Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof.

Size: px
Start display at page:

Download "Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof."

Transcription

1 Dark Matter search with bolometric detectors PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof. Fernando Ferroni Seminario di Dottorato - 4 giugno 29 1

2 Outline Introduction to Dark Matter Direct Dark Matter search The CUORE experiment CUORE background Trigger studies in CUORE Conclusions and perspectives 2

3 Evidences for Dark Matter 1933 Fritz Zwicky 197s Vera Rubin Observation Prediction Applying virial theorem to study of Coma cluster, he concluded that mass of galaxies in cluster was O(1 2 ) what inferred from luminosity Studying spiral galaxies rotational curves, she found inconsistencies between observations and newtonian predictions for orbital velocities 3

4 Evidences for Dark Matter 26 Bullet Cluster The stars of the galaxies, observable in visible light, were not greatly affected by the collision, and most passed right through, gravitationally slowed but not otherwise altered. The hot gas, seen in X-rays, represents most of the mass of the ordinary (baryonic) matter in the cluster pair. The gases interact electromagnetically, causing the gases of both clusters to slow much more than the stars. The third component, the dark matter, was detected indirectly by the gravitational lensing of background objects. The lensing is stronger in two separated regions near the visible galaxies. This provides support for the idea that most of the mass in the cluster pair is in the form of collisionless dark matter. 4

5 What is Dark Matter? Different astronomical and cosmological studies reveal that most of our Universe is dark Dark Matter represents the 22% of the whole energy and the 85% of the total mass but... What is Dark Matter made of? Many different candidates Data favor cold non-baryonic Dark Matter Non-relativistic velocities Gravity and weak interactions Stable Weak Interacting Massive Particles (WIMPs) are the most likely candidates 5

6 How to detect a WIMP Simple idea: detect matter recoil after WIMP elastic scattering χ χ Signal: χ+n χ+n n n Backgrounds: n+n n+n γ γ ν+n ν+n γ+e - γ+e - Very low energies (1-1 kev) Many backgrounds Many different techniques Many different target materials Many different experiments N N +α, e - 6

7 Present searches Cross-section [cm 2 ] (normalised to nucleon) WIMP Mass [GeV/c 2 ] Gaitskell,Mandic,Filippini Several assumptions and modeling required Theoretical and experimental uncertanties Exclusion plots can only exclude DM models x x x DATA listed top to bottom on plot Edelweiss I final limit, 62 kg-days Ge limit WARP 2.3L, 96.5 kg-days 55 kev threshold CRESST 27 6 kg-day CaWO4 ZEPLIN III (Dec 28) result CDMS: (reanalysis) +28 Ge XENON1 27 (Net 136 kg-d) Trotta et al 28, CMSSM Bayesian: 68% contour Trotta et al 28, CMSSM Bayesian: 95% contour Ellis et. al Theory region post-lep benchmark points Baltz and Gondolo 23 Baltz and Gondolo, 24, Markov Chain Monte Carlos NO POTENTIALITY OF DISCOVERY 7

8 The annual modulation Since the Earth rotates around the Sun and the Sun itself moves into the galactic reference frame, we can express Earth's speed with respect to the Galaxy as the sum of the two motions γ= In this framework, the expected WIMP signal in the Earth reference system can be written (first order Taylor approximation) 8

9 The DAMA claim Highly radiopure NaI MODEL INDEPENDENT 9

10 The CUORE experiment Proposed for neutrinoless Double Beta Decay search 988 TeO2 crystals (5x5x5 cm3) for a total mass of 741 kg Crystals operate as bolometers at 1 mk Well known technique, used for CUORICINO (stopped in June 28) 19 towers 52 detectors each CUORE- (the first tower of CUORE) will start in 21 Hosted at Laboratori Nazionali del Gran Sasso, a natural shield of 15 m of rock (35 meters of water equivalent) 1

