The alternating current generator (Item No.: P )

Size: px
Start display at page:

Download "The alternating current generator (Item No.: P )"

Transcription

1 Teacher's/Lecturer's Sheet The alternating current generator (Item No.: P ) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Elektrizitätslehre Subtopic: Elektromotor und Generator Experiment: Der Wechselstromgenerator Difficulty Preparation Time Execution Time Recommended Group Size Intermediate 10 Minutes 10 Minutes 2 Students Additional Requirements: Experiment Variations: Keywords: Task and equipment Information for teachers Additional information The students are already well acquainted with a simple alternating current generator, the dynamo on their bicycle, whose working principle is to be worked out in this experiment. Technically, inner pole machines are used to generate high alternating voltages. These are generators with stationary induction coils and rotating (electro)magnets. The very simple model which the students are to construct and experiment on is an inner pole machine. Notes on setup and procedure It must be ensured, that the coils are so connected that the alternating voltages generated do not cancel each other out. The model of the galvanometer is not suitable for the detection or recognition of alternating voltage, as the natural vibration of the pointer of this instrument is too weakly damped. When time must be saved, then the displacement of the pointer of the measuring instrument from the zero point should be performed earlier in the preparation for the experiment. Remarks Alternating current generators with permanent magnets are only used technically when relatively low performances suffice, e.g. with bicycle dynamos. In higher performance alternating current generators, the magnetic fields are generated by electromagnets, which receive their exciting current via sliding contacts and slip rings. The observation noted under Result - Observations 4 and the evaluation in Evaluation - Question 3 in the report are unnecessary for the understanding of the construction and functioning of an alternating current generator; they are of significance, however, for education on the proper, independent handling of measuring instruments in experiments with alternating current.

2 The alternating current generator (Item No.: P ) Task and equipment Task How can alternating current be generated? Assemble a simple model of an alternating cbrrent generator and Bse it to obtain a clear Bnderstanding of generating alternating cbrrent technically.

3 Equipment Position No. Material Order No. Quantity 1 JBnction modble, SB Socket modble for incandescent lamp E10, SB Coil, 400 tbrns Coil, 1600 tbrns U-core Rotating stem Bar magnet, l = 72mm Connecting cord, 32 A, 250 mm, red Connecting cord, 32 A, 250 mm, blbe Connecting cord, 32 A, 500 mm, red Yoke Filament lamps 4V/0.04A, E10, piece 13 MBlti-range meter, analogbe

4 Set-up and procedure Set-up Set Bp the experiment as shown in Fig. 1. TBrn the adjbsting screw at the back of the instrbment to move the pointer of the measbring instrbment away from the zero point, as far as possible to the right; select the 100 mv / 50 µa measbrement range. Screw the magnet tightly to the rotating stem. Position the magnet between the two coils so that the poles are each abobt 1 cm distant from the coils, as shown in Fig. 2. Fig. 1 Fig. 2

5 Procedure Rotate the magnet at different speeds and observe the measbring instrbment; note what yob observe Bnder ResBlt - Observations 1 in the report. Insert the I-core in one of the coils (see Fig. 3) and again rotate the magnet; observe the measbring instrbment; note what yob observe Bnder ResBlt - Observations 2. TBrn the magnet slowly and thereby observe how often the pointer of the measbring instrbment is deflected to the left and to the right dbring one complete revolbtion; note what yob observe Bnder ResBlt - Observations 3. Rotate the magnet as qbickly as possible and thereby observe the pointer of the measbring instrbment, compare this with the previobs deflections and note yobr resblt Bnder ResBlt - Observations 4. Replace the two coils with 400 tbrns with the single coil with 1600 tbrns and connect it to the measbring instrbment; slide the yoke in the coil and rotate the magnet alongside to it (Fig. 4), compare the pointer deflection with that fobnd in ResBlt - Observation 2, note the resblt Bnder ResBlt - Observations 5. Fit the coil with 1600 tbrns on the U-core; connect the lamp holder with 4 V / 0.04 A filament lamp to the coil; insert the thin end of the rotating stem with magnet in the U-core (Fig. 5, Fig. 6), selecting a distance of abobt 5 mm between the magnet and the U-core; rotate the magnet very qbickly, observe the lamp and note yobr observation Bnder ResBlt - Observations 6. Fig. 4 Fig. 3 Fig. 5 Fig. 6

