The Role of Binary-Binary Interactions in Inducing Eccentric Black Hole Mergers

Size: px
Start display at page:

Download "The Role of Binary-Binary Interactions in Inducing Eccentric Black Hole Mergers"

Transcription

1 The Role of Binary-Binary Interactions in Inducing Eccentric Black Hole Mergers - CIERA / Northwestern University with Johan Samsing (Princeton), Carl Rodriguez (MIT), Carl-Johan Haster (CITA), & Enrico Ramirez-Ruiz (UCSC) Work initiated at the Kavli Summer Program in Astrophysics 2017 Niels Bohr Institute

2 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form?

3 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? ~ BBH =[M 1,M 2, ~ S 1, ~ S 2, ~ extrinsic ]

4 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? ~ BBH =[M 1,M 2, ~ S 1, ~ S 2, ~ extrinsic ] Spin magnitude models Posteriors eff eff + p( eff ) eff

5 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? ~ BBH =[M 1,M 2, ~ S 1, ~ S 2, ~ extrinsic ] Spin magnitude models Posteriors eff eff + p( eff ) eff = Odds ratio Farr, W. et al (Nature 548, 7662)

6 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? ~ BBH =[M 1,M 2, ~ S 1, ~ S 2, ~ extrinsic ] Spin magnitude models Posteriors eff eff + p( eff ) eff = Data rules out highly spinning, aligned systems Odds ratio Farr, W. et al (Nature 548, 7662)

7 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? + ef f = : Branching Ratio p( NObservations ef f Posteriors ~ ~ ~ ~ BBH = [M1, M2,S1, S2, extrinsic ] ef f ) Spin magnitude models ef f Data rules out highly spinning, aligned systems (Ncluster /Nf ield ) MZ et al (ApJ 846, 82) Odds ratio Farr, W. et al (Nature 548, 7662)

8 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? + ef f NObservations = : Branching Ratio p( ef f Posteriors NObservations SN Kick Prescriptions ~ ~ ~ ~ BBH = [M1, M2,S1, S2, extrinsic ] ef f ) Spin magnitude models ef f Data rules out highly spinning, aligned systems (Ncluster /Nf ield ) MZ et al (ApJ 846, 82) Odds ratio Farr, W. et al (Nature 548, 7662)

9 DISENTANGLING FORMATION SCENARIOS Where and how did LIGO s black holes form? ef f NObservations : Branching Ratio (Ncluster /Nf ield ) MZ et al (ApJ 846, 82) + Masses may help, but can take ~100 detections = Odds ratio p( ef f Posteriors NObservations SN Kick Prescriptions ~ ~ ~ ~ BBH = [M1, M2,S1, S2, extrinsic ] ef f ) Spin magnitude models ef f Data rules out highly spinning, aligned systems Farr, W. et al (Nature 548, 7662)

10 CAN ECCENTRICITY CONTRIBUTE?

11 CAN ECCENTRICITY CONTRIBUTE? e a 19/12 t GW (1 e 2 0) 7/2

12

13 POST-NEWTONIAN DYNAMICS Samsing et al (PRD 97, ) Resonant encounters can facilitate highly relativistic close encounters

14 POST-NEWTONIAN DYNAMICS Samsing et al (PRD 97, ) Resonant encounters can facilitate highly relativistic close encounters where dissipation Samsing & Ramirez-Ruiz 2017 (ApJ 840, L14) of orbital energy from GW emission can result in rapid, highly-eccentric black hole mergers

15 POST-NEWTONIAN DYNAMICS What role do binary-binary encounters play?

16 POST-NEWTONIAN DYNAMICS What role do binary-binary encounters play? see e.g. Hut & Bahcall 1983, Fregeau et al. 2004, Antognini & Thompson 2015 for background

17 POST-NEWTONIAN DYNAMICS periapse precession orbital decay (GWs)

18 ENDSTATE PROBABILITIES MZ et al (in prep)

19 ENDSTATE PROBABILITIES E ij < 0; a ij < 10(R s,i +R s,j ) MZ et al (in prep)

20 ENDSTATE PROBABILITIES cross sections X = b 2 max N X N tot b max = 4 v crit +3 a max v 1 (c.f. Hut & Bahcall 1983, Samsing et al. 2014, Antognini & Thompson 2015) MZ et al (in prep)

21

22 BINARY-BINARY CONTRIBUTION Binary-single and binary-binary scatterings from realistic cluster models Perform O(10 5 ) scatterings of binarysingle and binary-binary encounters from various CMC models: Rvirial = [1, 2] kpc Z = [0.25, 0.05, 0.025] Z M = [2e5, 5e5, 1e6, 2e6] M