11 The bolometric technique Heat bath Weak thermal coupling Thermometer: NTD Ge thermistor TeO2 Absorber C~1-9 J/K Energy release All the particle energy is converted into phonons Temperature variation: ΔT=E/C Resistance variation Voltage variation Detector response: ~.2 mk/mev ~ 3 MΩ/MeV ~.2 µv/mev FWHM Resolution ~ 5 kev 11

12 From V to kev Voltage (mv) Amplified 24 signal Estimate pulse amplitude Time (s) Energy calibration is performed in specific runs in which a known radioactive source (usually thorium) is inserted in the cryostat. The amplitude spectrum becomes populated by well known monochromatic lines counts 5 Histogram3 Entries 7819 Identify Mean RMS known lines counts 5 4 Histogram3 Entries 7821 Mean RMS Calibrate Amplitude [mv] Energy [kev] 12

13 WIMP nuclear recoils in TeO2 Using cross section quoted by DAMA, we can calculate the expected rate of WIMP nuclear recoils and plot the annual modulation amplitude [cpd/kev/kg] max (!dr/de R ) " =.3 GeV/cm w M w = 4 GeV M w = 6 GeV M = 8 GeV = 1 GeV w TeO 2 M w The region of interest is under 1 kev [kev] E R 13

14 What we need Low background at energies of kevs High efficiency on signal identification High background rejection Low radioactive background Smart trigger 14

15 The test detector Chinese Crystal Validation Run 4 crystals CUORE-like 2 thermistors per crystal Operated in Hall Live time of 64.9 days cpd/kev/kg CCVR1 Low Energy Spectrum (ch 1, 3, 5, 6) Many radioactive peaks Energy [kev] 15

16 Tellurium isotopes contributions CCVR crystals contain large amount of Te long-life isotopes Nuclide Z N Decay mode Half Life (d) Ex (kev) 121 Te e+b ± m Te IT, e+b + 154± ±.3 123m Te IT 119.7± ±.4 125m Te IT 57.4± ±.1 127m Te IT, b - 19± ±.8 129m Te IT, b ± ±5 cpd/kev/kg 125m Event rate in 145 kev line of Te (ch 1,3,5,6) ! / ndf / 24 Base 1.84 ±. Ampl 4.51 ±.8 " 1/ ± days Fit on CCVR data (ch 1, 3, 5, 6) Using GEANT4, we can simulate N decays for each isotope. Then we normalize each contribution with the CCVR data counts Energy [kev] 16

17 Simulations and clean spectrum 12x Te simulations (normalized with data) CCVR Bkg subtracted spectrum (ch 1,3, 5, 6) cpd/kev/kg 1 Sum of all the simulated 12x Te contributions cpd/kev/kg Energy [kev] 1 1 Trigger threshold Energy [kev] CCVR rate under 5 kev is almost 1cpd/keV/kg. It includes X-rays (cannot be removed) and some other fake signals which could be rejected by a pulse shape analysis At lower energies, however, trigger threshold effect is evident We need to lower the threshold and look at background again 17

18 The key role of trigger Typical noise values are of the order of few kev A signal of thousands of kev over a noise of few kev is easy to detect If the signal to detect has an amplitude of the same order of the noise, the detection is quite harder We are sensitive in 13 Te νdbd region (253 kev) We need a trigger able to detect very low energy signals, distinguishing them from noise 18

19 MonteCarlo Pulse Generation Voltage (mv) kev Actually we are not able to distinguish very low energy signals from background Voltage (mv) Time (s) kev Time (s) In order to study trigger efficiencies, we use a Pulse Generator Starting from thermal model considerations, we can generate pulses of known amplitude and superimpose real noise 19

20 CCVR Standard trigger Voltage (mv) 1714 Derivative Trigger A rod with fixed x-length ( AVERAGE ), whose terminal points are samples of the acquisition. If the angular coefficient of the rod is above a fixed value ( THRESHOLD ) for a fixed time ( DEBOUNCE ), the trigger fires. If not, the rod is shifted forward AVERAGE THRESHOLD Time (s) 2

