR cone. The orientation model invokes the same torus to block our view of 5of6

6 the BLR and to collimate the ionizing photons going into the NLR. Orientation unification incorrectly predicts that NGC 4151 should be a Sy2 since our line of sight lies outside the opening angle of the NLR cone (e.g., Evans et al. 1994). The scattered BLR is missing in many Sy2s. According to the unified model, when Sy2s display a featureless continuum component, it is not seen directly but is scattered into our line of sight. If so, one expects photons from the BLR also to be scattered from the same "mirror" into our line of sight. However, only rarely does this occur (Cid Fernandez & Terlevich 1993). Overall, orientation seems to be an important part of the story, but other factors also contribute. There are parallel unification schemes that consider radio-loud AGNs. One such scheme unifies Fanaroff-Riley (FR) class II radio galaxies with the radio-loud quasars (Barthel 1994) and another unifies FR I radio galaxies with BL Lac objects (Urry & Padovani 1994). These schemes invoke relativistic beaming in a jet, rather than extrinsic dust obscuration as used by Seyfert unification schemes. According to the FR II - radio-loud quasar scheme, the parent population consists of FR II radio galaxies. When viewed close to end-on, such radio galaxies should look like radio-loud quasars because the radio jets become more prominent due to Doppler boosting, the lobe separation reduces due to foreshortening by projection, the optical core dominates the host galaxy, and we can see into the BLR. Similarly, FR I galaxies seem to be the parent population of BL Lac objects since their isotropic properties (e.g., extended radio luminosities, optical emission-line widths, and host galaxy morphologies) are similar. When the jet is pointed directly at us, the Doppler boosting becomes extreme, and one sees a point source that swamps the parent galaxy. This is accompanied by high polarization, a strong featureless nonthermal optical continuum, and rapid variability. These schemes will not be considered in more detail here as this thesis mostly treats radio-quiet objects. (Although called "radio-quiet", Seyferts are not radio-silent and are readily studied at radio wavelengths in subsequent chapters.) 6of6

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo Introduction to AGN General Characteristics History Components of AGN The AGN Zoo 1 AGN What are they? Active galactic nucleus compact object in the gravitational center of a galaxy that shows evidence

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Active Galaxies & Emission Line Diagnostics

Active Galaxies & Emission Line Diagnostics Active Galaxies & Emission Line Diagnostics Review of Properties Discussed: 1) Powered by accretion unto a supermassive nuclear black hole 2) They are the possible precursors to luminous massive galaxies

More information

Active Galactic Alexander David M Nuclei

Active Galactic Alexander David M Nuclei d.m.alexander@durham.ac.uk Durham University David M Alexander Active Galactic Nuclei The Power Source QuickTime and a YUV420 codec decompressor are needed to see this picture. Black hole is one billionth

More information

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006 A Unified Model for AGN Ryan Yamada Astro 671 March 27, 2006 Overview Introduction to AGN Evidence for unified model Structure Radiative transfer models for dusty torus Active Galactic Nuclei Emission-line

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes. 2. Active Galaxies 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes Read JL chapter 3 Active galaxies: interface with JL All of JL chapter 3 is examinable,

More information

Vera Genten. AGN (Active Galactic Nuclei)

Vera Genten. AGN (Active Galactic Nuclei) Vera Genten AGN (Active Galactic Nuclei) Topics 1)General properties 2)Model 3)Different AGN-types I. Quasars II.Seyfert-galaxies III.Radio galaxies IV.young radio-loud AGN (GPS, CSS and CFS) V.Blazars

More information

Active galaxies. Some History Classification scheme Building blocks Some important results

Active galaxies. Some History Classification scheme Building blocks Some important results Active galaxies Some History Classification scheme Building blocks Some important results p. 1 Litirature: Peter Schneider, Extragalactic astronomy and cosmology: an introduction p. 175-176, 5.1.1, 5.1.2,

More information

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre X-ray data analysis Andrea Marinucci Università degli Studi Roma Tre marinucci@fis.uniroma3.it Goal of these lectures X-ray data analysis why? what? how? Why? Active Galactic Nuclei (AGN) Physics in a

More information

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN Galaxy Interactions Galaxy Interactions Major and Minor Major interactions are interactions in which

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei How were they discovered? How common are they? How do we know they are giant black holes? What are their distinctive properties? Active Galactic Nuclei for most galaxies the luminosity

More information

The Phenomenon of Active Galactic Nuclei: an Introduction

The Phenomenon of Active Galactic Nuclei: an Introduction The Phenomenon of Active Galactic Nuclei: an Introduction Outline Active Galactic Nuclei (AGN): > Why are they special? > The power source > Sources of Continuum Emission > Emission & absorption lines

