Do Gamma Rays reveal our Galaxy s DM?

Size: px
Start display at page:

Download "Do Gamma Rays reveal our Galaxy s DM?"

Transcription

1 Do Gamma Rays reveal our Galaxy s DM? We don t know it, because we don t see it! WdB, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, EGRET excess of diffuse Galactic Gamma Rays as Tracer of DM, astro-ph/ , A&A, 444 (2005) 51 W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

2 EGRET on CGRO (Compton Gamma Ray Observ.) Data publicly available from NASA archive 9 yrs of data taken in space! ( ) W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

3 Do Gamma Rays reveal the DM of our Galaxy? What is known about Dark Matter? 23% of the Energy of the Universe IF THERMAL RELIC THEN IT MUST BE Weakly interacting Massive Particle (WIMP) and annihilate with <σv>= cm 3 /s Annihilation into Quarkpairs -> Excess in galactic Gamma rays (π 0 decays) Indeed observed by EGRET satellite WIMP Mass GeV from spectrum From CMB + SN1a + surveys Halo distribution of DM by observing in many sky directions Data consistent with Supersymmetry DM halo profile of galaxy cluster from weak lensing W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

4 Thermal history of WIMPs as thermal relic Thermal equilibrium abundance Actual abundance Comoving number density T=M/22 x=m/t Jungmann,Kamionkowski, Griest, PR 1995 T>>M: f+f->m+m; M+M->f+f T<M: M+M->f+f T=M/22: M decoupled, stable density (when annihilation rate expansionrate, i.e. Γ=<σv>nχ(x fr ) H(x fr )!) WMAP -> Ωh 2 =0.113± > <σv>= cm 3 /s DM increases in Galaxies: 1 WIMP/coffee cup 10 5 <ρ>. DMA ( ρ 2 ) restarts again.. Annihilation into lighter particles, like Quarks and Leptons -> π 0 s -> Gammas! Only assumption in this analysis: WIMP = THERMAL RELIC! W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

5 Problems solved by DM annihilation Astronomy Structure in rotation curve Doughnut of stars at 14 kpc Doughnut of dust and H 2 at 4 kpc Astro-particle Physics Cosmology Excess of Gamma rays 23%DM, Hubble-> DM Annih. x-sect. How does DM annihilate? How is DM distributed? Particle Physics Where are signals from DM annihilation? Consistent with Supersymmetry? W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

6 The EGRET excess of diffuse galactic gamma rays without and with DM annihilation π 0 IC Brems π 0 IC WIMPS Brems Fit only KNOWN shapes of BG + DMA, i.e. 1 or 2 parameter fit NO GALACTIC models needed. Propagation of gammas straightforward If normalization free, only relative point-to-point errors of 7% important, not absolute normalization error of 15%. Statistical errors negligible. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

7 What about background shape? No SM No SM Quarks from WIMPS Protons Electrons Quarks in protons Background from nuclear interactions (mainly p+p-> π 0 + X -> γ + X inverse Compton scattering (e-+ γ -> e- + γ) Bremsstrahlung (e- + N -> e- + γ + N) Shape of background KNOWN if Cosmic Ray spectra of p and e- known W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

8 PYTHIA processes: Contribution from various hadronic processes 11 f+f' -> f+f' (QCD) f+fbar -> f'+fbar' 0 13 f+fbar -> g + g 0 28 f+g -> f + g g+g -> g + g g+g -> f + fbar Single diffractive (XB) Single diffractive (AX) Double diffractive Low-pT scattering 0 Prompt photon production: 14 f+fbar -> g+γ 0 18 f+fbar -> γ +γ 0 29 f+g -> f +γ g+g -> g + γ g+g -> γ + γ 0 2 GeV 4 8 diff W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

9 DM Annihilation in Supersymmetry χ χ ~ f f f χ χ A f f χ χ Z f f χ χ χ W χ ± χ 0 W χ Z Z 37 gammas Dominant χ + χ A b bbar quark pair Sum of diagrams should yield <σv>= cm 3 /s to get correct relic density Quark-Fragmentation known! Hence spectra of positrons, Gammas and antiprotons known! W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

10 Background + signal describe EGRET data! Background + DMA signal describe EGRET data! 50 GeV IC π 0 WIMPS Brems. π 0 IC WIMPS Brems. IC 70 Blue: background uncertainty Blue: WIMP mass uncertainty W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