21 Efficiencies and fake probability Fake probability (%) Fake (%) Trigger Threshold Derivative Energy Threshold in kev (95% signal efficiency) Real Threshold (sig.eff 95%) Trigger Threshold Derivative Ch Ch Trigger Debounce Time Trigger Debounce Time Varying Debounce and Threshold (Average is fixed at 4 ms) we can test Derivative Trigger on the same simulated low energy pulses. We evaluated the energy threshold (the lowest energy where signal efficiency is at least 95%) and the probability to have a fake trigger in a window of 5 s. Imposing null fake probability Channel Energy Threshold (kev)

22 What we have done We calculated the expected modulation signal in CUORE, according according to DAMA to DAMA measurement claim We studied CCVR radioactive background and estimated an event rate of about 1 cpd/kev/kg in 2-5 kev region We studied Derivative Trigger performances on simulations and found its lowest possible thresholds (still too high) 22

23 What we are doing Using external heaters (resistances glued to the crystals, used for offline temperature stabilization), we are studying Derivative Trigger efficiencies on real data We are studying heater behaviour at low energies (linearity, characterization, secondary effects due to positioning and gluing...) We are studying pulse shape parameters in order to apply selection criteria to reject background We are involved in assembling, commissioning and analyzing Chinese Crystal Validation Run 2 (4 crystals) and another prototype with 36 crystals 23

24 What we will do Build more performing trigger, based on signal online filtering Evaluate expected event rate under 1 kev Evaluate CUORE sensitivity to Dark Matter Annual Modulation 24

Direct Dark Matter and Axion Detection with CUORE

Direct Dark Matter and Axion Detection with CUORE Direct Dark Matter and Axion Detection with CUORE Europhysics Conference on High-Energy Physics 2011 Cecilia G. Maiano on behalf of CUORE collaboration Contents The Bolometric Technique The CUORE experiment

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Direct Dark Matter and Axion Detection with CUORE

Direct Dark Matter and Axion Detection with CUORE Direct Dark Matter and Axion Detection with CUORE Marco Vignati University of Rome La Sapienza & INFN Rome on behalf of the CUORE collaboration Panic 11, July 5, MIT 988 TeO crystals Ton scale bolometric

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Weak Interactions and Neutrinos Natal, September 19 2013 Neutrinoless double

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Les Rencontres de Physique de la Vallée d'aoste La Thuile, February 25

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

cryogenic calorimeter with particle identification for double beta decay search

cryogenic calorimeter with particle identification for double beta decay search cryogenic calorimeter with particle identification for double beta decay search Cuore Upgrade with Particle IDentification In the middle of 2015 INFN decided to support CUPID activity to develop: CUPID-0:

More information

An active-shield method for the reduction of surface contamination in CUORE

An active-shield method for the reduction of surface contamination in CUORE An active-shield method for the reduction of surface contamination in CUORE Marisa Pedretti on behalf of CUORE Collaboration INFN - Milano Università degli Studi dell Insubria Outline of the talk Introduction

More information

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A. Recent results in n physics Neutrinos

More information

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012 LUCIFER Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 212 Neutrino nature Except for the total leptonic number the neutrino is a neutral fermion. So if the total leptonic number is

More information

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

New results of CUORICINO on the way to CUORE

New results of CUORICINO on the way to CUORE New results of CUORICINO on the way to CUORE Laboratori Nazionali del Gran Sasso of INFN On behalf of the CUORE Collaboration The CUORE experiment CUORE (Cryogenic Underground Observatory for Rare Events)

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

The energy calibration system of the CUORE double beta decay bolometric experiment

The energy calibration system of the CUORE double beta decay bolometric experiment The energy calibration system of the CUORE double beta decay bolometric experiment Samuele Sangiorgio on behalf of the CUORE collaboration see also, on CUORE, Thomas Bloxham in Session G14, Sunday morning

