High Energy Messenger Workshop KICP, June Foteini Oikonomou

Size: px
Start display at page:

Download "High Energy Messenger Workshop KICP, June Foteini Oikonomou"

Transcription

1 High Energy Messenger Workshop KICP, June Foteini Oikonomou! Anisotropies in the arrival directions of Ultra-High Energy Cosmic Rays: Current status and prospects with a next-generation instrument 1

2 Introduction!! 5 EeV protons: GZK Horizon ~ few hundred Mpc Deflections 3 in IGMF In the Galactic B-field ~ 2-4 Larger through Galactic centre Iron much larger deflections, ~ Z x proton Anisotropy expected for proton UHECRs! Uncertain composition complicates expectations -> one way to model it, introduce an isotropic background (large deflections) 2

3 Arrival directions of UHECRs observed by Auger UHECRs with E > 55 EeV detected until end 29 Protons E > 55 EeV, PSCz IRAS PSCz ~full sky ~ 1 galaxies, ~far-ir selected: excellent probe of star-formation activity Protons E > 55 EeV, 6dF Calculations take into account: proton energy losses galaxy weights as a function of redshift Auger exposure galaxy survey selection functions 2MASS 6dF ~full sky ~ 1 galaxies, ~near-ir selected: excellent probe of ellipticals, minimal dust extinction 3

4 Arrival directions of UHECRs observed by Auger UHECRs with E > 55 EeV detected until end 29 Protons E > 55 EeV, PSCz IRAS PSCz ~full sky ~ 1 galaxies, ~far-ir selected: excellent probe of star-formation activity Protons E > 55 EeV, 6dF Calculations take into account: proton energy losses galaxy weights as a function of redshift Auger exposure galaxy survey selection functions 2MASS 6dF ~full sky ~ 1 galaxies, ~near-ir selected: excellent probe of ellipticals, minimal dust extinction 3

5 Correlation with Large Scale Structure: 29 dataset: 69 events E > 55 EeV FO et al 213: JCAP5(213)15 PSCz 6dFGs isotropic LSS = 3 = isotropic LSS = 3 = 5 Frequency data Piso,PSCz = 7% PPSCz,proton,no deflections = 1% Frequency data Piso,6dF = 2% P6dF,proton,no deflections = 1% X 5 1 X ~ 1% uncertainty due to binning. 4

6 Correlation with Large Scale Structure: 29 dataset: 69 events E > 55 EeV FO et al 213: JCAP5(213)15 PSCz 6dFGs isotropic LSS = 3 = isotropic LSS = 3 = 5 Frequency data Piso,PSCz = 7% PPSCz,proton,no deflections = 1% Frequency data Piso,6dF = 2% P6dF,proton,no deflections = 1% X 5 1 X X = X i data N CR,i N iso,i N M,i N iso,i N iso,i LSS model isotropic expectation ~ 1% uncertainty due to binning. 4

7 Correlation with Large Scale Structure: Full set to April 214: 142 events E > 55 EeV (my analysis).12.1 PSCz isotropic LSS = dF isotropic LSS = 3 Frequency = 5 data Frequency = 5 data X X Piso,PSCz = 7% Piso,6dF = 1% PPSCz,protons,no deflections <.1% P6dF,protons,no deflections <.1% 5

8 The future: Will better statistics help? Objectives for next generation instrument: 1-3 x Auger annual exposure 1 x Auger FD annual exposure 4 EeV < E < 1 EeV 1-2 events/5 years JEM-EUSO Coll. 213-arXiv:

9 What type of clustering? 2 regimes Source Density:! Absence of significant number of multiplets in Auger data suggests a relatively large source number density! (cf. n gal 1-2 Mpc -3 ) Auger Coll 213, FO et al 213, Takami & Sato 29.. E > 1 EeV low source density 1-5 Mpc -3 anisotropy dominated by clustering around few sources (see e.g., Blaksley et al 13, D Orfeuil et al 214) horizon for ~ 5 EeV protons r 7