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

Active Galaxies and Quasars

Active Galaxies and Quasars Active Galaxies and Quasars Radio Astronomy Grote Reber, a radio engineer and ham radio enthusiast, built the first true radio telescope in 1936 in his backyard. By 1944 he had detected strong radio emissions

More information

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory Extragalactic Radio Sources Joanne M. Attridge MIT Haystack Observatory It all began in the 1940s... Galaxies=condensations of gas, dust and stars held together by their own gravitational potential M 87

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Guiding Questions. Active Galaxies. Quasars look like stars but have huge redshifts

Guiding Questions. Active Galaxies. Quasars look like stars but have huge redshifts Guiding Questions Active Galaxies 1. Why are quasars unusual? How did astronomers discover that they are extraordinarily distant and luminous? 2. What evidence showed a link between quasars and galaxies?

More information

Powering Active Galaxies

Powering Active Galaxies Powering Active Galaxies Relativity and Astrophysics ecture 35 Terry Herter Bonus lecture Outline Active Galaxies uminosities & Numbers Descriptions Seyfert Radio Quasars Powering AGN with Black Holes

More information

Optical polarization from AGN

Optical polarization from AGN Optical polarization from AGN Damien Hutsemékers (University of Liège, Belgium) Polarization & AGN II, 11-12 May 2015, Strasbourg, France 1 Outline Polarization properties of radio-quiet AGN including

More information

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification Lecture Outline Chapter 15 Normal and Active Galaxies Spiral galaxies are classified according to the size of their central bulge. Chapter 15 Normal and Active Galaxies Type Sa has the largest central

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

A zoo of transient sources. (c)2017 van Putten 1

A zoo of transient sources. (c)2017 van Putten 1 A zoo of transient sources (c)2017 van Putten 1 First transient @ first light UDFj-39546284, z~10.3 Bouwens, R.J., et al., Nature, 469, 504 Cuchiara, A. et al., 2011, ApJ, 736, 7 z=9.4: GRB 090429B, z~9.4

More information

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Prof. Jeff Kenney Class 18 June 20, 2018 the first quasar discovered 3C273 (1963) very bright point source (the quasar ) jet the first quasar discovered 3C273 (1963) very bright

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

BH Astrophys Ch1~2.2. h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.

BH Astrophys Ch1~2.2. hp://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html hp://abyss.uoregon.edu/~js/ast123/lectures/lec12. BH Astrophys Ch1~2.2 h"p://www.astro.princeton.edu/~burrows/classes/250/distant_galaxies.html h"p://abyss.uoregon.edu/~js/ast123/lectures/lec12.html Outline Ch1. 1. Why do we think they are Black Holes?(1.1-1.2)

More information

Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

More information

(Astro)Physics 343 Lecture # 12: active galactic nuclei

(Astro)Physics 343 Lecture # 12: active galactic nuclei (Astro)Physics 343 Lecture # 12: active galactic nuclei Schedule for this week Monday & Tuesday 4/21 22: ad hoc office hours for Lab # 5 (you can use the computer in my office if necessary; Sections A

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Chapter 21 Galaxy Evolution. Agenda

Chapter 21 Galaxy Evolution. Agenda Chapter 21 Galaxy Evolution Agenda Announce: Test in one week Part 2 in 2.5 weeks Spring Break in 3 weeks Online quizzes & tutorial are now on assignment list Final Exam questions Revisit Are we significant

More information

Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses)

Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses) Schwarzchild Radius The radius where escape speed = the speed of light. Rs = 2 GM/c2 Rs = 3 x M (Rs in km; M in solar masses) A sphere of radius Rs around the black hole is called the event horizon. Object

More information

Radio Galaxies. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Radio Galaxies 1/47

Radio Galaxies. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Radio Galaxies 1/47 Radio Galaxies D.Maino Physics Dept., University of Milano Radio Astronomy II D.Maino Radio Galaxies 1/47 Active Galactic Nuclei AGN: nuclei of galaxies with energetic phenomena that can not clearly and

More information

High-Energy Astrophysics

High-Energy Astrophysics Oxford Physics: Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2011 Lecture 9 Today s lecture: Black Holes and jets Part I Evidence

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

TEMA 6. Continuum Emission

TEMA 6. Continuum Emission TEMA 6. Continuum Emission AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

More information

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies? Chapter 21 Galaxy Evolution How do we observe the life histories of galaxies? Deep observations show us very distant galaxies as they were much earlier in time (old light from young galaxies). 1 Observing

More information

This week at Astro 3303

This week at Astro 3303 This week at Astro 3303 Lecture 12, Oct 04, 2017 Pick up PE#12 Today: HW#4 discussion AGN & supermassive black holes Reading: Chapter 3.5 & 10.4-10.5 of textbook à HW#4 discussion NGC1068/M77 Components:

More information

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009 Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009 What Makes a Galaxy ACTIVE? What is a Normal Galaxy? What is an Normal Galaxy? A literary analogy, adapted

More information

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Goals: Quasars and AGN What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Discovery of Quasars Radio Observations of the Sky Reber (an amateur

More information

Black holes as central engines

Black holes as central engines Chapter 15 Black holes as central engines Black holes imply a fundamental modification of our understanding of space and time. But at a more mundane level they also are of great practical importance in

More information

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page Soft X-ray Emission Lines in Active Galactic Nuclei Mat Page MSSL-UCL Observations of soft X-ray line emission allow us to investigate highly ionized plasmas in galaxies and AGN. I ll start with the most

More information

Black Holes and Quasars

Black Holes and Quasars Black Holes and Quasars Black Holes Normal and Super- massive The Schwartzchild Radius (event horizon) Normal and Super Massive Black Holes (SMBHs) The GalacAc Centre (GC) The Black Hole in Andromeda AcAve

More information

An introduction to Active Galactic Nuclei. 1.

An introduction to Active Galactic Nuclei. 1. An introduction to Active Galactic Nuclei. 1. Paolo Padovani, ESO, Germany The beginning AGN main properties The AGN zoo: radio-quiet and loud AGN, Unified Schemes, and relativistic beaming AGN masses

More information

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!! Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-15 are available for download as study aids. Reading: You should have Chapters 1-14 read. Read Chapters 15-17 by the end of the week.

More information

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2368 Bright Quasar 3C 273 Thierry J-L Courvoisier From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics

Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics Lecture 11 Quiz 2 AGN and You March 25 2003 8:00 PM BPS 1420 1. What system of time do astronomers use rather than the standard day-month-year system? 2. In that system, how long would it be between noon

More information

The X-Ray Universe. The X-Ray Universe

The X-Ray Universe. The X-Ray Universe The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Sommersemester 2017 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de ~lida/vorlesungxrayso17.html Chandra X-ray,

More information

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

Osservatorio Astronomico di Bologna, 27 Ottobre 2011 Osservatorio Astronomico di Bologna, 27 Ottobre 2011 BASIC PARADIGM: Copious energy output from AGN (10 9-10 13 L Θ ) from accretion of material onto a Supermassive Black Hole SMBH ( 10 6-10 9 M Θ ). AGN

More information

Active Galactic Nuclei OIII

Active Galactic Nuclei OIII Active Galactic Nuclei In 1908, Edward Fath (1880-1959) observed NGC 1068 with his spectroscope, which displayed odd (and very strong) emission lines. In 1926 Hubble recorded emission lines of this and

More information

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A. Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses E. Pian, R. Falomo, A. Treves 1 Outline Extra Background Introduction Sample Selection Data Analysis

More information

Today. Practicalities

Today. Practicalities Today Broad and narrow emission line regions Unification AGN and galaxy formation AGN-10: HR 2007 p. 1 Practicalities Exam Dates (?) Example of exam questions Mini-symposium Dec 13. 13:45 Power points

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

TEMA 3. Host Galaxies & Environment

TEMA 3. Host Galaxies & Environment TEMA 3. Host Galaxies & Environment AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

More information

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics The parsec scale of ESO ac-ve galac-c nuclei International Max Planck Research School for Astronomy and Astrophysics COST Ac(on MP0905 - Black Holes in a Violent Universe In collaboration with A. Prieto,

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Infrared Emission from the dusty veil around AGN

Infrared Emission from the dusty veil around AGN Infrared Emission from the dusty veil around AGN Thomas Beckert Max-Planck-Institut für Radioastronomie, Bonn Bonn, 2. October 2004 In collaboration with! Bernd Vollmer (Strasbourg)! Wolfgang Duschl &

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Galaxies and Cosmology

Galaxies and Cosmology F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects A. S. Evans (Stony Brook) J. A. Surace & D. T. Frayer (Caltech) D. B. Sanders (Hawaii) Luminous Infrared Galaxies Properties

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2012 Lecture 6 Today s lecture Synchrotron emission Part III Synchrotron self-absorption

More information

2.3 Peculiar galaxies. Discovering Astronomy : Galaxies and Cosmology 17. Figure 21: Examples of colliding galaxies.

2.3 Peculiar galaxies. Discovering Astronomy : Galaxies and Cosmology 17. Figure 21: Examples of colliding galaxies. Discovering Astronomy : Galaxies and Cosmology 17 Figure 21: Examples of colliding galaxies. Figure 22: The Milky Way and the Magellanic stream. 2.3 Peculiar galaxies Lecture 4 : Cosmic Perspective 21.2,