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

Status of the CUORE experiment at Gran Sasso

Status of the CUORE experiment at Gran Sasso University and INFN Genova ICHEP 2012 MELBOURNE JULY 2012 on behalf of the CUORE collaboration Status of the CUORE experiment at Gran Sasso Double beta decay Rare nuclear decay: (A, Z) (A, Z+2) + 2e- (+2

More information

Status of Cuore experiment and last results from Cuoricino

Status of Cuore experiment and last results from Cuoricino Status of Cuore experiment and last results from Cuoricino on behalf of the Cuore collaboration Istituto Nazionale di Fisica Nucleare, Genova E-mail: elena.guardincerri@ge.infn.it CUORE is a cryogenic-bolometer

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Results from 730 kg days of the CRESST-II Dark Matter Search

Results from 730 kg days of the CRESST-II Dark Matter Search Results from 730 kg days of the CRESST-II Dark Matter Search Federica Petricca on behalf of the CRESST collaboration: Max-Planck-Institut für Physik, München TU München University of Oxford Universität

More information

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007 XENON Dark Matter Search Juliette Alimena Columbia University REU August 2 nd 2007 Evidence of Dark Matter Missing mass in Coma galaxy cluster (Fritz Zwicky) Flat rotation curves of spiral galaxies (Vera

More information

Testing the Purity Monitor for the XENON Dark Matter Search

Testing the Purity Monitor for the XENON Dark Matter Search Testing the Purity Monitor for the XENON Dark Matter Search Alison Andrews Laboratori Nazionali del Gran Sasso Columbia University REU August 4, 2006 1 Introduction Evidence for dark matter is found in

More information

A survey of recent dark matter direct detection results

A survey of recent dark matter direct detection results A survey of recent dark matter direct detection results I where we stand II recent results (CDMS, XENON10, etc) III DAMA results IV a bit about modulation V issues with DAMA results VI what to look for

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

Cryogenic Detectors Direct Dark Matter Search. Dark Matter Cryogenic Detectors Direct Search Matter in the Universe - Composition ν too light => most of the is cold Ωmat = 0.27 0.04 u d of so far unknown weakly interacting, massive particles WIMPs normal baryonic

More information

the first prototype for a scintillating bolometer double beta decay experiment.

the first prototype for a scintillating bolometer double beta decay experiment. the first prototype for a scintillating bolometer double beta decay experiment. On behalf of CUPID-INFN collaboration Cuore Upgrade with Particle IDentification In the middle of 2015 INFN decided to support

More information

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON Dark Matter XENON nerix Project 1-> PMT Calibration Project 2-> Neutron Generator Simulation

More information

Dark matter search with the SABRE experiment

Dark matter search with the SABRE experiment Dark matter search with the SABRE experiment Giulia D Imperio* for the SABRE collaboration *INFN Roma 1 25-07-2017 TAUP 2017 Sudbury, Canada 1 Dark matter detection through annual modulation WIMP is one

More information

Direkte Suche nach Dark Matter

Direkte Suche nach Dark Matter Direkte Suche nach Dark Matter WIMP über elastische Streuung an Kernen HDMS Ge 10% energy Ionization Ge, Si Edelweiss, CDMS liquid Xe Zeplin-2, US-Xenon NaI, liqu.xe Target Light 1% energy fastest no surface

More information

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia) Shedding Light on Dark Matter from Deep Underground with XENON Kaixuan Ni (Columbia) University of Maryland, 11-25-2008 A well-known mystery for astronomers Fritz Zwicky, The Astrophysical Journal, 85

More information

Cryodetectors, CRESST and Background

Cryodetectors, CRESST and Background Cryodetectors, CRESST and Background A cryogenic detector for Dark Matter with heat (phonon) readout and light (scintillation) readout MPI, TUM, Oxford, Tübingen, LNGS What we re looking for: M W imp =