23 BINARY-BINARY CONTRIBUTION Binary-single and binary-binary scatterings from realistic cluster models Perform O(10 5 ) scatterings of binarysingle and binary-binary encounters from various CMC models: Rvirial = [1, 2] kpc Z = [0.25, 0.05, 0.025] Z M = [2e5, 5e5, 1e6, 2e6] M Analyze the efficiency of binarybinary BH encounters relative to binary-single BH encounters at inducing inspiral efficiency inspiral during interaction MZ et al (in prep)

24 BINARY-BINARY CONTRIBUTION Binary-single and binary-binary scatterings from realistic cluster models Perform O(10 5 ) scatterings of binarysingle and binary-binary encounters from various CMC models: Rvirial = [1, 2] kpc Z = [0.25, 0.05, 0.025] Z M = [2e5, 5e5, 1e6, 2e6] M Analyze the efficiency of binarybinary BH encounters relative to inspiral efficiency binary-bianry binary-single binary-single BH encounters at inducing inspiral during interaction MZ et al (in prep)

25 BINARY-BINARY CONTRIBUTION Binary-single and binary-binary scatterings from realistic cluster models Perform O(10 5 ) scatterings of binarysingle and binary-binary encounters from various CMC models: Rvirial = [1, 2] kpc Z = [0.25, 0.05, 0.025] Z M = [2e5, 5e5, 1e6, 2e6] M Analyze the efficiency of binarybinary BH encounters relative to inspiral efficiency binary-bianry binary-single binary-single BH encounters at inducing inspiral during interaction MZ et al (in prep) Though rarer occurrences, binary-binary interactions contribute ~20-40% of eccentric in-cluster mergers

26 ECCENTRICITY OF MERGERS Inspirals induced during resonant interaction maintain appreciable eccentricities in the LIGO band Inspiraling binaries can form in band with eccentricities near e=1 10 Hz MZ et al (in prep)

27 ECCENTRICITY OF MERGERS Inspirals induced during resonant interaction maintain appreciable eccentricities in the LIGO band Inspiraling binaries can form in band with eccentricities near e=1 10 Hz Post-encounter binaries that are ejected from cluster or merge before another encounter have eccentricities too low for LIGO to measure MZ et al (in prep)

28 ECCENTRICITY OF MERGERS Inspirals induced during resonant interaction maintain appreciable eccentricities in the LIGO band Inspiraling binaries can form in band with eccentricities near e=1 10 Hz Post-encounter binaries that are ejected from cluster or merge before another encounter have 10-2 Hz eccentricities too low for LIGO to measure but they may be measurable by LISA! see e.g. Breivik et al (ApJ 830, L18), Samsing & D Orazio 2018 (arxiv) MZ et al (in prep)

29 CONCLUDING REMARKS Including of post-newtonian dynamics in strong encounters of black hole systems can lead to rapid and highly-eccentric black hole mergers Binary-binary interactions significantly contribute to eccentric GW inspirals, leading to ~20-40% of inspirals induced by resonant interactions binary-bianry Inspirals during binary-binary resonant encounters have eccentricities measurable by LIGO, while tight binaries formed from these encounters have binary-single eccentricities accessible by LISA

Black Hole Mergers from Globular Clusters Observable by LISA and LIGO: Results from post-newtonian Binary-Single Scatterings

Black Hole Mergers from Globular Clusters Observable by LISA and LIGO: Results from post-newtonian Binary-Single Scatterings Black Hole Mergers from Globular Clusters Observable by LISA and LIGO: Results from post-newtonian Binary-Single Scatterings Johan Samsing Department of Astrophysical Sciences, Princeton University, Peyton

More information

arxiv: v2 [astro-ph.he] 27 Jan 2018

arxiv: v2 [astro-ph.he] 27 Jan 2018 DRAFT VERSION JANUARY 30, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 MOCCA-SURVEY DATABASE I: ECCENTRIC BLACK HOLE MERGERS DURING BINARY-SINGLE INTERACTIONS IN GLOBULAR CLUSTERS JOHAN

More information

Insights into binary evolution from gravitational waves

Insights into binary evolution from gravitational waves Insights into binary evolution from gravitational waves Simon Stevenson simon.stevenson@ligo.org @simon4nine For the COMPAS team Alejandro Vigna-Gomez, Jim Barrett, Coen Nijssell, Christopher Berry, Ilya