More information

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

Broadband X-ray emission from radio-quiet Active Galactic Nuclei 29 th ASI Meeting ASI Conference Series, 2011, Vol. 3, pp 19 23 Edited by Pushpa Khare & C. H. Ishwara-Chandra Broadband X-ray emission from radio-quiet Active Galactic Nuclei G. C. Dewangan Inter-University

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs

Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs IoA Journal Club Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs 2016/07/08 Reported by T. Izumi Unification scheme of AGNs All AGNs are fundamentally the same (Antonucci 1993)

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

The hazy band of the Milky Way is our wheel-shaped galaxy seen from within, but its size

The hazy band of the Milky Way is our wheel-shaped galaxy seen from within, but its size C H A P T E R 15 THE MILKY WAY GALAXY 15-1 THE NATURE OF THE MILKY WAY GALAXY How do astronomers know we live in a galaxy? The hazy band of the Milky Way is our wheel-shaped galaxy seen from within, but

More information

Low-Ionization BAL QSOs in Ultraluminous Infrared Systems

Low-Ionization BAL QSOs in Ultraluminous Infrared Systems Mass Outflow in Active Galactic Nuclei: New Perspectives ASP Conference Series, Vol. TBD, 2001 D.M. Crenshaw, S.B. Kraemer, and I.M. George Low-Ionization BAL QSOs in Ultraluminous Infrared Systems Gabriela

More information

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way 1932: KARL JANSKY Is assigned the task of identifying the noise that plagued telephone calls to Europe 1935: noise is identified as coming from inner regions of Milky Way MANY YEARS GO BY. 1960: a strong

More information

Radio Loud Black Holes. An observational perspective

Radio Loud Black Holes. An observational perspective Radio Loud Black Holes An observational perspective Tiziana Venturi INAF, Istituto di Radioastronomia, Bologna Overview of the first lesson 1) Synchrotron emission and radio spectra of AGN 2) Classification

More information

Evidence for BH: Active Galaxies

Evidence for BH: Active Galaxies Evidence for BH: Active Galaxies This is the second lecture in which we ll talk about evidence for the existence of black holes in the universe. Here we focus on active galactic nuclei, or AGN. Black holes

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

X-ray variability of AGN

X-ray variability of AGN X-ray variability of AGN Magnus Axelsson October 20, 2006 Abstract X-ray variability has proven to be an effective diagnostic both for Galactic black-hole binaries and active galactic nuclei (AGN). This

More information

Overview of Active Galactic Nuclei

Overview of Active Galactic Nuclei Overview of Active Galactic Nuclei Andrei Lobanov Max-Planck Planck-Institut für Radioastronomie Outline Brief account of AGN studies Specific properties of AGN Major constituents of AGN AGN gallery AGN

More information

Set 4: Active Galaxies

Set 4: Active Galaxies Set 4: Active Galaxies Phenomenology History: Seyfert in the 1920;s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral

More information

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida Multi-wavelength Surveys for AGN & AGN Variability Vicki Sarajedini University of Florida What are Active Galactic Nuclei (AGN)? Galaxies with a source of non-stellar emission arising in the nucleus (excessive

More information

ASCA Observations of Radio-Loud AGNs

ASCA Observations of Radio-Loud AGNs ASCA Observations of Radio-Loud AGNs Rita M. Sambruna & Michael Eracleous Department of Astronomy & Astrophysics, The Pennsylvania State University 525 Davey Lab, University Park, PA 16802 and arxiv:astro-ph/9811017v1

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects 1 Evidence for Photoionization - continuum and Hβ luminosity

More information

Quasars: Back to the Infant Universe

Quasars: Back to the Infant Universe Quasars: Back to the Infant Universe Learning Objectives! What is a quasar? What spectral features tell us quasars are very redshifted (very distant)? What spectral features tell us they are composed of

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

The Classification of Galaxies

The Classification of Galaxies Admin. 11/9/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Warped Discs and the Unified Scheme

Warped Discs and the Unified Scheme Warped Discs and the Unified Scheme Introduction Problems with the torus Warped discs Simple model IAU GA Prague, Aug 2006 Andy Lawrence Introduction Strawman Model Accn disk + BLR + obscuring torus +

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Richard Davies 1, H. Engel 1, M. Schartmann 1, G. Orban de Xivry 1, E. Sani 2, E. Hicks 3, A. Sternberg 4, R. Genzel 1, L. Tacconi 1,

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

The AGN / host galaxy connection in nearby galaxies.

The AGN / host galaxy connection in nearby galaxies. The AGN / host galaxy connection in nearby galaxies. A new view of the origin of the radio-quiet / radio-loud dichotomy? Alessandro Capetti & Barbara Balmaverde (Observatory of Torino Italy) The radio-quiet

More information