More information

Sensitivity and Backgrounds of the LUX Dark Matter Search

Sensitivity and Backgrounds of the LUX Dark Matter Search Sensitivity and Backgrounds of the LUX Dark Matter Search 1 LUX Goal: Direct Detection of Dark Matter WMAP 5-year data (2008) gives matter densities (Ω) based on best fit to Λ-CDM cosmological model: Ω

More information

The Search for Dark Matter, and Xenon1TP

The Search for Dark Matter, and Xenon1TP The Search for Dark Matter, and Xenon1TP by Jamin Rager Hillsdale College Assistant Prof. Rafael Lang Purdue University Dept. of Physics Galaxy NGC 3198 2 Galaxy NGC 3198 Rotation Curves http://bustard.phys.nd.edu/phys171/lectures/dm.html

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

The CUORE Detector: New Strategies

The CUORE Detector: New Strategies The CUORE Detector: New Strategies Chiara Brofferio on behalf of the CUORE collaboration Università di Milano Bicocca Milano Italy INFN Milano Italy The context: Recent developments in ν Physics Oscillation

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

arxiv:astro-ph/ v1 24 Jun 2004

arxiv:astro-ph/ v1 24 Jun 2004 LATEST RESULTS OF THE EDELWEISS EXPERIMENT arxiv:astro-ph/46537v 24 Jun 24 V. SANGLARD for the Edelweiss collaboration Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne, France

More information

Status of Dark Matter Detection Experiments

Status of Dark Matter Detection Experiments Status of Dark Matter Detection Experiments Debasish Majumdar Astroparticle Physics and Cosmology Division Saha Institute of Nuclear Physics Kolkata WIMP Hunting Going beyond gravity, three ways to detect

More information

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS TeV 2006, Madison - August 30, 2006 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS Summary of current status of Direct

More information

arxiv: v1 [physics.ins-det] 22 Dec 2016

arxiv: v1 [physics.ins-det] 22 Dec 2016 Results from the DM-Ice17 Dark Matter Experiment at the South Pole arxiv:161.0746v1 [physics.ins-det] Dec 016, on behalf of the DM-Ice Collaboration Department of Physics and Wright Laboratory, Yale University

More information

LOW TEMPERATURE PROPERTIES OF NTD GE: BEST CHOICE FOR CUORE EXPERIMENT

LOW TEMPERATURE PROPERTIES OF NTD GE: BEST CHOICE FOR CUORE EXPERIMENT LOW TEMPERATURE PROPERTIES OF NTD GE: BEST CHOICE FOR CUORE EXPERIMENT EDOARDO PASCA, EMILIANO OLIVIERI, GUGLIELMO VENTURA Physics Department University of Firenze and INFM Unity of Firenze MARCO BARUCCI,

More information

Experiments for double beta decay and dark matter

Experiments for double beta decay and dark matter Experiments for double beta decay and dark matter Ettore Fiorini, NDM2006, Paris September 4, 2006 Je ne loue ni blâme pas, je report seulement (Talleyrand) I am not praising, nor blaming; I anly report

More information

Direct Detection of Dark Matter with LUX

Direct Detection of Dark Matter with LUX Direct Detection of Dark Matter with LUX we are a collaboration of 50+ scientists, please see http://lux.brown.edu for more information Peter Sorensen Lawrence Livermore National Laboratory DNP October

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Dark Matter. and TPC Technologies

Dark Matter. and TPC Technologies Dark Matter and TPC Technologies The Physics Case for WIMPs Status of the Field:event by event discrimination Elements of a roadmap Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

Effect Cherenkov dans le TeO2. Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012

Effect Cherenkov dans le TeO2. Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012 Effect Cherenkov dans le TeO2 Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 212 CUORE 13Te CUORE - @LNGS nat TeO2 bolometers (34% 13 Te), 75g each (ΔE = 5 kev FWHM) Past: Cuoricino 62 bolometers

More information

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors Complementarity between Dark Matter Searches & Collider Experiments Miniworkshop before SUSY06 at Irvine -