11 Analysis of EGRET Data in 6 sky directions A: inner Galaxy B: outer disc C: outer Galaxy Total χ 2 for all regions :28/36 Prob.= 0.8 Excess above background > 10σ. D: low latitude E: intermediate lat. F: galactic poles A: inner Galaxy (l=±30 0, b <5 0 ) B: Galactic plane avoiding A C: Outer Galaxy D: low latitude ( ) E: intermediate lat. ( ) F: Galactic poles ( ) W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

12 Conventional Model without DMA in 6 sky regions χ 2 of conventional model:663/42 Prob. = 0 W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

13 xy xz Expected Profile Dark Matter distribution v 2 M/r=cons. and ρ (M/r)/r 2 ρ 1/r 2 for const. xzrotation curve Divergent for r=0? NFW 1/r Isotherm const. Halo profile Observed Profile xy Rotation Curve x y 2002,Newberg et al. Ibata et al, Crane et al. Yanny et al. disk W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2, z bulge Inner Ring totaldm 1/r 2 halo Outer Ring 1/r 2 profile and rings determined from independent directions Normalize to solar velocity of 220 km/s

14 Rotation curve of Milky Way Honma & Sofue (97) Schneider &Terzian (83) Brand & Blitz(93) W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

15 Do other galaxies have bumps in rotation curves? Sofue & Honma W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

16 Possible origin of ring like structure Infall of dwarf galaxy in gravitational potential of larger galaxy into elliptical orbit start precessions, if matter is not distributed homogeneous. Tidal forces gradient of field, i.e. 1/r 3. This means tidal disruption only effective at pericenter for large ellipticity! Apocenter Pericenter Could tidal disruption of dwarf galaxy lead to ringlike structure of solar masses? N-body simulations no clear answer. All depends on initial conditions. Also no clear explanation for ring of stars of 10 9 solar masses. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

17 Tidal disruption of satellite in potential of larger galaxy Hayashi et al., astro-ph/ W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

18 Inner Ring coincides with ring of dust and H 2 -> gravitational potential well! H 2 Enhancement of inner (outer) ring over 1/r 2 profile 6 (8). Mass in rings 0.3 (3)% of total DM 4 kpc coincides with ring of neutral hydrogen molecules! Forms in presence of dust-> grav. potential well at 4-5 kpc. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

19 Halo profile without rings DISC 10 0 <b< <b< <b<90 0 W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

20 Halo profile with rings DISC 10 0 <b< <b< <b<90 0 W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

21 10 (wrong) objections against DMA interpretation 1) Proton spectra only measured locally. Spectra near center of galaxy, where protons are accelerated, can be different and produce harder gamma spectrum, as observed by EGRET. Answer: proton energy loss times larger than age of universe, so proton energy spectra will become equal by diffusion This is PROVEN by the fact that we can fit with SAME background spectrum in inner and outer galaxy. 2) Is background known well enough to make such strong statements? A: Background SHAPE is known, since mainly from pp fixed target collisions. Analysis does not depend on absolute fluxes from propagation models. Propagation.of gammas is straightforward.signature is not only excess, BUT SPATIAL DISTRIBUTION OF EXCESS AS 1/r 2 profile+substr. 3) Can unresolved point sources be responsible for excess? Answer: NO, if they have similar spectra as the many resolved point sources, they would reduce the data points at low energy, thus increasing the DMA contribution if shapes are fitted. Also do not expect 1/r 2 profile for point sources. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

22 10 (wrong) objections against DMA interpretation 4) Does antiproton rate exclude interpretation of EGRET data? (L.B.) EGRET EXCESS Answer:Antiproton production: p+p->pbar+x: Npbar <ρ CR ρ Gas > Antiproton annihilation:p+pbar-> X: <ρ Gas2 > <ρ Gas2 >/ <ρ Gas > 2 can be much larger than 1 by clustering 5) Rotation Positrons curves in outer galaxy measured Antiprotons with different method than inner rotation curve. Can you combine? Also it depends on R 0. Answer: first points of outer RC have same negative slope as inner RC so no Statistical problem with method. Change of slope seen for every R 0. Preliminary 6) Ringlike structures errors only have enhanced density Sofue &Honma of hydrogen, so you expect R excess of gamma radiation there. Why you need DMA? 0 =8.3 kpc Answer: since we fit only the shapes of signal and BG, a higher gas density is automatically taken into account and DMA is needed to fit the spectral shape v of the Inner data. R 0 =7.0 rotation Outer RC 7) Is EGRET data reliable enough to make curvesuch strong statements? Answer: EGRET spectrometer was calibrated in photon Black hole beam at centre: at R SLAC. Calibration carefully monitored in space. 0 =8.0±0.4 kpc Impossible to get calibration wrong in such a way that it fakes R/R 0 DMA. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