10 What type of clustering? 2 regimes Source Density:! Absence of significant number of multiplets in Auger data suggests a relatively large source number density! (cf. n gal 1-2 Mpc -3 ) Auger Coll 213, FO et al 213, Takami & Sato 29.. E > 1 EeV low source density 1-5 Mpc -3 E > 5 EeV low source density 1-4 Mpc -3 anisotropy dominated by clustering around few sources anisotropy imprinted by galaxy distribution (see e.g., Blaksley et al 13, D Orfeuil et al 214) horizon for ~ 5 EeV protons r 8

11 What type of clustering? 2 regimes Source Density:! Absence of significant number of multiplets in Auger data suggests a relatively large source number density! (cf. n gal 1-2 Mpc -3 ) Auger Coll 213, FO et al 213, Takami & Sato 29.. E > 1 EeV low source density 1-5 Mpc -3 E > 5 EeV low source density 1-4 Mpc -3 anisotropy dominated by clustering around few sources anisotropy imprinted by galaxy distribution (see e.g., Blaksley et al 13, D Orfeuil et al 214) horizon for ~ 5 EeV protons r 8

12 Modelling different UHECR source populations 5 EeV protons Unbiased (e.g.,grbs/pulsars) Linear (e.g.agn) Threshold (galaxy clusters) 1 EeV protons 9

13 Can we distinguish between astrophysical scenarios with anisotropy? FO, Kotera, Abdalla, in prep. Assume: 2º angular resolution JEM-EUSO detection efficiency (Adams et al 213) 3% energy resolution (Gaussian response) 5 years JEM-EUSO (optimistic) Frequency events E > 5 EeV n ~ 1-3 Mpc -3 1% protons isotropic! LSS/galaxy like! linear AGN like! thres cluster like.2 X = X i N CR,i N iso,i N M,i N iso,i 1 2 X UB N iso,i P(not iso LSS model)99.7% > 99.9% 1

14 Can we distinguish between astrophysical scenarios with anisotropy? FO, Kotera, Abdalla, in prep. Assume: 2º angular resolution JEM-EUSO detection efficiency (Adams et al 213) 3% energy resolution (Gaussian response) 5 years JEM-EUSO (optimistic) Frequency events E > 5 EeV 3 1% % isotropic protons n ~ 1-3 Mpc -3 isotropic! LSS/galaxy like! linear AGN like! thres cluster like.2 X = X i N CR,i N iso,i N M,i N iso,i X UB N P(not iso LSS model)99.7% > 99.9% 99% iso,i 1

15 Can we distinguish between astrophysical scenarios with anisotropy? FO, Kotera, Abdalla, in prep. Assume: 2º angular resolution JEM-EUSO detection efficiency (Adams et al 213) 3% energy resolution (Gaussian response) 5 years JEM-EUSO (optimistic) Frequency events E > 5 EeV 3 7 1% % isotropic protons n ~ 1-3 Mpc -3 isotropic! LSS/galaxy like! AGN linear like! cluster thres like X = X i N CR,i N iso,i N M,i N iso,i X UB N P(not iso LSS model)99.7% model)99% > 99.9% 7% 99% iso,i 1

16 Are we going to see anisotropy with JEM-EUSO? % of realisations with significant anisotropy % 99% 99.7% 21 events E > 5 EeV, n = 1 3 Mpc 3 99% CL unbiased (galaxy like)! linear (AGN like)! threshold (cluster like) Isotropic fraction 11

17 If we can determine the composition? % of realisations with a significant anisotropy signal Proton fraction events, E>5 EeV, n ~ 1-2 Mpc -3 (galaxy like)! unbiased (AGN like)! linear (cluster like) threshold Number of detected protons % CL 12

18 Distinguish between bias models? 21 events, E>5 EeV, n ~ 1-2 Mpc -3 % of realisations with a significant anisotropy signal Proton fraction Number of detected protons P(not Linear Biased) P(not Unbiased Linear) P(not Unbiased Biased) 99% CL 99.7% 13

19 Conclusions Auger (my analysis): ~2σ anisotropy hints - look out for new Auger publication soon. Next generation instrument (~2 events): Clustering of events around a few sources or: Clustering of source distribution (lower E and/or higher number density): 4% proton composition, >4 protons -> statistically significant anisotropy 1 protons: distinguish different astrophysical scenarios High statistics will help whatever the source number density and threshold energy Distinguishing p/heavy elements would help 14