More information

SuperCDMS: Recent Results for low-mass WIMPS

SuperCDMS: Recent Results for low-mass WIMPS SuperCDMS: Recent Results for low-mass WIMPS David G. Cerdeño Institute for Theoretical Physics Universidad Autónoma de Madrid for the SuperCDMS Collaboration Hints for low-mass WIMPs in direct detection

More information

Search for Neutrinoless Double- Beta Decay with CUORE

Search for Neutrinoless Double- Beta Decay with CUORE Search for Neutrinoless Double- Beta Decay with CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Jan. 14, 2014, WIDG Seminar, Yale University What we (don t) know about Neutrinos Neutrino Mass

More information

a step forward exploring the inverted hierarchy region of the neutrino mass

a step forward exploring the inverted hierarchy region of the neutrino mass a step forward exploring the inverted hierarchy region of the neutrino mass Maria Martinez (U. La Sapienza, Rome) on behalf of the CUPID-0 collaboration 28th Rencontres de Blois, May 29 - June 03 (2016)

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Dark Matter Search Dark Matter in the Universe physics beyond the standard model how to detect Dark Matter particles Josef Jochum Eberhard Karls Universität Tübingen Kepler

More information

Development of a New Paradigm

Development of a New Paradigm P599 Seminar, April 9, 2014 Development of a New Paradigm for Direct Dark Matter Detection Jason Rose / UTK (working with Dr. Kamyshkov) Dark Matter Recap Evidence: Galactic Rotation Curves Gravitational

More information

Looking for WIMPs A Review

Looking for WIMPs A Review Looking for WIMPs A Review Beatriz E. Burrola Gabilondo There is currently a race to find out what dark matter actually is. Weakly Interacting Massive Particles (WIMPs) are a strong candidate for dark

More information

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University Light Dark Matter and XENON100 For the XENON100 Collaboration Rafael F. Lang Columbia University rafael.lang@astro.columbia.edu The XENON Collaboration ~60 scientists from 12 institutions: University of

More information

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan.

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan. Toward A Consistent Picture For CRESST, CoGeNT and DAMA Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan. 19, 2012 How are we looking for dark matter? Current Direct Detection

More information

Dark Matter, Low-Background Physics

Dark Matter, Low-Background Physics Dark Matter, Low-Background Physics RHUL Jocelyn Monroe Nov. 6, 2012 1. Evidence (Astrophysical Detection) 2. Candidates, Properties 3. Direct Detection (Particle Physics) 1 st Observation: 1930s Fritz

More information

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events CUORE (Cryogenic Underground Osservatory for Rare Events) and CUORICINO E.Fiorini, Neutrino 2004 Paris, June 17, 2004 For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear

More information

Overview of Direct Detection Dark Matter Experiments

Overview of Direct Detection Dark Matter Experiments Overview of Direct Detection Dark Matter Experiments Southern Methodist University Dallas, TX, USA E-mail: cooley@physics.smu.edu The past year has yielded several new results from the direct detection

More information

The EDELWEISS DM search Phase II to Phase III

The EDELWEISS DM search Phase II to Phase III The EDELWEISS DM search Phase II to Phase III Adam Cox Karlsruhe Institute for Technology (KIT) on behalf of the EDELWEISS Collaboration CEA, Saclay (IRFU and IRAMIS) IPNL (CNRS/IN2P3 and Université de

More information

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Kevin A. McCarthy Massachusetts Institute of Technology On behalf of the SuperCDMS and CDMS Collaborations

More information

=> Ωmatter >> Ωbaryon

=> Ωmatter >> Ωbaryon Cryogenic Detectors Direct Search Cryogenic Detectors CRESST Project Cosmic Microwave Background Matter-Density Ωmatter Anisotropy: Angular scale => geometry, Ωtot Wilkinson Microwave Anisotropy Probe

More information

STATUS OF THE CUORE0 AND CUORE EXPERIMENTS

STATUS OF THE CUORE0 AND CUORE EXPERIMENTS STATUS OF THE CUORE0 AND CUORE EXPERIMENTS O.Cremonesi INFN Sez. Milano Bicocca 1 STATUS OF THE CUORE0 AND CUORE EXPERIMENTS O.Cremonesi INFN Sez. Milano Bicocca Outine: Scientific goal Experimental setup