23 Propagation in GALPROP compared with DarkSusy (Leaky Box) LARGE DIFFERENCES Antiprotons Positrons Spectrum after propagation of a 1-3 GeV source in galactic center with DarkSusy (leaky box Model) und GalProp (numerical solution of diffusion equation including all terms, like scattering, radiation, decay, fragmentation, reacceleration etc. ) W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

24 10 (wrong) objections against DMA interpretation 7) How can you be sure that this outer ring is from the tidal disruption of satellite galaxy, so one can expect DM there? Answer: one observes rings for all three ingredients of a galaxy: gas, stars and DM. The stars cannot be part of the disk, since the thickness of the ring is a factor 20 larger than the thickness of the disk. Furthermore, very small velocity dispersion of stars 8) Is it not peculiar that the rings are in the plane of the disk? Answer: the angular momenta of halo and disk tend to align after a certain time of precession, so rings end up in plane of the disk.. 9) The inner ring was not observed as a ring of stars. How can you be sure DM concentrates there? Answer: The density of stars and dust is to high to obtain substructure in the star population. However, the ring of dust and molecular hydrogen are proof of a graviational well, which indicates DM. 10) How can one reconstruct 3D halo profiles, if one observes gamma rays only along the line of sight without knowing the distance? Answer: if one observes in ALL directions, one can easily unfold, see rings of Saturn (same problem). W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

25 Astrophysics solution: Optimize e,p spectra to fit gammas Optimized Model from Strong et al. astro-ph/ Electrons Protons B/C Nucleon and electron spectra tuned to fit gamma ray data. Have to assume we live in local Bubble. Production of secondary nuclei not described with same parameters. BUT gamma rays not well described either! W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

26 Optimized Model from Strong et al. astro-ph/ Change spectral shape of electrons AND protons A: inner Galaxy B: outer disc C: outer Galaxy π 0 IC Brems D: low latitude E: intermediate lat. F: galactic poles χ 2 of optimized model:110/42 Prob. < 10-7 W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

27 Fits for optimized Model including DM A: inner Galaxy B: outer disc C: outer Galaxy D: low latitude E: intermediate lat. F: galactic poles 3 Components: galactic background + extragalactic background + DM annihilation (with same WIMP mass and same boostfactor). Fit probability of optimized model improves from > 0.8 with DMA. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

28 From original paper on Optimized Model Strong et al. astro-ph/ MeV 150 MeV 300 MeV 500 MeV 1000 MeV 2000 MeV longitude Real problem with conventional models: if data is perfectly fitted with sum of power spectrum+monoenergetic peak for quarks, then you cannot get good fit with whatever power spectrum you invent. In addition, DM has different spatial distribution, so fitting over all directions gives prob.<10-7 in all cases. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

29 What about Supersymmetry? W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

30 Allowed msugra region LHC: light gauginos easily observable A 0 =0 tb=50 What about WMAP? Not used sofar. Large tanβ 50->WMAP ok. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

31 Gauge unification perfect with SUSY spectrum from EGRET SM SUSY Update from Amaldi, db, Fürstenau, PLB With SUSY spectrum from EGRET + WMAP data and start values of couplings from final LEP data perfect gauge coupling unification! Also b->sγ and g-2 in agreement with SUSY spectrum from EGRET W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

32 7 Physics Questions answered SIMULTANEOUSLY by this analysis Astrophysicists: What is the origin of GeV excess of diffuse Galactic Gamma Rays? A: DM annihilation Astronomers: Why a change of slope in the galactic rotation curve at R 0 11 kpc? A: DM substructure Why ring of stars at 14 kpc? Why ring of molecular hydrogen at 4 kpc? Cosmologists: How is DM annihilating?a: into quark pairs How is Cold Dark Matter distributed? Particle physicists: Is DM annihilating as expected in Supersymmetry? A: isothermal cored profile+substructure A: Cross sections perfectly consistent with msugra for light gauginos, heavy squarks/sleptons W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