More information

Monte Carlo Models of Dense Star Clusters

Monte Carlo Models of Dense Star Clusters Monte Carlo Models of Dense Star Clusters Sourav Chatterjee MODEST 18, Firá, Santorini June 26, 2018 Hénon-type Monte Carlo N-body model spread all masses in spherical shells (E, J) 2-body relaxation approximate

More information

Testing GR with Compact Object Binary Mergers

Testing GR with Compact Object Binary Mergers Testing GR with Compact Object Binary Mergers Frans Pretorius Princeton University The Seventh Harvard-Smithsonian Conference on Theoretical Astrophysics : Testing GR with Astrophysical Systems May 16,

More information

LIGO Results/Surprises? Dong Lai

LIGO Results/Surprises? Dong Lai LIGO Results/Surprises? Dong Lai Cornell University Exploding Universe Workshop, TDLI, 5/28/2018 GW170817 / AT2017gfo Metzger 2017 LIGO Surprises? 1. Tidal Resonances! NS EOS 2. Dynamical Formation of

More information

Averaging the average: Morphology transitions in spin precession of black-hole binaries

Averaging the average: Morphology transitions in spin precession of black-hole binaries Averaging the average: Morphology transitions in spin precession of black-hole binaries U. Sperhake DAMTP, University of Cambridge M. Kesden, D. Gerosa, R. O Shaughnessy, E. Berti VII Black Holes Workshop

More information

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech

Binary Black Holes. Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech Binary Black Holes Deirdre Shoemaker Center for Relativistic Astrophysics School of Physics Georgia Tech NR confirmed BBH GW detections LIGO-P150914-v12 Abbott et al. 2016a, PRL 116, 061102 an orbital

More information

Learning about Black- Hole Forma5on by Observing Gravita5onal Waves. Michael Kesden (UT Dallas) PPC 2017 Mee5ng Corpus Chris5, TX May 22, 2017

Learning about Black- Hole Forma5on by Observing Gravita5onal Waves. Michael Kesden (UT Dallas) PPC 2017 Mee5ng Corpus Chris5, TX May 22, 2017 Learning about Black- Hole Forma5on by Observing Gravita5onal Waves Michael Kesden (UT Dallas) PPC 2017 Mee5ng Corpus Chris5, TX May 22, 2017 Outline What are gravita5onal waves (GWs) and how do observatories

More information

What have we learned from coalescing Black Hole binary GW150914

What have we learned from coalescing Black Hole binary GW150914 Stas Babak ( for LIGO and VIRGO collaboration). Albert Einstein Institute (Potsdam-Golm) What have we learned from coalescing Black Hole binary GW150914 LIGO_DCC:G1600346 PRL 116, 061102 (2016) Principles

More information

Compact Binaries as Gravitational-Wave Sources

Compact Binaries as Gravitational-Wave Sources Compact Binaries as Gravitational-Wave Sources Chunglee Kim Lund Observatory Extreme Astrophysics for All 10 February, 2009 Outline Introduction Double-neutron-star systems = NS-NS binaries Neutron star

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

arxiv: v1 [astro-ph.he] 13 Dec 2017

arxiv: v1 [astro-ph.he] 13 Dec 2017 Post-Newtonian Dynamics in Dense Star Clusters: Highly-Eccentric, Highly-Spinning, and Repeated Binary Black Hole Mergers arxiv:1712.04937v1 [astro-ph.he] 13 Dec 2017 Carl L. Rodriguez, 1 Pau Amaro-Seoane,

More information

arxiv: v3 [astro-ph.he] 14 Mar 2018

arxiv: v3 [astro-ph.he] 14 Mar 2018 Post-Newtonian Dynamics in Dense Star Clusters: Highly-Eccentric, Highly-Spinning, and Repeated Binary Black Hole Mergers arxiv:1712.04937v3 [astro-ph.he] 14 Mar 2018 Carl L. Rodriguez, 1 Pau Amaro-Seoane,

More information

Panel: Model selection with gravitational wave observations

Panel: Model selection with gravitational wave observations Panel: Model selection with gravitational wave observations Strong Gravity and Binary dynamics, Oxford, MS 2017-02-27 Panel: Richard O Shaughnessy Salvatore Vitale Chris Pankow Simon Stevenson Rules of

More information

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation Sambaran Banerjee Argelander-Institut für Astronomie (AIfA) and Helmholtz-Instituts für Strahlen-

More information

Suppression of superkicks in BBH inspiral

Suppression of superkicks in BBH inspiral Suppression of superkicks in BBH inspiral U. Sperhake Institute of Space Sciences CSIC-IEEC Barcelona IV Black Holes Workshop, 20 th December 2011 E. Berti, M. Kesden U. Sperhake (CSIC-IEEC) Suppression