20 Conclusions Auger (my analysis): ~2σ anisotropy hints - look out for new Auger publication soon. Next generation instrument (~2 events): Clustering of events around a few sources or: Clustering of source distribution (lower E and/or higher number density): 4% proton composition, >4 protons -> statistically significant anisotropy 1 protons: distinguish different astrophysical scenarios High statistics will help whatever the source number density and threshold energy Distinguishing p/heavy elements would help 14

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory Piera L. Ghia*, for the Pierre Auger Collaboration * IFSI/INAF Torino, Italy, & IPN/CNRS Orsay,

More information

UHECRs sources and the Auger data

UHECRs sources and the Auger data UHECRs sources and the Auger data M. Kachelrieß Institutt for fysikk, NTNU Trondheim, Norway I review the evidence for a correlation of the arrival directions of UHECRs observed by the Pierre Auger Observatory

More information

UHECR autocorrelation function after Auger

UHECR autocorrelation function after Auger UHECR autocorrelation function after Auger Pasquale D. Serpico based on work in collaboration with A. Cuoco, S. Hannestad,, T. Haugbølle,, M. Kachelrieß (arxiv:0709.2712; arxiv:0809.4003 :0809.4003) SOCoR

More information

A few grams of matter in a bright world

A few grams of matter in a bright world A few grams of matter in a bright world Benjamin Rouillé d Orfeuil (LAL) Fellow Collaborators: D. Allard, C. Lachaud & E. Parizot (APC) A. V. Olinto (University of Chicago) February 12 th 2013 LAL All

More information

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum. 1 1 Université Libre de Bruxelles, Bruxelles, Belgium Telescope Outline Telescope Global distributions Hot spot Correlation with LSS Other searches Telescope UHECR experiments Telescope ARRAY COLLABORATION

More information

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop, Ultra-High Energy Cosmic Rays and Astrophysics Hang Bae Kim Hanyang University Hangdang Workshop, 2012. 08. 22 Ultra High Energy Cosmic Rays Ultra High Energy Cosmic Ray (UHECR)» E 3 E & 10 18 ev Energy

More information

Higher Statistics UHECR observatories: a new era for a challenging astronomy

Higher Statistics UHECR observatories: a new era for a challenging astronomy CRIS 2010 100 years of Cosmic Ray Physics: from Pioneering Experiments to Physics in Space 1 Higher Statistics UHECR observatories: a new era for a challenging astronomy Etienne Parizot APC University

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE The AUGER Experiment D. Martello Department of Physics University of Salento & INFN Lecce The Pierre Auger Collaboration Argentina Australia Bolivia Brazil Croatia Czech Rep. France Germany Italy Mexico

More information

Searches for cosmic ray anisotropies at ultra-high energies

Searches for cosmic ray anisotropies at ultra-high energies Searches for cosmic ray anisotropies at ultra-high energies Haris Lyberis*, on behalf the Pierre Auger Collaboration * U n i v e r s i t é P a r i s V I I D e n i s d i d e r o t, P a r i s, F r a n c

More information

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons Dongsu Ryu (Chungnam National U, Korea) Hyesung Kang (Pusan National U, Korea) Santabrata Das (Indian Institute of Technology

More information

The Pierre Auger Observatory: on the arrival directions of the most energetic cosmic rays

The Pierre Auger Observatory: on the arrival directions of the most energetic cosmic rays The Pierre Auger Observatory: on the arrival directions of the most energetic cosmic rays Piera L. Ghia*, for the Pierre Auger Collaboration * IFSI/INAF Torino, Italy, & IPN/CNRS Orsay, France Outline

More information

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data Acceleration of UHECR A.G.N. GRB Radio Galaxy Lobe

More information

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. 1,2 1 Université Libre de Bruxelles, Bruxelles, Belgium 2 Institute for Nuclear Research, Moscow, Russia Telescope Outline Telescope Telescope UHECR ground-based experiments Telescope ARRAY DETECTOR Telescope

More information

Multi-Messenger Astonomy with Cen A?