More information

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata Whither WIMP Dark Matter Search? AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata 1/51 2/51 Planck 2015 Parameters of the Universe 3/51 Discovery of Dark Matter Fritz

More information

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from

More information

The Direct Search for Dark Matter

The Direct Search for Dark Matter picture: Thomas Tuchan The Direct Search for Dark Matter with special emphasis on the XENON project Rafael F. Lang Purdue University rafael@purdue.edu IPMU Tokyo, March 8, 2013 1 baryon fraction Dark Matter

More information

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers Dipertimento di Fisica - Sapienza, Università di Roma, I-185 Roma, Italy E-mail: gabriele.piperno@roma1.infn.it The Neutrinoless

More information

Introduction to Class and Dark Matter

Introduction to Class and Dark Matter Introduction to Class and Dark Matter Prof. Luke A. Corwin PHYS 792 South Dakota School of Mines & Technology Jan. 14, 2014 (W1-1) L. Corwin, PHYS 792 (SDSM&T) Introduction Jan. 14, 2014 (W1-1) 1 / 22

More information

Double Beta Present Activities in Europe

Double Beta Present Activities in Europe APPEAL Workshop 19-21 February 2007, Japan Double Beta Present Activities in Europe Xavier Sarazin Laboratoire de l Accélérateur Linéaire Orsay France Germanium detector Bolometers CdZnTe semiconductors

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration SuperCDMS SNOLAB: A G2 Dark Matter Search Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration A bit of background Astronomical data at all scales indicates dark

More information

The COSINUS project. development of new NaI- based detectors for dark ma6er search. STATUS report Karoline Schäffner

The COSINUS project. development of new NaI- based detectors for dark ma6er search. STATUS report Karoline Schäffner The COSINUS project development of new NaI- based detectors for dark ma6er search STATUS report 2016 Karoline Schäffner SCATTERING SCENARIO Dark matter particles scatter off nuclei elastically coherently:

More information

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lecture 1 How to detect dark matter Lecture 2 Review

More information

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction Dark Matter Detection and the XENON Experiment Elena Aprile Physics Department and Columbia Astrophysics Laboratory Columbia University New York, New York 10027 1 Abstract Observations on all fronts strongly

More information

Scintillating bolometers for the LUCIFER project. Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso

Scintillating bolometers for the LUCIFER project. Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso Scintillating bolometers for the LUCIFER project Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso luca.pattavina@lngs.infn.it 1 Outline - Scintillating bolometers - basics - potential - The LUCIFER

More information

First results on neutrinoless double beta decay of 82 Se with CUPID-0

First results on neutrinoless double beta decay of 82 Se with CUPID-0 First results on neutrinoless double beta decay of 82 Se with CUPID-0 Lorenzo Pagnanini on behalf of the CUPID-0 collaboration 30 th Rencontres de Blois CUPID: a next generation experiment CUPID (CUORE

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information

DARWIN: dark matter WIMP search with noble liquids

DARWIN: dark matter WIMP search with noble liquids DARWIN: dark matter WIMP search with noble liquids Physik Institut, University of Zurich E-mail: laura.baudis@physik.uzh.ch DARWIN (DARk matter WImp search with Noble liquids) is an R&D and design study

More information

XMASS. Masaki Yamashita. Kamioka observatory, ICRR, Univ. Of Tokyo On behalf of XMASS collaboration

XMASS. Masaki Yamashita. Kamioka observatory, ICRR, Univ. Of Tokyo On behalf of XMASS collaboration XMASS Kamioka observatory, ICRR, Univ. Of Tokyo On behalf of XMASS collaboration 6th Patras Workshop on Axions, WIMPs, WISPs 5-9/July/2010 Zurich University Outline Kamioka Observatory XMASS 800 kg liquid

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

The LUCIFER project current status and perspective!!!