33 Summary 10σ EGRET excess shows all key features from DM annihilation: Excess has same shape in all sky directions: everywhere it is perfectly (only?) explainable with superposition of background AND mono-energetic quarks of GeV Results consistent with minimal SUPERSYMMETRY Excess follows expectations from galaxy formation: cored 1/r 2 profile with substructure, visible matter/dm 0.02 Excess is TRACER OF DM, since it can explain peculiar shape of rotation curve Significance >10σ with >1400 indep. data points Results rather model independent, since only KNOWN spectral shapes of signal and background used, NO model dependent calculations of abs.fluxes. Conventional models CANNOT explain above points SIMULTANEOUSLY, especially spectrum of gamma rays in all directions, 1/r 2 profile, shape of rotation curve, ring of stars at 14 kpc and ring of H 2 at 4 kpc,. W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

34 Summary of summary WIMP is thermal relic showing expected annihilation into quark pairs DM becomes visible by gamma rays from fragmentation (30-40 gamma rays of few GeV pro annihilation from π 0 decays) Spatial distribution of annihilation signal is signature for DMA Different background shape yields same spatial distribution, which shows that gamma ray excess indeed traces DM W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

35 Cross sections for Direct DM detection EGRET? W. de Boer, Univ. Karlsruhe AMS-Meeting, CERN, Feb. 2,

Dark Matter and Supersymmetry

Dark Matter and Supersymmetry Dark Matter and Supersymmetry We don t know it, because we don t see it! WdB, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, EGRET excess of diffuse Galactic Gamma Rays as Tracer of DM, astro-ph/0508617,

More information

What is known about Dark Matter?

What is known about Dark Matter? What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter From CMB + SN1a + surveys Dark Matter enhanced in Galaxies and Clusters of Galaxies

More information

Ingredients to this analysis

Ingredients to this analysis Dark Matter visible from diffuse Galactic gamma rays From EGRET excess of diffuse Galactic gamma rays Determination of WIMP mass Determination of WIMP halo (= standard halo + DM ring) Confirmation: Rotation

More information

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe From CMB + SN1a + Dmitri Kazakov, Alex Gladyshev structure

More information

Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation

Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation Wim de Boer, Marc Herold, Christian Sander, Valery Zhukov Univ. Karlsruhe Alex Gladyshev, Dmitri Kazakov Dubna Outline (see

More information

Astroparticle physics Astronomy. Particle physics. Big Bang billion years 95% of energy in universe of unknown nature. 1 ps.

Astroparticle physics Astronomy. Particle physics. Big Bang billion years 95% of energy in universe of unknown nature. 1 ps. Dark matter visible by hard gamma rays? Cosmology 13.7 billion years 95% of energy in universe of unknown nature Astroparticle physics Astronomy Particle physics 1 ps 10-34 s Big Bang Wim de Boer, Karlsruhe

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe. Outline (see astro-ph/ )

Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe. Outline (see astro-ph/ ) Indirect Evidence for Dark Matter Annihilation from Diffuse Galactic Gamma Rays Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Outline (see astro-ph/0408272) Annihilation cross section determined

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

e+ + e-(atic, FERMI, HESS, PAMELA) e-, p drown in cosmic rays?

e+ + e-(atic, FERMI, HESS, PAMELA) e-, p drown in cosmic rays? Indirect Dark Matter Signatures for Dark Matter Annihilation Annihilation products from dark matter annihilation: Gamma rays (FERMI -> arxiv:1002.1576v1) Positrons (PAMELA, arxiv:1001.3522) Antiprotons

More information

Ingredients to this analysis

Ingredients to this analysis The dark connection between Canis Major, Monoceros Stream, gas flaring, the rotation curve and the EGRET excess From EGRET excess of diffuse Galactic gamma rays Determination of WIMP mass Determination

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

a cosmic- ray propagation and gamma-ray code

a cosmic- ray propagation and gamma-ray code GALPROP: a cosmic- ray propagation and gamma-ray code A. Strong, MPE Garching Tools for SUSY, Annecy, June 28 2006 The basis: cosmic-ray production & propagation in the Galaxy intergalactic space HALO

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

arxiv: v1 [astro-ph] 17 Nov 2008

arxiv: v1 [astro-ph] 17 Nov 2008 Dark Matter Annihilation in the light of EGRET, HEAT, WMAP, INTEGRAL and ROSAT arxiv:0811.v1 [astro-ph 1 Nov 008 Institut für Experimentelle Kernphysik, Universiät Karlsruhe E-mail: gebauer@ekp.uni-karlsruhe.de

More information

Cosmic Ray Anomalies from the MSSM?