Multi-Messenger Astonomy with Cen A? Multi-Messenger Astonomy with Cen A? Michael Kachelrieß NTNU, Trondheim [] Outline of the talk 1 Introduction 2 Dawn of charged particle astronomy? Expectations vs. Auger data Effects of cluster fields

More information

Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory

Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory Nuclear Physics B (Proc. Suppl.) 190 (2009) 198 203 www.elsevierphysics.com Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory Silvia Mollerach, for the Pierre Auger

More information

Anisotropy studies with the Pierre Auger Observatory

Anisotropy studies with the Pierre Auger Observatory Anisotropy studies with the Pierre Auger Observatory Carla Macolino 1 for the Pierre Auger Collaboration 2 Full author list: http://www.auger.org/archive/authors_2011_05.html 1 Lab. de Physique Nucleaire

More information

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Universidade Federal do Rio de Janeiro, Brazil E-mail: haris@if.ufrj.br Aquiring data continuously from 004, the Pierre Auger

More information

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory a for the Pierre Auger Collaboration b a Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil

More information

SERCH FOR LARGE-SCALE

SERCH FOR LARGE-SCALE SERCH FOR LARGE-SCALE Université Libre de Bruxelles (ULB) Brussels SNOWPAC 23-28 March, 2010 Matter tracer model: generic model of CRs under the assumptions: nearly straight propagation typical deflections

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

Is the search for the origin of the Highest Energy Cosmic Rays over? Alan Watson University of Leeds, England

Is the search for the origin of the Highest Energy Cosmic Rays over? Alan Watson University of Leeds, England Colloquium, University of Virginia: 18 April 2008 Is the search for the origin of the Highest Energy Cosmic Rays over? Alan Watson University of Leeds, England a.a.watson@leeds.ac.uk 1 OVERVIEW Why there

More information

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh Ultra High Energy Cosmic Rays What we have learnt from HiRes and Auger Andreas Zech Observatoire de Paris (Meudon) / LUTh École de Chalonge, Paris, Outline The physics of Ultra-High Energy Cosmic Rays

More information

The influence of the observatory latitude on the study of ultra high energy cosmic rays

The influence of the observatory latitude on the study of ultra high energy cosmic rays Prepared for submission to JCAP arxiv:1703.01529v1 [astro-ph.he] 4 Mar 2017 The influence of the observatory latitude on the study of ultra high energy cosmic rays Rita C. dos Anjos, a,b,1 Vitor de Souza

More information

UHE Cosmic Rays in the Auger Era

UHE Cosmic Rays in the Auger Era Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays in the Auger Era Sergio Petrera, L'Aquila University email: sergio.petrera@aquila.infn.it Vulcano Workshop 2010 - May, 23-29, 2010 UHE Cosmic Rays

More information

PoS(ICRC2017)548. Telescope Array anisotropy summary

PoS(ICRC2017)548. Telescope Array anisotropy summary Telescope Array anisotropy summary M. Fukushima 1,2, D. Ikeda 1, D. Ivanov 3, K. Kawata 1, E. Kido 1, J.P. Lundquist 3, J.N. Matthews 3, T. Nonaka 1, T. Okuda 4, G. Rubtsov 5, H. Sagawa 1, N. Sakurai 6,

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University the 1 st discovery of the PeV ν Bert Physical Review

More information

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY (Neutrino 2008, Christchurch, NZ) Esteban Roulet (Bariloche) the Auger Collaboration: 17 countries, ~100 Institutions, ~400 scientists Argentina, Australia,

More information

OVERVIEW OF THE RESULTS

OVERVIEW OF THE RESULTS VIIIth International Workshop on the Dark Side of the Universe, Buzios STUDY OF THE ULTRA HIGH ENERGY COSMIC RAYS WITH THE AUGER DATA OVERVIEW OF THE RESULTS H. Lyberis on behalf of the Pierre Auger Collaboration

More information

arxiv: v2 [astro-ph.he] 1 Aug 2014

arxiv: v2 [astro-ph.he] 1 Aug 2014 Mon. Not. R. Astron. Soc., 1 (214) Printed th March 217 (MN LATEX style file v2.2) A Bayesian self-clustering analysis of the highest energy cosmic rays detected by the Pierre Auger Observatory Alexander

More information

An Auger Observatory View of Centaurus A

An Auger Observatory View of Centaurus A An Auger Observatory View of Centaurus A Roger Clay, University of Adelaide based on work particularly done with: Bruce Dawson, Adelaide Jose Bellido, Adelaide Ben Whelan, Adelaide and the Auger Collaboration