More information

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik Jongsuk Hong (KIAA) MODEST-18 2018/06/28 Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik Introduction Method & models BBH mergers & Host cluster properties Merger rate estimation

More information

Black Hole Physics via Gravitational Waves

Black Hole Physics via Gravitational Waves Black Hole Physics via Gravitational Waves Image: Steve Drasco, California Polytechnic State University and MIT How to use gravitational wave observations to probe astrophysical black holes In my entire

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture VI: DYNAMICS AROUND SUPER-MASSIVE BHs 0. nuclear star clusters (NSCs) 1. dynamics around super-massive

More information

Black holes from other black holes?

Black holes from other black holes? Black holes from other black holes? Davide Gerosa NASA Einstein Fellow California Institute of Technology arxiv:703.06223 with E. Berti January 22nd, 208 Gravity@Malta Valletta, Malta dgerosa@caltech.edu

More information

Gravitational Wave Memory Revisited:

Gravitational Wave Memory Revisited: Gravitational Wave Memory Revisited: Memories from the merger and recoil Marc Favata Kavli Institute for Theoretical Physics Metals have memory too What is the GW memory? Generally think of GW s as oscillating

More information

Coalescing Binary Black Holes Originating from Globular Clusters

Coalescing Binary Black Holes Originating from Globular Clusters Coalescing Binary Black Holes Originating from Globular Clusters Abbas Askar (askar@camk.edu.pl) Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland Abbas Askar Globular

More information

Massive Stellar Black Hole Binaries and Gravitational Waves

Massive Stellar Black Hole Binaries and Gravitational Waves BH-BH binaries: modeling Massive Stellar Black Hole Binaries and Gravitational Waves Chris Belczynski1 Tomek Bulik1 Daniel Holz Richard O Shaughnessy Wojciech Gladysz1 and Grzegorz Wiktorowicz1 1 Astronomical

More information

A synthetic model of the gravitational wave background from evolving binary compact objects

A synthetic model of the gravitational wave background from evolving binary compact objects A synthetic model of the gravitational wave background from evolving binary compact objects Irina Dvorkin, Jean-Philippe Uzan, Elisabeth Vangioni, Joe Silk (Institut d Astrophysique de Paris) [arxiv:1607.06818]

More information

How well can gravitational waves pin down merging black holes?

How well can gravitational waves pin down merging black holes? How well can gravitational waves pin down merging black holes? Using gravitational wave information to point our telescopes and find the merger event on the sky Scott A. Hughes, MIT How do we measure GWs?

More information

The Evolution of Stellar Triples

The Evolution of Stellar Triples The Evolution of Stellar Triples Silvia Toonen toonen@uva.nl Simon Portegies Zwart, Tjarda Boekholt, Adrian Hamers, Hagai Perets, Fabio Antonini Triple evolution Isolated Hierarchical Stellar triples:

More information

Results from LIGO Searches for Binary Inspiral Gravitational Waves

Results from LIGO Searches for Binary Inspiral Gravitational Waves Results from LIGO Searches for Binary Inspiral Gravitational Waves Peter Shawhan (LIGO Laboratory / Caltech) For the LIGO Scientific Collaboration American Physical Society April Meeting May 4, 2004 Denver,

More information

What have we learned from the detection of gravitational waves? Hyung Mok Lee Seoul National University

What have we learned from the detection of gravitational waves? Hyung Mok Lee Seoul National University What have we learned from the detection of gravitational waves? Hyung Mok Lee Seoul National University Outline Summary of 1st and 2nd Observing Runs Characteristics of detected sources Astrophysical Implications

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 2

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 2 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 2 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Gravitational waves from Massive Primordial Black Holes as Dark Matter

Gravitational waves from Massive Primordial Black Holes as Dark Matter Gravitational waves from Massive Primordial Black Holes as Dark Matter based on S. Clesse & JGB, arxiv:1603.05234 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

More information

Gravitational Wave Memory Revisited:

Gravitational Wave Memory Revisited: Gravitational Wave Memory Revisited: Memory from binary black hole mergers Marc Favata Kavli Institute for Theoretical Physics arxiv:0811.3451 [astro-ph] and arxiv:0812.0069 [gr-qc] What is the GW memory?