The LUCIFER project current status and perspective!!! The LUCIFER project current status and perspective!!! Karoline Schäffner LNGS - Laboratori Nazionali del Gran Sasso, Italy! Neutrinos and Dark Matter in Nuclear Physics 2015 June 1-5, 2015, Jyväskylä,

More information

Sodium-iodide with Active Background REjection. Irene Bolognino

Sodium-iodide with Active Background REjection. Irene Bolognino Direct search of Dark Matter through the SABRE experiment SABRE Sodium-iodide with Active Background REjection Irene Bolognino Università degli studi di Milano, INFN 53 rd Rencontres de Moriond, La Thuile,

More information

Status of the ANAIS experiment at Canfranc

Status of the ANAIS experiment at Canfranc Status of the ANAIS experiment at Canfranc J. Amaré, B. Beltrán, J. M. Carmona, S. Cebrián, E. García, H. Gómez, G. Luzón,, J. Morales, A. Ortiz de Solórzano, C. Pobes, J. Puimedón, A. Rodriguez, J. Ruz,

More information

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

Collaborazione DAMA & INR-Kiev.  XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella Collaborazione DAMA & INR-Kiev http://people.roma2.infn.it/dama XCVIII Congresso SIF Napoli, 18 Settembre 2012 F. Cappella Based on the study of the correlation between the Earth motion in the galactic

More information

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration Direct dark matter search with XMASS K. Abe for the XMASS collaboration Outline XMASS experiment. Single phase liquid xenon detector Many targets were searched with XMASS. WIMP search fiducialized volume.

More information

Recent developments in the understanding of Dark Matter

Recent developments in the understanding of Dark Matter Liverpool Physics Teachers Conference 20th June 2013 Recent developments in the understanding of Dark Matter Phil James Liverpool John Moores University Astrophysics Research Institute OUTLINE OF TALK

More information

Figure 1: The universe in a pie chart [1]

Figure 1: The universe in a pie chart [1] Dark matter Marlene Götz (Jena) Dark matter is a hypothetical form of matter. It has to be postulated to describe phenomenons, which could not be explained by known forms of matter. It has to be assumed

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

Luca Grandi.

Luca Grandi. Luca Grandi http://warp.pv.infn.it idm2004 - September 2004 Wimp Argon Programme Collaboration R. Brunetti, E. Calligarich, M. Cambiaghi, C. De Vecchi, R. Dolfini, L. Grandi, A. Menegolli, C. Montanari,

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN.

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Signatures for direct detection experiments In direct detection experiments to provide a Dark Matter signal identification

More information

DARK MATTER IN GALAXIES. Deqian Yuan

DARK MATTER IN GALAXIES. Deqian Yuan DARK MATTER IN GALAXIES Deqian Yuan INTRODUCTION Dark Matter(From Merriam Webster): Nonluminous matter not yet directly detected by astronomers that is hypothesized to exist to account for various observed

More information

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future Dark Matter Detection with XENON0 Accomplishments, Challenges and the Future http://xenon.astro.columbia.edu Kaixuan Ni Columbia University TeV Particle Astrophysics IHEP, Beijing, Sep.4-8, 008 The Challenges

More information

Status of the CUORE and CUORE-0 Experiments at Gran Sasso

Status of the CUORE and CUORE-0 Experiments at Gran Sasso Status of the CUORE and CUORE-0 Experiments at Gran Sasso University of California, Berkeley E-mail: jlouellet@lbl.gov CUORE is a 741 kg array of TeO bolometers that will search for the neutrinoless double

More information

The CoGeNT Dark Matter experiment

The CoGeNT Dark Matter experiment The CoGeNT Dark Matter experiment Michael G. Marino 23 May 2012 1 Outline Physics CoGeNT - Experiment + Technology Analysis, recent results Michael G. Marino 2 Neutrinos/DM 24 May 2012 Outline Physics

More information