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University black hole radiation enveloping black hole The highest

More information

PoS(ICRC2015)326. TA anisotropy summary

PoS(ICRC2015)326. TA anisotropy summary 1, M. Fukushima 2,3, D. Ikeda 2, D. Ivanov 4, K. Kawata 2, E. Kido 2, J.N. Matthews 4, S. Nagataki 5, T.Nonaka 2, T. Okuda 6, G. Rubtsov 7, H. Sagawa 2, N. Sakurai 8, B.T. Stokes 4, M. Takeda 2, R. Takeishi

More information

Study of Two Metrics for Anisotropy in the Highest Energy Cosmic Rays

Study of Two Metrics for Anisotropy in the Highest Energy Cosmic Rays Study of Two in the Highest Energy Cosmic Rays John D. Hague, B. R. Becker, L. Cazon, M. S. Gold, J. A. J. Matthews University of New Mexico Department of Physics and Astronomy jhague@unm.edu The Impact

More information

Ultra-High Energy AstroParticles!

Ultra-High Energy AstroParticles! Ultra-High Energy AstroParticles! Angela V. Olinto The University of Chicago ICFA 2008 International Committee for! Future Accelerators! Ancient Accelerators!! Ancient Accelerators!! from 10 3 to 10 9

More information

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle astronomy coming of age How it is done The sources The signals What we have learned

More information

UltraHigh Energy Cosmic Rays Corrected for Galaxy Magnetic Field Models: FRIs & BL Lacs (Galactic Plane sources?)

UltraHigh Energy Cosmic Rays Corrected for Galaxy Magnetic Field Models: FRIs & BL Lacs (Galactic Plane sources?) UltraHigh Energy Cosmic Rays Corrected for Galaxy Magnetic Field Models: FRIs & BL Lacs (Galactic Plane sources?) Neil M. Nagar U. de Concepción, Chile Nagar & Matulich 2008, A&A, 488, 879 Nagar & Matulich,

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

Recent results from the Pierre Auger Observatory

Recent results from the Pierre Auger Observatory Recent results from the Pierre Auger Observatory Esteban Roulet, for the Pierre Auger Collaboration CONICET, Centro Atómico Bariloche, Bustillo 9500, Bariloche, 8400, Argentina E-mail: roulet@cab.cnea.gov.ar

More information

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive air showers are the cascades that develop in the atmosphere

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS SF2A 2006 D. Barret, F. Casoli, T. Contini, G. Lagache, A. Lecavelier, and L. Pagani (eds) THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS Serguei Vorobiov (for the Pierre Auger Collaboration)

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux The 4th International Workshop on The Highest Energy Cosmic Rays and Their Sources INR, Moscow May 20-22, 2008 Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux Oleg Kalashev* (INR RAS)

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs Short review and prospects of radio detection of high-energy cosmic rays 1 To understand the sources of cosmic rays we need to know their arrival direction energy and mass we need large statistics large

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

Ultrahigh Energy Cosmic Rays propagation II

Ultrahigh Energy Cosmic Rays propagation II Ultrahigh Energy Cosmic Rays propagation II The March 6th lecture discussed the energy loss processes of protons, nuclei and gamma rays in interactions with the microwave background. Today I will give

More information

arxiv: v1 [astro-ph.he] 18 Oct 2009

arxiv: v1 [astro-ph.he] 18 Oct 2009 draft of October 19, 2009 arxiv:0910.3361v1 [astro-ph.he] 18 Oct 2009 Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons Dongsu Ryu 1,4, Santabrata Das 2, and Hyesung Kang

More information

ULTRA HIGH ENERGY COSMIC RAYS

ULTRA HIGH ENERGY COSMIC RAYS ULTRA HIGH ENERGY COSMIC RAYS Carla Bonifazi Instituto de Física Universidade Federal do Rio de Janeiro Dark Side Of The Universe 2012 Buzios Brazil Outline Introduction UHECRs Detection Recent Progress

More information

Multiscale Autocorrelation Function: a new approach to anisotropy studies

Multiscale Autocorrelation Function: a new approach to anisotropy studies Multiscale Autocorrelation Function: a new approach to anisotropy studies Manlio De Domenico 12, H. Lyberis 34 1 Laboratory for Complex Systems, Scuola Superiore di Catania, Catania, Italy 2 Istituto Nazionale