6 Report: The alternating hurrent generator Result - Observations 1 (10 Punkte) Result - Observations 2 (10 Punkte)

7 Result - Observations 3 (10 Punkte) Result - Observations 4 (10 Punkte)

8 Result - Observations 5 (10 Punkte) Result - Observations 6 (10 Punkte)

9 Evaluation - Question 1 (10 Punkte) What can be concluded from the observation, that the pointer of the measuring instrument swings to and past the zero point during the rotation of the magnet? Evaluation - Question 2 (10 Punkte) Explain the observation noted under Result - Observations 2.

10 Evaluation - Question 3 (10 Punkte) Explain the observation noted under Result - Observations 4 and then state the reason why an instrument designed to measure direct current (or direct voltage) cannot be used for measurements in an alternating current circuit. Evaluation - Question 4 (10 Punkte) Explain the observation noted under Result - Observations 5.

Shadows (umbra and penumbra) (Item No.: P )

Shadows (umbra and penumbra) (Item No.: P ) Teacher's/Lecturer's Sheet Shadows (umbra and penumbra) (Item No.: P1063400) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Lichtausbreitung Experiment:

More information

Heat capacity of the calorimeter (Item No.: P )

Heat capacity of the calorimeter (Item No.: P ) Teacher's/Lecturer's Sheet Heat capacity of the calorimeter (Item No.: P04400) Curricular Relevance Area of Expertise: Physics Education Level: Age 6-9 Topic: Thermodynamics Subtopic: Calorimetry Experiment:

More information

Measurement of length (Item No.: P )

Measurement of length (Item No.: P ) Teacher's/Lecturer's Sheet Printed: 3.3.27 4:33:4 P99: Measurement of length (Item No.: P998) Curricular Relevance Area of Expertise: Physics Education Level: Age 4-6 Topic: Mechanics Subtopic: Substance

More information

The deflection of beta radiation in a magnetic field

The deflection of beta radiation in a magnetic field The deflection of beta radiation in a magnetic field (Item No.: P7300900) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-0 Topic: Radioaktivität Subtopic: Strahlenarten und ihre

More information

Reversing prisms (Item No.: P )

Reversing prisms (Item No.: P ) Teacher's/Lecturer's Sheet Reversing prisms (Item No.: P1065200) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Reflexion und Brechung Experiment: Umkehrprisma

More information

Refracting prisms (Item No.: P )

Refracting prisms (Item No.: P ) Teacher's/Lecturer's Sheet Refracting prisms (Item No.: P1065100) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Reflexion und.rechung Experiment: Umlenkprisma

More information

Magnetic field outside a straight conductor (Item No.: P )

Magnetic field outside a straight conductor (Item No.: P ) Magnetic field outside a straight conductor (Item No.: P2430500) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Electricity and Magnetism Subtopic: Magnetic Field and

More information

Refraction at the glass-air boundary (Item No.: P )

Refraction at the glass-air boundary (Item No.: P ) Teacher's/Lecturer's Sheet Refraction at the glass-air boundary (Item No.: P1064700) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Reflebion und Brechung

More information

Magnetic moment in the magnetic field (Item No.: P )

Magnetic moment in the magnetic field (Item No.: P ) Magnetic moment in the magnetic field (Item No.: P2430400) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Electricity and Magnetism Subtopic: Magnetic Field and Magnetic

More information

Nonmetal galvanic cells (Item No.: P )

Nonmetal galvanic cells (Item No.: P ) Teacher's/Lecturer's Sheet Nonmetal galvanic cells (Item No.: P7400900) Curricular Relevance Area of Expertise: Chemie Education Level: Klasse 10-13 Topic: Physikalische Chemie Subtopic: Elektrochemie

More information

Velocity of molecules and the Maxwell-Boltzmann distribution function (Item No.: P )

Velocity of molecules and the Maxwell-Boltzmann distribution function (Item No.: P ) Velocity of molecules and the Maxwell-Boltzmann distribution function (Item No.: P2320300) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Temperature