Cosmic Ray Anomalies from the MSSM? Cosmic Ray Anomalies from the MSSM? Randy Cotta (Stanford/SLAC) In collaboration with: J.A. Conley (Bonn) J.S. Gainer (ANL/NU) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 0812.0980 0903.4409 1007.5520

More information

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Latest Results on Dark Matter and New Physics Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration TeV Particle Astrophysics 2009 SLAC, July 13-16 2009 DM and New Physics

More information

Confinement of CR in Dark Matter relic clumps

Confinement of CR in Dark Matter relic clumps Confinement of CR in Dark Matter relic clumps University Karlsruhe and SINP Moscow State University W.de Boer University Karlsruhe 1 Dark Matter in Universe and the Galaxy Strong evidences for DM existence:

More information

The Mystery of Dark Matter

The Mystery of Dark Matter The Mystery of Dark Matter Maxim Perelstein, LEPP/Cornell U. CIPT Fall Workshop, Ithaca NY, September 28 2013 Introduction Last Fall workshop focused on physics of the very small - elementary particles

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

Impact of substructures on predictions of dark matter annihilation signals

Impact of substructures on predictions of dark matter annihilation signals Impact of substructures on predictions of dark matter annihilation signals Julien Lavalle Institute & Dept. of Theoretical Physics, Madrid Aut. Univ. & CSIC DESY Theory Astroparticle, Hamburg 16 V 2011

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone SciNeGHE 2009 Assisi, October 7th Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone Luigi Tibaldo luigi.tibaldo@pd.infn.it INFN Sezione di Padova Dip. di Fisica G. Galilei,

More information

Rare Components in Cosmic Rays with AMS-02

Rare Components in Cosmic Rays with AMS-02 Rare Components in Cosmic Rays with AMS-02 TAUP Sendai Sep.07 IEKP - Andreas Sabellek Universität (TH) for the AMS Collaboration The AMS Project: History and Future 1998 2008 again ready for launch AMS-01

More information

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies SLAC-PUB-8660 October 2000 astro-ph/0003407 What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies Seth Digelaxb, Igor V. Moskalenko xc, and Jonathan F. Ormes, P. Sreekumard. and P. Roger

More information

The positron and antiproton fluxes in Cosmic Rays

The positron and antiproton fluxes in Cosmic Rays The positron and antiproton fluxes in Cosmic Rays Paolo Lipari INFN Roma Sapienza Seminario Roma 28th february 2017 Preprint: astro-ph/1608.02018 Author: Paolo Lipari Interpretation of the cosmic ray positron

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) MPA Seminar, September

More information

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics The Dark Matter Puzzle and a Supersymmetric Solution Andrew Box UH Physics Outline What is the Dark Matter (DM) problem? How can we solve it? What is Supersymmetry (SUSY)? One possible SUSY solution How

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Authors: Kingman Cheung, Po-Yan Tseng, Tzu-Chiang Yuan Physics Department, NTHU Physics Division, NCTS Institute

More information

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Lecture 14. Dark Matter. Part IV Indirect Detection Methods Dark Matter Part IV Indirect Detection Methods WIMP Miracle Again Weak scale cross section Produces the correct relic abundance Three interactions possible with DM and normal matter DM Production DM Annihilation

More information

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Fiorenza Donato @ Physics Dept., Un. Torino The gamma-ray sky - Minneapolis, October 10, 2013 Plan of my talk What

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays Antimatter and DM search in space with AMS-02 Francesca R. Spada Istituto Nazionale di Fisica Nucleare Piazzale Aldo Moro, 5 I-00185, Rome, ITALY 1 Introduction AMS-02 is a space-borne magnetic spectrometer

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University High-Energy GammaRays toward the Galactic Centre Troy A. Porter Stanford University Fermi LAT 5-Year Sky Map > 1 GeV Galactic Plane Galactic Centre Point Sources Diffuse γ-ray emission produced by cosmic

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile, Italy Emmanuel Moulin CTA meeting, Zürich 2009 1 Core-energy

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Indirect Search for Dark Matter with AMS-02

Indirect Search for Dark Matter with AMS-02 Indirect Search for Dark Matter with AMS-02 A. Malinin, UMD For the AMS Collaboration SUSY06, UC Irvine, June 14, 2006 Alpha Magnetic Spectrometer science The AMS is a particle physics experiment in space.