More information

Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals

Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals Kicked Waveforms Observing Black Hole Recoils in Gravitational Wave Signals Christopher Moore, DAMTP, Cambridge, UK StronG BaD, Mississippi 1st March 2017 Work done in collaboration with Davide Gerosa

More information

arxiv: v1 [astro-ph.he] 16 Jan 2019

arxiv: v1 [astro-ph.he] 16 Jan 2019 Draft version January 17, 019 Typeset using LATEX twocolumn style in AASTeX6 The Population of Eccentric Binary Black Holes: Implications for mhz Gravitational Wave Experiments Xiao Fang, 1,, 3 Todd A.

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge Post-Newtonian N-body Codes Sverre Aarseth Institute of Astronomy, Cambridge Introduction N-body tools Three-body formulation PN implementations Numerical examples Discussion Hermite Integration Taylor

More information

Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University

Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University Waveform modeling for LIGO parameter estimation: status & challenges for LISA Prayush Kumar Cornell University The Architecture of LISA Science Analysis: Imagining the Future January 16-19, 2018 1 Outline

More information

Key Results from Dynamical Spacetime GRMHD Simulations. Zachariah Etienne

Key Results from Dynamical Spacetime GRMHD Simulations. Zachariah Etienne Key Results from Dynamical Spacetime GRMHD Simulations Zachariah Etienne Outline Lecture 1: The mathematical underpinnings of GRMHD, astrophysical importance Lecture 2: Solving GRMHD equations numerically

More information

Testing the strong-field dynamics of general relativity with direct gravitational-wave observations of merging binary neutron stars and black holes

Testing the strong-field dynamics of general relativity with direct gravitational-wave observations of merging binary neutron stars and black holes Testing the strong-field dynamics of general relativity with direct gravitational-wave observations of merging binary neutron stars and black holes J. Meidam, M. Agathos, L. van der Schaaf, C. Van Den

More information

arxiv: v1 [astro-ph.he] 1 Mar 2019

arxiv: v1 [astro-ph.he] 1 Mar 2019 Draft version March 4, 2019 Typeset using LATEX twocolumn style in AASTeX62 Detecting Supermassive Black Hole-Induced Binary Eccentricity Oscillations with LISA Bao-Minh Hoang, 1, 2 Smadar Naoz, 1, 2 Bence

More information

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole.

How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. How black holes get their kicks! Gravitational radiation recoil from binary inspiral and plunge into a rapidly-rotating black hole. Marc Favata (Cornell) Daniel Holz (U. Chicago) Scott Hughes (MIT) The

More information

Distinguishing source populations. with LIGO/VIRGO

Distinguishing source populations. with LIGO/VIRGO Modest18, Santorini, Greece, June 27, 2018 Distinguishing source populations Bence Kocsis Eotvos University with LIGO/VIRGO GALNUC team members postdoc: Yohai Meiron, Alexander Rasskazov, Hiromichi Tagawa

More information

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY Bruno Giacomazzo University of Trento, Italy PART I: BINARY NEUTRON STAR MERGERS WHY SO INTERESTING? Due to their duration and

More information

GRAVITATIONAL WAVE ASTRONOMY

GRAVITATIONAL WAVE ASTRONOMY GRAVITATIONAL WAVE ASTRONOMY A. Melatos (Melbourne) 1. GW: physics & astronomy 2. Current- & next-gen detectors & searches 3. Burst sources: CBC, SN GR, cosmology 4. Periodic sources: NS subatomic physics

More information

Gravitational-wave spin memory effect for compact binaries

Gravitational-wave spin memory effect for compact binaries Gravitational-wave spin memory effect for compact binaries David A. Nichols Dept. of Astrophysics / IMAPP Radboud University Gravity at Malta Conference, 2018 23 January 2018 Based on arxiv:1702.03300

More information

Dynamical Tides in Binaries

Dynamical Tides in Binaries Dynamical Tides in Binaries I. Merging White Dwarf Binaries II. Kepler KOI-54 III. Hot Jupiter Systems Dong Lai Cornell University 4/5/2012, IAS, Princeton Equilibrium Tide M, R M Equilibrium Tide M, R

More information

Astrophysics to be learned from observations of intermediate mass black hole in-spiral events. Alberto Vecchio

Astrophysics to be learned from observations of intermediate mass black hole in-spiral events. Alberto Vecchio Astrophysics to be learned from observations of intermediate mass black hole in-spiral events Alberto Vecchio Making Waves with Intermediate Mass Black Holes Three classes of sources IMBH BH(IMBH) IMBH

More information

Open problems in compact object dynamics

Open problems in compact object dynamics Open problems in compact object dynamics Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se Key ideas and open questions in compact object dynamics Melvyn