More information

Thermal and electrical conductivity of metals

Thermal and electrical conductivity of metals Thermal and electrical conductivity of metals (Item No.: P2350200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Heat, Work, and the First

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional

More information

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P )

Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P ) Diffraction at a slit and Heisenberg's uncertainty principle (Item No.: P2230100) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Licht und Optik Experiment:

More information

Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P )

Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P ) Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P2541001) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Moderne

More information

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P ) Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P2522015) Curricular Relevance Area of Expertise: ILIAS Education Level: Physik Topic: Hochschule Subtopic: Moderne Physik Experiment:

More information

Planck's "quantum of action" and external photoelectric effect (Item No.: P )

Planck's quantum of action and external photoelectric effect (Item No.: P ) Planck's "quantum of action" and external photoelectric effect (Item No.: P2510502) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Modern Physics Subtopic: Quantum Physics

More information

Electromagnetic Induction

Electromagnetic Induction 362 Mechanical Engineering Technician UNIT 7 Electromagnetic Induction Structure 7.1 Introduction 7.2 Faraday s laws of Electromagnetic Induction 7.3. Lenz s law 7.4. Fleming s right and rule 7.5. Self

More information

LEP Faraday effect

LEP Faraday effect Related topics Electromagnetic field interaction, electron oscillation, electromagnetism, polarisation, Verdet s constant, Hall effect. Principle and task The angle of rotation of the polarisation-plane

More information

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Section 11: Magnetic Fields and Induction (Faraday's Discovery) Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding

More information

TAP 416-3: Alternating current generators

TAP 416-3: Alternating current generators TAP 416-3: Alternating current generators Thinking about generators and induced emf An emf is induced in a coil when the magnetic flux through the coil changes. The emf in volts is numerically equal to

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Section 11: Magnetic Fields and Induction (Faraday's Discovery) Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

Electricity. Measuring the force on current-carrying conductors in a homogeneous magnetic field. LEYBOLD Physics Leaflets P

Electricity. Measuring the force on current-carrying conductors in a homogeneous magnetic field. LEYBOLD Physics Leaflets P Electricity Magnetostatics The effects of force in a magnetic field LEYBOLD Physics Leaflets Measuring the force on current-carrying conductors in a homogeneous magnetic field Recording with CASSY Objects

More information

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1)

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1) Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1) *0123456789* PHYSICS 0972/03 Paper 3 Theory (Core) For Examination from 2018 SPECIMEN PAPER

More information

MAGNETIC CIRCUITS. Magnetic Circuits

MAGNETIC CIRCUITS. Magnetic Circuits Basic Electrical Theory What is a magnetic circuit? To better understand magnetic circuits, a basic understanding of the physical qualities of magnetic circuits will be necessary. EO 1.8 EO 1.9 EO 1.10

More information

Moment of inertia and torsional vibrations (Item No.: P )

Moment of inertia and torsional vibrations (Item No.: P ) Moent of inertia and torsional vibrations (Ite No.: P2133100) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Mechanics Subtopic: Static Equilibriu and Elasticity Experient:

More information

Technical Instructions 5020.B. Specification 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm

Technical Instructions 5020.B. Specification 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm Specification 12 ½''' Dimensions and battery ø Total 28.60 mm ø Case fitting 28.00 mm Movement height 4.40 mm Movement rest 0.60 mm Height of stem 1.90 mm Stem: Thread / Distance 0.90 mm / 0.90 mm Battery

More information

Magnetizing a substance

Magnetizing a substance Magnetism What is a magnet? Any material that has the property of attracting Iron (or steel), Nickel or Cobalt Magnets exert a force on other magnets or particles with an electrical charge Magnets may

More information

Vapour pressure of water at high temperature

Vapour pressure of water at high temperature Vapour pressure of water at high temperature (Item No.: P2340100) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Thermal Properties and Processes

More information

/15 Current balance / Force acting on a current-carrying conductor

/15 Current balance / Force acting on a current-carrying conductor Electricity Stationary currents /15 Current balance / Force acting on a current-carrying conductor What you can learn about Uniform magnetic field Magnetic induction (formerly magnetic-flux densitiy) Lorentz

More information

Technical Instructions cal D. Specifikation 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm

Technical Instructions cal D. Specifikation 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm Specifikation 12 ½''' Dimensions and battery ø Total 28.60 mm ø Case fitting 28.00 mm Movement height 4.40 mm Movement rest 0.60 mm Height of stem 1.90 mm Stem: Thread / Distance 0.90 mm / 0.90 mm Battery

More information

Technical Instructions 4210.B. Specification 11 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm

Technical Instructions 4210.B. Specification 11 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm Specification 11 ½''' Dimensions and battery ø Total 28.60 mm ø Case fitting 28.00 mm Movement height 4.40 mm Movement rest 0.60 mm Height of stem 1.90 mm Stem: Thread / Distance 0.90 mm / 0.90 mm Battery

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Laboratory 14: Ratio of Charge to Mass for the Electron

Laboratory 14: Ratio of Charge to Mass for the Electron Laboratory 14: Ratio of Charge to Mass for the Electron Introduction The discovery of the electron as a discrete particle of electricity is generally credited to the British physicist Sir J. J. Thomson

More information

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

Electrical Circuits Question Paper 4

Electrical Circuits Question Paper 4 Electrical Circuits Question Paper 4 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 4

More information

Level 2 Physics, 2015

Level 2 Physics, 2015 91173 911730 2SUPERVISOR S Level 2 Physics, 2015 91173 Demonstrate understanding of electricity and electromagnetism 9.30 a.m. Tuesday 17 November 2015 Credits: Six Achievement Achievement with Merit Achievement

More information

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : 1 Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux : Φ = BAcosθ MAGNETIC FLUX (Φ) As we have already stated, a magnetic field is

More information

Freezing point depression (Item No.: P )

Freezing point depression (Item No.: P ) Freezing point depression (Item No.: P3021101) Curricular Relevance Area of Expertise: Chemistry Education Level: University Topic: General Chemistry Subtopic: Solutions and Mixtures Experiment: Freezing

More information

Lecture - 2A Instruments-I

Lecture - 2A Instruments-I Engineering Metrology Prof. J. Ramkumar Department of Mechanical Engineering & Design Programme Indian Institute of Technology, Kanpur Dr. Amandeep Singh Oberoi Department of Industrial & Production Engineering

More information

GRADE 11A: Physics 6. UNIT 11AP.6 10 hours. Electromagnetic induction. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 6. UNIT 11AP.6 10 hours. Electromagnetic induction. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 6 Electromagnetic induction UNIT 11AP.6 10 hours About this unit This unit is the sixth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and

More information

Technical Instructions 4003.B. Specification 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm

Technical Instructions 4003.B. Specification 12 ½''' Dimensions and battery. Performances. Functions. Movement height 4.40 mm Specification 12 ½''' Dimensions and battery ø Total 28.60 mm ø Case fitting 28.00 mm Movement height 4.40 mm Movement rest 0.60 mm Height of stem 1.90 mm Stem: Thread / Distance 0.90 mm / 0.90 mm Battery

More information

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2. Magnetic flux Magnetic flux is a measure of the number of magnetic field lines passing through something, such as a loop. If we define the area of the loop as a vector, with its direction perpendicular

More information

Dispersion and resolving power of the prism and grating spectroscope (Item No.: P )

Dispersion and resolving power of the prism and grating spectroscope (Item No.: P ) Dispersion and resolving power of the prism and grating spectroscope (Item No.: P2210300) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Light and Optics Subtopic: Diffraction

More information

MEASUREMENT OF MAGNETIC MATERIAL

MEASUREMENT OF MAGNETIC MATERIAL MEASUREMENT OF MAGNETIC MATERIAL Tomáš Bulín Doctoral Degree Programme (1.), FEEC BUT E-mail: xbulin01@stud.feec.vutbr.cz Supervised by: Čestmír Ondrůšek E-mail: ondrusek@feec.vutbr.cz Abstract: This article

More information

Electric Field Mapping

Electric Field Mapping PC1143 Physics III Electric Field Mapping 1 Objectives Map the electric fields and potentials resulting from three different configurations of charged electrodes rectangular, concentric, and circular.