More information

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS (WITH A FEW BONUS FEATURES!) (BASED ON 1609.04821 W/ P. RALEGANKAR AND V. RENTALA) JATAN BUCH (BROWN U.) 1 THE DARK

More information

Probing the nature of Dark matter with radio astronomy. Céline Boehm

Probing the nature of Dark matter with radio astronomy. Céline Boehm Probing the nature of Dark matter with radio astronomy Céline Boehm IPPP, Durham LAPTH, Annecy SKA, Flic en Flac, May 2017 The DM Physics scale strong or weak / stable or decaying strong and stable Electromagnetic

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Diffuse Gamma-Ray Emission

Diffuse Gamma-Ray Emission Diffuse Gamma-Ray Emission Debbijoy Bhattacharya Manipal Centre for Natural Sciences (MCNS) Manipal University 5 Sept 2014 Observational Gamma-Ray Astronomy Atmospheric Window 00 11 00 11 Figure: Atmospheric

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Search for exotic process with space experiments

Search for exotic process with space experiments Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, 20-27

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT A.Malinin a, For AMS Collaboration IPST, University of Maryland, MD-20742, College Park, USA Abstract. The Alpha Magnetic Spectrometer (AMS), to be installed

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Indirect dark matter detection and the Galactic Center GeV Excess

Indirect dark matter detection and the Galactic Center GeV Excess Image Credit: Springel et al. 2008 Indirect dark matter detection and the Galactic Center GeV Excess Jennifer Siegal-Gaskins Caltech Image Credit: Springel et al. 2008 Jennifer Siegal-Gaskins Caltech Image

More information

Signal Model vs. Observed γ-ray Sky

Signal Model vs. Observed γ-ray Sky Signal Model vs. Observed γ-ray Sky Springel+, Nature (2008) Two main dark matter signal components: 1. galactocentric diffuse 2. small structures Observed sky modeled with bremsstrahlung π 0 decay up-scattered

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

PAMELA from Dark Matter Annihilations to Vector Leptons

PAMELA from Dark Matter Annihilations to Vector Leptons PAMELA from Dark Matter Annihilations to Vector Leptons phalendj@umich.edu With Aaron Pierce and Neal Weiner University of Michigan LHC and Dark Matter Workshop 2009 University of Michigan Outline PAMELA

More information

The fine-scale structure of dark matter halos

The fine-scale structure of dark matter halos COSMO11, Porto, August 2011 The fine-scale structure of dark matter halos Simon White Max-Planck-Institute for Astrophysics COSMO11, Porto, August 2011 Mark Vogelsberger The fine-scale structure of dark

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Galactic Diffuse Gamma-Ray Emission

Galactic Diffuse Gamma-Ray Emission Galactic Diffuse Gamma-Ray Emission The Bright Gamma-Ray Sky 7 th AGILE Workshop 29 Sep - 1 Oct, 2009 Stanley D. Hunter NASA/GSFC stanley.d.hunter@nasa.gov Galactic Diffuse Emission The beginning: OSO

More information

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam Annihilation Phenomenology Christoph Weniger GRAPPA, University of Amsterdam Thursday 26th March 2015, Effective Field Theories and Dark Matter, Mainz 1 Overview Galactic center excess & PCA Best fit DM

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

The Characterization of the Gamma-Ray Excess from the Central Milky Way

The Characterization of the Gamma-Ray Excess from the Central Milky Way The Characterization of the Gamma-Ray Excess from the Central Milky Way Tim Linden along with: Tansu Daylan, Doug Finkbeiner, Dan Hooper, Stephen Portillo, Tracy Slatyer, Ilias Cholis 1402.6703 1407.5583

More information

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. pmssm Dark Matter Searches On Ice! χ ~ 0 1 Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 1104.XXXX (next week or bust.) In case

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

TeV Colliders and Cosmology. 1: The Density of Dark Matter

TeV Colliders and Cosmology. 1: The Density of Dark Matter TeV Colliders and Cosmology 1: The Density of Dark Matter M. E. Peskin SSI - July 2006 There are many points of connection between particle physics and cosmology: The elementary particles present at high

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from

More information

Update on Dark Matter and Dark Forces

Update on Dark Matter and Dark Forces Update on Dark Matter and Dark Forces Natalia Toro Perimeter Institute for Theoretical Physics (thanks to Rouven Essig, Matt Graham, Tracy Slatyer, Neal Weiner) 1 Rouven s Talk: what s new? Is Dark Matter

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

Troy A. Porter Stanford University

Troy A. Porter Stanford University High-Energy Gamma-Rays from the Milky Way: 3D Spatial Models for the CR and Radiation Field Densities Troy A. Porter Stanford University What is GALPROP? Tool for modelling and interpreting cosmic-ray

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information