More information

arxiv:astro-ph/ v2 15 Jan 2007

arxiv:astro-ph/ v2 15 Jan 2007 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 16 January 2007 (MN LATEX style file v2.2) A hypervelocity star from the Large Magellanic Cloud Alessia Gualandris 1 and Simon Portegies Zwart 1 1

More information

EINSTEIN TELESCOPE rd. 3 generation GW detector

EINSTEIN TELESCOPE rd. 3 generation GW detector EINSTEIN TELESCOPE rd 3 generation GW detector http://www.et-gw.eu/ Dorota Gondek-Rosińska University of Zielona Góra w imieniu polskiego ET konsorcjum (UW, UZG, UwB, PW, CAMK, IMPAN ) Gravitational wave

More information

Interpreting gravitational wave measurements as constraints on binary evolution?

Interpreting gravitational wave measurements as constraints on binary evolution? Interpreting gravitational wave measurements as constraints on binary evolution? R. O Shaughnessy Syracuse, May 29 2009 Outline I : Internal * background GW measurements of binaries: review slides (lots

More information

Dancing in the dark: spotting BHS & IMBH in GC

Dancing in the dark: spotting BHS & IMBH in GC Dancing in the dark: spotting BHS & IMBH in GC ARI-ZAH, Heidelberg University Star Clusters around the Milky Way and in the Local Group Heidelberg August 15th-17th, 2018 Unravelling stellar black hole

More information

The nonlinear gravitational-wave memory in binary black hole mergers

The nonlinear gravitational-wave memory in binary black hole mergers The nonlinear gravitational-wave memory in binary black hole mergers Marc Favata Kavli Institute for Theoretical Physics University of California, Santa Barbara What is memory? Generally think of GW s

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

Searching for Intermediate Mass Black Holes mergers

Searching for Intermediate Mass Black Holes mergers Searching for Intermediate Mass Black Holes mergers G. A. Prodi, Università di Trento and INFN for the LIGO Scientific collaboration and the Virgo collaboration special credits to Giulio Mazzolo and Chris

More information

Gravitational Recoil and Astrophysical impact

Gravitational Recoil and Astrophysical impact Gravitational Recoil and Astrophysical impact U. Sperhake DAMTP, University of Cambridge 3 rd Sant Cugat Forum on Astrophysics 25 th April 2014 U. Sperhake (DAMTP, University of Cambridge) Gravitational

More information

Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3

Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3 Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3 Tom Dent (Albert Einstein Institute, Hannover) Chris Pankow (CIERA/Northwestern) for the LIGO and Virgo Collaborations DCC: LIGO-G1800370

More information

The Dynamical Strong-Field Regime of General Relativity

The Dynamical Strong-Field Regime of General Relativity The Dynamical Strong-Field Regime of General Relativity Frans Pretorius Princeton University IFT Colloquium Sao Paulo, March 30, 2016 Outline General Relativity @100 the dynamical, strong-field regime

More information

Interactive poster. Understanding and evolving precessing black hole binaries. Richard O Shaughnessy

Interactive poster. Understanding and evolving precessing black hole binaries. Richard O Shaughnessy Interactive poster Understanding and evolving precessing black hole binaries Richard O Shaughnessy for D. Gerosa, M. Kesden, E. Berti, U. Sperhake PRL in press [arxiv:1411.0674] D. Trifiro, T. Littenberg,

More information

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso L Aquila - 14/11/2018 Multi-messenger studies of NS mergers, GRBs and magnetars Simone Dall Osso OUTLINE 1. Overview of GW/EM discoveries since 2015 binary black hole mergers binary neutron star mergers

More information

Searches for Gravitational waves associated with Gamma-ray bursts

Searches for Gravitational waves associated with Gamma-ray bursts Searches for Gravitational waves associated with Gamma-ray bursts Raymond Frey University of Oregon for the LIGO Scientific Collaboration and the Virgo Collaboration 1 Current network of groundbased GW

More information

Sources of Gravitational Waves

Sources of Gravitational Waves Optical afterglow of GRB 050709 Hubble image 5.6 days after initial gamma-ray burst (Credit: Derek Fox / Penn State University) Sources of Gravitational Waves Peter Shawhan SLAC Summer Institute August

More information

The Gravitational Radiation Rocket Effect. Marc Favata Cornell University GR17, Dublin, July 2004

The Gravitational Radiation Rocket Effect. Marc Favata Cornell University GR17, Dublin, July 2004 The Gravitational Radiation Rocket Effect recoil Marc Favata Cornell University GR17, Dublin, July 004 Favata, Hughes, & Holz, ApJL 607, L5, astro-ph/040056 Merritt, Milosavljevic, Favata, Hughes, & Holz,

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Institut de Physique Théorique CEA-Saclay CNRS Université Paris-Saclay Probing cosmology with LISA Based on: Tamanini,

More information

Solving the binary black hole problem (again and again and again...)