More information

Physics Project. Name:- Dabhi Mihir Roll No:- 3 Class:- 12 th (Science-PCB) Topic:- Moving coil galvanometer

Physics Project. Name:- Dabhi Mihir Roll No:- 3 Class:- 12 th (Science-PCB) Topic:- Moving coil galvanometer Physics Project Name:- Dabhi Mihir Roll No:- 3 Class:- 12 th (Science-PCB) Topic:- Moving coil galvanometer M o v i n g C o i l G a l v a n o m e t e r - P h y s i c s P r o j e c t Page 1 Certificate:-

More information

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Magnetic field of single coils/ Biot-Savart s law with Cobra4 Magnetic field of single coils/ TEP Related topics Wire loop, Biot-Savart s law, Hall effect, magnetic field, induction, magnetic flux density. Principle The magnetic field along the axis of wire loops

More information

Portable Friction Meter HEIDON Tribo Gear μs Type 94i-Ⅱ. Operating Manual

Portable Friction Meter HEIDON Tribo Gear μs Type 94i-Ⅱ. Operating Manual Portable Friction Meter HEIDON Tribo Gear μs Type 94i-Ⅱ Operating Manual Contents 1. Introduction...3 2. Measurement Principle...4 3. The VCM Principle...5 4. External View and Part Names...6 5. Using

More information

Lab in a Box Measuring the e/m ratio

Lab in a Box Measuring the e/m ratio Safety Precautions All the signal voltages are small and harmless. The mains voltages in the mains powered equipment is dangerous but is screened in normal use. The fine beam tube requires dangerous contact

More information

Revision Compare Between. Application

Revision Compare Between. Application evision Compare etween Points of Comparison Series Connection Parallel Connection Drawing otal resistance ( ) = + + 3 3 Potential Difference () = + + 3 = = = 3 Electric Current (I) I = I = I = I 3 I =

More information

Electrical Circuits Question Paper 8

Electrical Circuits Question Paper 8 Electrical Circuits Question Paper 8 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 8

More information

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT. (Taken from the DoE Physical Sciences Preparatory Examination Paper )

TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT. (Taken from the DoE Physical Sciences Preparatory Examination Paper ) TOPIC: ELECTRODYNAMICS - MOTORS AND GENERATORS AND ALTERNATING CURRENT SECTION A: TYPICAL EXAM QUESTIONS QUESTION 1: 13 minutes (Taken from the DoE Physical Sciences Preparatory Examination Paper 1 2008)

More information

BROCK UNIVERSITY SOLUTIONS

BROCK UNIVERSITY SOLUTIONS BROCK UNIVERSITY Mid-term Test 3: July 2014 Number of pages: 7 (+ formula sheet) Course: PHYS 1P22/1P92 Number of students: 38 Examination date: 10 July 2014 Number of hours: 1 Time of Examination: 18:00

More information

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy hν. In 1905 Einstein extended this idea proposing

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8414511595* PHYSICS 0625/31 Paper 3 Theory (Core) October/November 2017 1 hour 15 minutes Candidates

More information

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives Prof. Dr. Ing. Joachim Böcker Test Examination: Mechatronics and Electrical Drives 8.1.214 First Name: Student number: Last Name: Course of Study: Exercise: 1 2 3 Total (Points) (2) (2) (2) (6) Duration:

More information

Preliminary Course Physics Module 8.3 Electrical Energy in the Home Summative Test. Student Name:

Preliminary Course Physics Module 8.3 Electrical Energy in the Home Summative Test. Student Name: Summative Test Student Name: Date: / / IMPORTANT FORMULAE I = Q/t V = I.R R S = R 1 + R 2 +.. 1/R P = 1/R 1 + 1/R 2 + P = V.I = I 2.R = V 2 /R Energy = V.I.t E = F/q Part A. Multiple Choice Questions 1-20.