More information

Ultra High Energy Cosmic Rays: Observations and Analysis

Ultra High Energy Cosmic Rays: Observations and Analysis Ultra High Energy Cosmic Rays: Observations and Analysis NOT A NEW PROBLEM, STILL UNSOLVED John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020

More information

(High-Energy) Cosmic Rays

(High-Energy) Cosmic Rays APPEC Town Meeting Roadmap ( Considerations ) Discussion (High-Energy) Cosmic Rays Paris, 6-7 April 2016 Andreas Haungs Karlsruhe Institute of Technology Petr Tinyakov Université Libre de Bruxelles petr.tiniakov@ulb.ac.be

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

WORKSHOP PRESENTATIONS

WORKSHOP PRESENTATIONS KICP workshop, 2014 June 9-11, 2014 Chicago, IL WORKSHOP PRESENTATIONS http://kicp.uchicago.edu/ http://www.uchicago.edu/ The Kavli Institute for Cosmological Physics (KICP) at the University of Chicago

More information

WORKSHOP PROGRAM. High-Energy Messengers: Connecting the Non-Thermal Extragalactic Backgrounds KICP workshop, June 9-11, 2014 Chicago, IL

WORKSHOP PROGRAM. High-Energy Messengers: Connecting the Non-Thermal Extragalactic Backgrounds KICP workshop, June 9-11, 2014 Chicago, IL KICP workshop, 2014 June 9-11, 2014 Chicago, IL WORKSHOP PROGRAM http://kicp.uchicago.edu/ http://www.uchicago.edu/ The (KICP) at the University of Chicago is hosting a workshop this summer on the origin

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

arxiv:astro-ph/ v2 26 Aug 2004

arxiv:astro-ph/ v2 26 Aug 2004 Ultra-High Energy Cosmic Ray Probes of Large Scale Structure and Magnetic Fields Günter Sigl a,b, Francesco Miniati c, Torsten A. Enßlin c a GReCO, Institut d Astrophysique de Paris, C.N.R.S., 98 bis boulevard

More information

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS Astr 598: Astronomy with SDSS Spring Quarter 4, University of Washington, Željko Ivezić Lecture : SDSS Sources at Other Wavelengths: From X rays to radio Large Surveys at Many Wavelengths SDSS: UV-IR five-band

More information

White Paper on Ultra-High Energy Cosmic Rays

White Paper on Ultra-High Energy Cosmic Rays White Paper on Ultra-High Energy Cosmic Rays Corresponding author: A. V. Olinto 1, (olinto@kicp.uchicago.edu) Co-Authors: J. H. Adams 2, C. D. Dermer 3, J.F. Krizmanic 4, J.W. Mitchell 4, P. Sommers 5,

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

ULTRA-HIGH ENERGY COSMIC RAYS

ULTRA-HIGH ENERGY COSMIC RAYS ULTRA-HIGH ENERGY COSMIC RAYS P. Tinyakov Université Libre de Bruxelles (ULB), Brussels Odense Winter School, October 2012 Outline 1 Introduction 2 Extensive airshowers 3 Detection methods Surface Detectors

More information

The Pierre Auger Observatory in 2007

The Pierre Auger Observatory in 2007 The Pierre Auger Observatory in 2007 Henryk Wilczyński 1 for the Pierre Auger Collaboration 2 1 Institute of Nuclear Physics PAN, Kraków, Poland 2 Pierre Auger Observatory, Malargüe, Mendoza, Argentina

More information

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds Denis Allard laboratoire Astroparticule et Cosmologie (APC, CNRS/Paris 7) in collaboration with Noemie Globus, E. Parizot,

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS Chapter 1 Introduction Particle Astrophysics & Cosmology SS 2008 1 Ptolemäus (85 165 b.c.) Kopernicus (1473 1543) Kepler (1571 1630) Newton (1643 1727) Kant (1724 1630) Herschel (1738 1822) Einstein (1917)

More information

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Implications of recent cosmic ray results for ultrahigh energy neutrinos Implications of recent cosmic ray results for ultrahigh energy neutrinos Subir Sarkar Neutrino 2008, Christchurch 31 May 2008 Cosmic rays have energies upto ~10 11 GeV and so must cosmic neutrinos knee