Solving the binary black hole problem (again and again and again...) Solving the binary black hole problem (again and again and again...) Mark Hannam Cardiff University ACCGR Workshop Brown University, May 21 2011 Mark Hannam (Cardiff) ACCGR Workshop, Brown University 1

More information

Measuring EMRIs: A reality check

Measuring EMRIs: A reality check Measuring EMRIs: A reality check Image: Steve Drasco, CalPoly What modeling and data analysis work must be done in order to achieve the science that has been promised for extreme mass ratio inspiral measurements?

More information

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Intro Simulations Results Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Jennifer Seiler Christian Reisswig, Sascha Husa, Luciano Rezzolla, Nils Dorband, Denis Pollney

More information

Overview of Gravitational Wave Physics [PHYS879]

Overview of Gravitational Wave Physics [PHYS879] Overview of Gravitational Wave Physics [PHYS879] Alessandra Buonanno Maryland Center for Fundamental Physics Joint Space-Science Institute Department of Physics University of Maryland Content: What are

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light Modern View of Gravitation Newtonian instantaneous action at a distance G µ = 8 µ # General Relativity information carried by gravitational radiation at the speed of light Gravitational Waves GR predicts

More information

Event Rates of Gravitational Waves from merging Intermediatemass

Event Rates of Gravitational Waves from merging Intermediatemass Event Rates of Gravitational Waves from merging Intermediatemass Black Holes: based on a Runaway Path to a SMBH Hisaaki Shinkai 1, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata

More information

Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism

Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism Key ideas on how inspiral-merger-ringdown waveforms are built within the effective-one-body formalism Alessandra Buonanno Maryland Center for Fundamental Physics & Joint Space-Science Institute Department

More information

Gravitational waves from binary black holes

Gravitational waves from binary black holes Gravitational waves from binary black holes Hiroyuki Nakano YITP, Kyoto University DECIGO workshop, October 27, 2013 Hiroyuki Nakano Gravitational waves from binary black holes Binary black holes (BBHs)

More information

How do black hole binaries form? Studying stellar evolution with gravitational wave observations

How do black hole binaries form? Studying stellar evolution with gravitational wave observations How do black hole binaries form? Studying stellar evolution with gravitational wave observations Irina Dvorkin (Institut d Astrophysique de Paris) with: Joe Silk, Elisabeth Vangioni, Jean-Philippe Uzan,

More information

Gravity has a story to tell: LISA and the search for low frequency gravitational waves

Gravity has a story to tell: LISA and the search for low frequency gravitational waves Utah State University DigitalCommons@USU Colloquia and Seminars Astrophysics 11-5-2008 Gravity has a story to tell: LISA and the search for low frequency gravitational waves Shane L. Larson Utah State

More information

GENERAL RELATIVISTIC SIMULATIONS OF NS BINARIES. Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy

GENERAL RELATIVISTIC SIMULATIONS OF NS BINARIES. Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy GENERAL RELATIVISTIC SIMULATIONS OF NS BINARIES Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy WHY SO INTERESTING? Due to their duration and dynamics, NS-NS and NS-BH binaries are very good

More information

Is NGC 6752 Hosting a Single or a Binary Black Hole?

Is NGC 6752 Hosting a Single or a Binary Black Hole? arxiv:astro-ph/0302545v1 26 Feb 2003 Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, 2003 ed. L. C. Ho (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium1/proceedings.html)

More information

NS-NS and BH-NS Merger Simulations Lecture 3

NS-NS and BH-NS Merger Simulations Lecture 3 NS-NS and BH-NS Merger Simulations Lecture 3 Yuk Tung Liu ( 廖育棟 ) July 26-30, 2010 Asia Pacific Center for Theoretical Physics, Pohang (Korea) 2010 International School on Numerical Relativity and Gravitational

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

The effect of f - modes on the gravitational waves during a binary inspiral

The effect of f - modes on the gravitational waves during a binary inspiral The effect of f - modes on the gravitational waves during a binary inspiral Tanja Hinderer (AEI Potsdam) PRL 116, 181101 (2016), arxiv:1602.00599 and arxiv:1608.01907? A. Taracchini F. Foucart K. Hotokezaka

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

The so-called final parsec problem

The so-called final parsec problem The so-called final parsec problem most galaxies contain black holes at their centers black-hole mass is 10 6-10 10 solar masses or roughly 0.2-0.5% of the stellar mass of the host galaxy galaxies form