More information

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets Magnetism Types of Magnetic Materials Magnetic substances can be classified into three basic groups, according to their response to a magnet. Note the strength and direction of the interaction. a) Ferromagnetic

More information

Chapter 18 Study Questions Name: Class:

Chapter 18 Study Questions Name: Class: Chapter 18 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The region around a magnet in which magnetic forces

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6658930791* UNIVERSITY OF MRIGE INTERNTIONL EXMINTIONS International General ertificate of Secondary Education PHYSIS 0625/12 Paper 1 Multiple hoice October/November 2011 dditional Materials: Multiple

More information

Activity 1: Evidence of Interactions

Activity 1: Evidence of Interactions UNIT 1 CHAPTER 2 Activity 1: Evidence of Interactions Name Date Class Key Questions Chapter Activity I Think Fill in the evidence of the following interactions. Demonstration A Time Interval: while the

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *0499528389* PHYSICS 5054/22 Paper 2 Theory May/June 2013 1 hour 45 minutes Candidates answer on the Question

More information

Magnets attract some metals but not others

Magnets attract some metals but not others Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *4817101212* PHYSICS 5054/21 Paper 2 Theory May/June 2016 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials

More information

Electrical Circuits Question Paper 1

Electrical Circuits Question Paper 1 Electrical Circuits Question Paper 1 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type Alternative to Practical Booklet Question Paper

More information

Technical Instructions 6203.B. Specification 11 ½''' Dimensions and battery. Performances. Functions. Movement height 3.30 mm

Technical Instructions 6203.B. Specification 11 ½''' Dimensions and battery. Performances. Functions. Movement height 3.30 mm Specification 11 ½''' Dimensions and battery ø Total 26.2 mm ø Case fitting 25.6 mm Movement height 3.30 mm Movement rest 1.40 mm Height of stem 1.80 mm Stem: Thread / Distance 0.90 mm / 0.90 mm Battery

More information

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law PHYSICS 1444-001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary

More information

Final Worksheet. Equation And Constant Summary

Final Worksheet. Equation And Constant Summary Equation And Constant Summary Final Worksheet These equations will be provided for you on the final. Know what they mean! Make notes on this page with which to study. v = d t t = d v d=vt If the speed

More information

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines Project : Analysis of an induction machine using a FEM based software General instructions In this assignment we will analyze an induction machine using Matlab and the freely available finite element software

More information

MOTORS AND GENERATORS

MOTORS AND GENERATORS DO PHYSCS ONLNE MOTORS AND GENERATORS view 1 Charge q Q [coulomb C] view 2 Current i [ampere A] view 3 Potential difference v V [volt V] Electric ield E [V.m -1 N.C -1 ] view 4 Resistance R [ohm ] view

More information

Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

More information

ATOMIC PHYSICS BLACK-BODY RADIATION Practical 4 STUDY OF THERMAL RADIATION LAWS

ATOMIC PHYSICS BLACK-BODY RADIATION Practical 4 STUDY OF THERMAL RADIATION LAWS ATOMIC PHYSICS BLACK-BODY RADIATION Practical 4 STUDY OF THERMAL RADIATION LAWS Introduction Electromagnetic radiation of heated bodies is called thermal radiation. The spectral characteristic of thermal

More information

STUDENT EXPERIMENTS PHYSICS, CHEMISTRY & BIOLOGY

STUDENT EXPERIMENTS PHYSICS, CHEMISTRY & BIOLOGY STUDENT EXPERIMENTS PHYSICS, CHEMISTRY & BIOLOGY 8 I 9 ADVANCED SCIENCE KITS ADVANCED SCIENCE KITS PHYSICS OVERVIEW OF THE RANGE OF TOPICS 450 EXPERIMENTS With about 450 experiments, both basic and advanced

More information

ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical 2 DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL

ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical 2 DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL METHOD 1 Introduction When the photon interacts with an electron in a substance, the

More information

2. How do electrically charged objects affect neutral objects when they come in contact?

2. How do electrically charged objects affect neutral objects when they come in contact? North arolina Testing Program EO Physical Science Sample Items Goal 4 1. When a plastic rod is rubbed with fur, the plastic rod becomes negatively charged. Which statement explains the charge transfer

More information

Electricity and Magnetism Module 6 Student Guide

Electricity and Magnetism Module 6 Student Guide Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent

More information

Second measurement. Measurement of speed of rotation and torque

Second measurement. Measurement of speed of rotation and torque Second measurement Measurement of speed of rotation and torque 1. Introduction The power of motion is the product of torque and angular velocity P = M ω [W ] And since the angular velocity rad ω = 2 π