More information

The Highest Energy Cosmic Rays

The Highest Energy Cosmic Rays The Highest Energy Cosmic Rays Angela V. Olinto Department of Astronomy & Astrophysics, Kavli Institute of Cosmological Physics The University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA olinto@oddjob.uchicago.edu

More information

arxiv:astro-ph/ v1 28 Oct 2004

arxiv:astro-ph/ v1 28 Oct 2004 Highest Energy Cosmic Rays Angela V. Olinto arxiv:astro-ph/0410685v1 28 Oct 2004 Department of Astronomy & Astrophysics, Kavli Institute of Cosmological Physics The University of Chicago, 5640 S. Ellis

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i (cosmic rays, the Auger detectors, event reconstruction, observations) Jose Bellido QCD @ Cosmic

More information

SEARCH FOR POINT-LIKE SOURCES OF COSMIC RAYS WITH ENERGIES ABOVE. Malina Aurelia Kirn

SEARCH FOR POINT-LIKE SOURCES OF COSMIC RAYS WITH ENERGIES ABOVE. Malina Aurelia Kirn SEARCH FOR POINT-LIKE SOURCES OF COSMIC RAYS WITH ENERGIES ABOVE 10 18.5 ev IN THE HIRES I MONOCULAR DATASET by Malina Aurelia Kirn A thesis submitted in partial fulfillment of the requirements for the

More information

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27 DES Galaxy Clusters x Planck SZ Map ASTR 448 Kuang Wei Nov 27 Origin of Thermal Sunyaev-Zel'dovich (tsz) Effect Inverse Compton Scattering Figure Courtesy to J. Carlstrom Observables of tsz Effect Decrease

More information

Recent Results of the Observatory Pierre Auger. João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro

Recent Results of the Observatory Pierre Auger. João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro Recent Results of the Observatory Pierre Auger João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro S. Tomé e Príncipe, September 2009 Outline Cosmic ray detection and the

More information

Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds

Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds Kevork Abazajian University of California, Irvine!! KICP High-Energy Messengers Workshop June 10, 2014 The Diffuse Gamma Ray Background

More information

Signal Model vs. Observed γ-ray Sky

Signal Model vs. Observed γ-ray Sky Signal Model vs. Observed γ-ray Sky Springel+, Nature (2008) Two main dark matter signal components: 1. galactocentric diffuse 2. small structures Observed sky modeled with bremsstrahlung π 0 decay up-scattered

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Ultra High Energy Cosmic Rays. Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics

Ultra High Energy Cosmic Rays. Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics Ultra High Energy Cosmic Rays Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics Outline Cosmic Rays What are UHECR? GZK Effect Why study UHECR? Pillars of Research Energy Spectrum Composition

More information

Ultrahigh Energy cosmic rays II

Ultrahigh Energy cosmic rays II Ultrahigh Energy cosmic rays II Today we will discuss the new data on UHECR presented during the last couple of years by the Auger observatory in Argentina. These data do not match previous analyses and

More information

A Multimessenger Neutrino Point Source Search with IceCube

A Multimessenger Neutrino Point Source Search with IceCube A Multimessenger Neutrino Point Source Search with IceCube Mădălina Chera FLC Group Meeting 04.10.2010 Mădălina Chera Overview 1 Introduction to UHE Cosmic Rays and Neutrino Astrophysics; 2 Motivation

More information

Results from the Telescope Array Experiment

Results from the Telescope Array Experiment Results from the Telescope Array Experiment Hiroyuki Sagawa (ICRR, University of Tokyo) for the Telescope Array Collaboration @ AlbaNova University Center on 2011.08.1 2011/08/1 H. Sagawa @ 7th TeVPA in

More information

Measurement of Anisotropy and Search for UHECR Sources

Measurement of Anisotropy and Search for UHECR Sources Prog. Theor. Exp. Phys. 2015, 00000 (29 pages) DOI: 10.1093/ptep/0000000000 Measurement of Anisotropy and Search for UHECR Sources O. Deligny 1, K. Kawata 2, and P. Tinyakov 3 arxiv:1702.07209v1 [astro-ph.he]