More information

Stellar collisions and their products

Stellar collisions and their products Stellar collisions and their products Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se KEY IDEA #1 Collision rate depends on V. Stellar encounter timescales

More information

Numerical Simulations of Compact Binaries

Numerical Simulations of Compact Binaries Numerical Simulations of Compact Binaries Lawrence E. Kidder Cornell University CSCAMM Workshop Matter and Electromagnetic Fields in Strong Gravity 26 August 2009, University of Maryland Cornell-Caltech

More information

Massive star clusters

Massive star clusters Massive star clusters as a host of compact binaries Michiko Fujii ( 藤井通子 ) The University of Tokyo Outline Massive star clusters and compact binaries Dynamical evolution of star clusters Distribution of

More information

Observing Massive Black Hole Binary Coalescence with LISA

Observing Massive Black Hole Binary Coalescence with LISA Observing Massive Black Hole Binary Coalescence with LISA Joan Centrella John Baker NASA/GSFC GSFC - JPL 5 th International LISA Symposium ESTEC July 12-15, 2004 Massive Black Hole Mergers MBHs lurk at

More information

arxiv: v2 [gr-qc] 12 Oct 2015

arxiv: v2 [gr-qc] 12 Oct 2015 Parameter estimation using a complete signal and inspiral templates for low mass binary black holes with Advanced LIGO sensitivity arxiv:5.4399v [gr-qc] Oct 5 Hee-Suk Cho E-mail: chohs439@pusan.ac.kr Korea

More information

Sources of Gravitational Waves

Sources of Gravitational Waves 1 Sources of Gravitational Waves Joan Centrella Laboratory for High Energy Astrophysics NASA/GSFC Gravitational Interaction of Compact Objects KITP May 12-14, 2003 A Different Type of Astronomical Messenger

More information

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses 2 Ford, Rasio, & Yu unlikely to have developed such a large eccentricity, since dissipation in the disk tends to circularize orbits. Dynamical instabilities leading to the ejection of one planet while

More information

An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity

An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity An eccentric binary black hole inspiral-mergerringdown gravitational waveform model from post- Newtonian and numerical relativity Ian Hinder Max Planck Institute for Gravitational Physics (Albert Einstein

More information

Gravitational waveforms for data analysis of spinning binary black holes

Gravitational waveforms for data analysis of spinning binary black holes Gravitational waveforms for data analysis of spinning binary black holes Andrea Taracchini (Max Planck Institute for Gravitational Physics, Albert Einstein Institute Potsdam, Germany) [https://dcc.ligo.org/g1700243]

More information

arxiv: v2 [astro-ph.he] 6 Aug 2018

arxiv: v2 [astro-ph.he] 6 Aug 2018 Draft version August 7, 018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 A TRIPLE ORIGIN FOR THE HEAVY AND LOW-SPIN BINARY BLACK HOLES DETECTED BY LIGO/VIRGO Carl L. Rodriguez 1 and Fabio Antonini

More information

Gravitational Wave Astrophysics Theory, Simulation, Observation

Gravitational Wave Astrophysics Theory, Simulation, Observation Gravitational Wave Astrophysics Theory, Simulation, Observation Rainer Spurzem + Silk Road Team (Li Shuo, Peter Berczik, Thijs Kouwenhoven Long Wang, Maxwell Cai, Shu Qi,...) NAOC/CAS KIAA/PKU ARI/ZAH

More information

Decoding binary black hole mergers. Neil J. Cornish Montana State

Decoding binary black hole mergers. Neil J. Cornish Montana State Decoding binary black hole mergers Neil J. Cornish Montana State Outline Anatomy of a comparable mass binary BH signal Inspiral, merger and ringdown Amplitude corrections and spin Detector response Orbital

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

Astrophysical Stochastic Gravitational Waves. Jonah Kanner PHYS 798G March 27, 2007

Astrophysical Stochastic Gravitational Waves. Jonah Kanner PHYS 798G March 27, 2007 Astrophysical Stochastic Gravitational Waves Jonah Kanner PHYS 798G March 27, 2007 Introduction Gravitational Waves come from space Require acceleration of dense mass (Think black holes and neutron stars!)

More information

Searching for Gravitational Waves from Coalescing Binary Systems

Searching for Gravitational Waves from Coalescing Binary Systems Searching for Gravitational Waves from Coalescing Binary Systems Stephen Fairhurst Cardiff University and LIGO Scientific Collaboration 1 Outline Motivation Searching for Coalescing Binaries Latest Results

More information