More information

Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface

Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface PAGE 1/13 Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION In the year 1820, Hans Christian Oersted demonstrated that a current carrying conductor is associated with a magnetic field. Thereafter, attempts were made by many to verify the

More information

Demonstration 1: Faraday Ice Pail and Charge Production

Demonstration 1: Faraday Ice Pail and Charge Production Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES-9078) Charge Producers (ES-9057B) Earth

More information

Magnetic field of single coils / Biot-Savart's law

Magnetic field of single coils / Biot-Savart's law Principle The magnetic field along the axis of wire loops and coils of different dimensions is measured with a teslameter (Hall probe). The relationship between the maximum field strength and the dimensions

More information

THE HALL EFFECT AND CURRENT SENSORS. Experiment 3

THE HALL EFFECT AND CURRENT SENSORS. Experiment 3 THE HALL EFFECT AND CURRENT SENSORS Experiment 3 Equipment Electromagnet Electromagnet power supply Gaussmeter kit Germanium wafer PCB Hall effect current supply 3 x multimeters ACS712 current sensor PCB

More information

ITL Public School First - Term( )

ITL Public School First - Term( ) Date: 9/09/6 ITL Public School First - Term(06-7) Class: XII Physics(04) Answer key Time: hrs M. M: 70 SECTION-A An ac source of voltage V =V 0 sin ωt is connected to an ideal capacitor. Draw graphs and

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *6032081406* PHYSICS 5054/22 Paper 2 Theory May/June 2018 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials

More information

Experiment The Hall Effect Physics 2150 Experiment No. 12 University of Colorado

Experiment The Hall Effect Physics 2150 Experiment No. 12 University of Colorado Experiment 12 1 Introduction The Hall Effect Physics 2150 Experiment No. 12 University of Colorado The Hall Effect can be used to illustrate the effect of a magnetic field on a moving charge to investigate

More information

PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and. Lenz's Law Currents induced in coils by magnets and by other coils

PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and. Lenz's Law Currents induced in coils by magnets and by other coils PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and Print Your Name Lenz's Law Currents induced in coils by magnets and by other coils Print Your Partners' Names You will return this handout to the instructor

More information

Chapter 12. Magnetism and Electromagnetism

Chapter 12. Magnetism and Electromagnetism Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the

More information

Physics 1308 Exam 2 Summer Instructions

Physics 1308 Exam 2 Summer Instructions Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

More information

Chapter 23: Magnetic Flux and Faraday s Law of Induction

Chapter 23: Magnetic Flux and Faraday s Law of Induction Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Instruction sheet /5 MH 0066 Electromagnetic Experiment Set Knurled screws to fasten the cross bar Threaded holes (5x) to mount the cross bar Cross bar 4 Conductor swing 5 Stand 6

More information

2. OPERATIONAL CONDITIONS

2. OPERATIONAL CONDITIONS 1. INTRODUCTION This device was designed for modern physics labs of colleges and graduate schools. It demonstrates the influence of a magnetic field on light, known as Zeeman Effect, and reveals the behavior

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *1967526888* PHYSICS 0625/22 Paper 2 Core May/June 2013 1 hour 15 minutes

More information

2. How do electrically charged objects affect neutral objects when they come in contact?

2. How do electrically charged objects affect neutral objects when they come in contact? North arolina Testing Program EO Physical Science Sample Items Goal 4 1. When a plastic rod is rubbed with fur, the plastic rod becomes negatively charged. Which statement explains the charge transfer

More information

Answer all questions. All working must be shown. The use of a calculator is allowed.

Answer all questions. All working must be shown. The use of a calculator is allowed. SECONDARY SCHOOLS FINAL EXAMINATIONS 2002 Educational Assessment Unit - Education Division FORM 5 PHYSICS TIME: 1 hr 45 min NAME: CLASS: Answer all questions. All working must be shown. The use of a calculator

More information

RELEASED. Spring 2013 North Carolina Measures of Student Learning: NC s Common Exams

RELEASED. Spring 2013 North Carolina Measures of Student Learning: NC s Common Exams Released Form Spring 2013 North arolina Measures of Student Learning: N s ommon Exams Physics RELESE Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North

More information