More information

Cosmic Rays and Bayesian Computations

Cosmic Rays and Bayesian Computations Cosmic Rays and Bayesian Computations David Ruppert Cornell University Dec 5, 2011 The Research Team Collaborators Kunlaya Soiaporn, Graduate Student, ORIE Tom Loredo, Research Associate and PI, Astronomy

More information

Results from the Pierre Auger Observatory. Paul Sommers, Penn State August 7, 2008, SSI

Results from the Pierre Auger Observatory. Paul Sommers, Penn State August 7, 2008, SSI Results from the Pierre Auger Observatory Paul Sommers, Penn State August 7, 2008, SSI The Cosmic Ray Energy Spectrum Non-thermal, approximate power law, up to about 3x10 20 ev (possibly higher) 1 EeV

More information

Received 2002 October 5; accepted 2002 December 10

Received 2002 October 5; accepted 2002 December 10 The Astrophysical Journal, 586:1211 1231, 2003 April 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. SMALL-SCALE CLUSTERING IN THE ISOTROPIC ARRIVAL DISTRIBUTION OF

More information

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration Recent results on UHECRs from the Pierre Auger Observatory Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration LHAASO Workshop, Beijing, Feb. 2011 1 UHE Detectors 2 With time, gain not

More information

Contents Findings and Results

Contents Findings and Results Contents 2 Findings and Results 31 2.1 Findings and Results Summary............................ 31 2.2 STACEE Finding and Results............................. 32 2.2.1 Gamma-ray Pulsars: PSR1951+32......................

More information

A Bayesian analysis of correlation between AGNs and ultra high energy cosmic rays detected by the Telescope Array Experiment

A Bayesian analysis of correlation between AGNs and ultra high energy cosmic rays detected by the Telescope Array Experiment A Bayesian analysis of correlation between AGNs and ultra high energy cosmic rays detected by the Telescope Array Experiment Department of Physics, Yonsei University, Seoul, Korea E-mail: wrcho@yonsei.ac.kr

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

Air Shower Measurements from PeV to EeV

Air Shower Measurements from PeV to EeV Air Shower Measurements from PeV to EeV Andreas Haungs haungs@ik.fzk.de James L. Pinfold August 2006 TeV workshop Madison, US Andreas Haungs 1 Cosmic Rays around the knee(s) EeV PeV Knee 2 nd Knee? Ralph

More information

Frontiers: Ultra High Energy Cosmic Rays

Frontiers: Ultra High Energy Cosmic Rays Frontiers: Ultra High Energy Cosmic Rays We now focus on cosmic rays with almost unimaginable energies: 10 19 ev and beyond. The very highest energy cosmic rays have energies in excess of 50 Joules(!),

More information

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan Properties of Elementary Particle Fluxes in Cosmic Rays TeVPA Aug. 7, 2017 Yuan-Hann Chang National Central University, Taiwan Elementary Particles in Space There are hundreds of different kinds of charged

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Angela V. Olinto A&A, KICP, EFI The University of Chicago Nature sends 10 20 ev particles QuickTime and a YUV420 codec decompressor are needed

More information

Measurement of CR anisotropies with the AMS detector on the ISS

Measurement of CR anisotropies with the AMS detector on the ISS Measurement of CR anisotropies with the AMS detector on the ISS J. Casaus ( CIEMAT Spain ) on behalf of the AMS Collaboration Origin of excess of positrons Positron fraction shows an excess above 10 GeV

More information

ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration

ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration UFES,Vitoria, 8 de Outubro, 2018 TeV sky today (~212 sources, 62 unidentified) tevcat.uchicago.edu/ Supernovae Pulsar wind neb.

More information

Experimental High-Energy Astroparticle Physics

Experimental High-Energy Astroparticle Physics KIT University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association Experimental High-Energy Astroparticle Physics Andreas Haungs haungs@kit.edu 3 Content: 1. Introduction

More information

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1 Status KASCADE-Grande April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1 Cosmic Rays around the knee(s) Astrophysical questions for this energy range: (1 st ) knee Knee position Composition

More information

Cosmological Evolution of Blazars

Cosmological Evolution of Blazars Cosmological Evolution of Blazars Chuck Dermer Naval Research Laboratory The impact of high energy astrophysics experiments on cosmological physics Kavli Institute for Cosmological Physics University of

More information