LIGO Status Report 1. LIGO I. 2. E7 run (Dec.28,2001 ~ Jan.14,2002) 3. Advanced LIGO. Hiro Yamamoto

Size: px
Start display at page:

Download "LIGO Status Report 1. LIGO I. 2. E7 run (Dec.28,2001 ~ Jan.14,2002) 3. Advanced LIGO. Hiro Yamamoto"

Transcription

1 LIGO Status Report Hiro Yamamoto LIGO Laboratory / California Institute of Technology 1. LIGO I 2. E7 run (Dec.28,2001 ~ Jan.14,2002) 3. Advanced LIGO References : M.Coles (G020009), D.Coyne and D.Shoemaker (G010237), Z. Marka (LIGO seminar 2/1/02), F.Raab (G020012), D.Ugolini(LIGO seminar 2/8/02), A.J.Weinstein(G020007) 1

2 LIGO I Detector Being Commissioned Major hardware construction completed Completion of the remaining hardware and software Commissioning of detectors Diligent tuning and noise hunting Engineering run aiming to improve hardware performance (for LIGO Lab) Scientific run for the (preparation of ) physics research (for LSC) LIGO run starts next year 2

3 LIGO I Lock status LHO 2k» 6W, WFS, Common mode servo» ~20 minutes lock» Studying to understand the higher power effect LHO 4k» 1W, Digital Suspension Controller» ~ a few minutes lock (max of 36 minutes)» Seeking to achieve stable lock, improving digital suspension controller (LLO waiting for this result) LLO» 1W» ~ several minutes lock (max of several hours) at night Cultural noise too high in the daytime, and train passing over bridge breaks lock» Seeking for better seismic isolation External pre-isolation : Hydraulic, EM or Piezo actuators Internal active dumping 3

4 Logging at Livingston Less than 3 km away Dragging big logs Remedial measures at LIGO are in progress; this will not be a problem in the future. 4

5 Reduction by feed-forward from seismometers 5

6 6 Analysis of feedback gives nonmodeled tidal and temperature effects 11/09/00 11/10/00 11/11/00 11/12/00 11/13/00 11/14/00 11/15/ µ / Hr 0 Feed-back removes ~20% 20 Differential mode with model 40 Simple model in feed-forward removes ~80% E2 data Prediction 11/09/00 11/10/00 11/11/00 11/12/00 11/13/00 11/14/00 11/15/ Actuation in end/mid- stations and on laser reference cavity µ / Hr Common mode with model Largest Source of Interferometer Drift Earth Tide

7 Continued improvement in PSL Frequency Noise Simplification of beam path external to vacuum system Acoustic and seismic isolation Broadband noise better than spec in Hz region 7

8 Strain Sensitivity of LIGO IFO s during E7 (very preliminary!!) Contributions: PSL frequency noise (need common mode servo on all IFOs) Misalignments (reduce noise in oplevs; tuning of alignments servos needed) Laser glitches & bursts (reduce acoustic coupling into PSL) Periscope vibrations on PSL table (~200 Hz) Photodetector preamp Johnson noise (high-f) Excess noise in Pentek ADCs Excess coil driver/dac noise Unidentified electronics noise Low laser power (operating at 1 watt, not 6 watts) 8

9 Progress since E7 Common-mode feedback from arms to laser frequency is now engaged on Hanford 2-km interferometer» Improved control of laser frequency noise» Establishes gain hierarchy to get better-conditioned control system Power-recycling works on Hanford 4-km interferometer» Important validation of digital suspension controllers Laser power increased to 6 W for Hanford 2-km interferometer; tuning up under new operating conditions Improved locking of Livingston 4-km interferometer 9

10 Hanford 2km interferometer improvements after E7 Closed feedback loop from arms to laser frequency Reallocation of gains within length control servo system laser power 1 W 10

11 Future works Electronic noise hunting» 1/f 3 ~ 1/f (electronic noise) x 1/f 2 (pendulum)» 60 Hz and higher harmonics» Laser power stabilization Optical shutter control» attenuation loss ~ 1/8 WFS Better seismic isolation system, espacially at LLO All interferometers still need many control loops to be closed and then tuned 11

12 E1 E2 E3 E4 E5 E6 E7 S1 12 S1 April November 2001 March May August October hours ~June? ALLEGRO A cryogenic bar detector GEO-600, Power recycled LLO 4km, Recombined LHO 4km, Recombined LHO 2km, Power recycled 4 interferometric detectors LIGO GEO ALLEGRO Coordination among Engineering Run 7 (E7) International Network of Gravity Wave Detectors

13 E7 : 28Dec01 14Jan02 Engineering runs test partially integrated and commissioned machines under operational conditions to identify needed improvements E7 was first engineering run to include all 3 interferometers in coincidence and tested on-line data analysis at Hanford and Livingston E7 data sets will be analyzed jointly with data sets from GEO600 and Allegro E7 analysis will exercise full range of astrophysical data-analysis software 13

14 E7 : Interferometer Configurations Hanford 4-km : 1W recombined» digital suspension controllers» tidal compensation Hanford 2-km : 1W full power-recycling» differential-mode wave-front control» analog suspension controllers» tidal compensation Livingston 4-km : 1W recombined» analog suspension controllers» microseism compensation 14

15 E7 : Analysis Working Groups Data from E7 is being analyzed by LSC working groups for:» Detector Characterization» Binary Inspirals» Bursts» Periodic Sources» Stochastic Background This exercise will test analysis methodology for 1 st Science Run S1 this summer and feed back results into detector commissioning and code-writing effort 15

16 E7: LIGO IFO duty cycle Locked segments (minutes) Integrated lock hours (all segments) Integrated lock hours (15 min or longer segments) 380 hrs LLO 4k LHO 4k LHO 2k 3 IFO LHO LLO 4k total time (hrs) duty cycle (%) lock > 15 minutes time (hrs) duty cycle (%)

17 Magnitude [au] E7: monitor example Violin mode decays as seen at DARM_CTRL» +/- 5Hz band around 345 Hz Excellent info for operators 17 Plot courtesy of J. Zweizig

18 GPS time (S), T = 0.062s Frequency (Hz), f = 16 Hz /1.4 Solar Mass NS/NS Inspiral signal in AS_Q... (Lormand, Adhikari) signal injections E7: 18

19 E7 : Run summary 19

20 Advanced LIGO Advanced LIGO» Seismic noise Hz» Thermal noise 1/15» Shot noise 1/10, tunable» Reasonable / exciting extrapolations of technical developments Facility limits» Gravity gradients» Residual gas» (scattered light) Plan» Single step significant upgrade» Initial LIGO observations until 2006~7, then change to Advanced LIGO» One IFO at a time to keep the international network functional 20

21 Nominal top level parameters Sapphire Fused Silica Fabry-Perot arm length 4000 m Laser wavelength 1064 nm Optical power at interferometer input 125 W 80 W Power recycling factor FP Input mirror transmission 0.5% 0.50% Arm cavity power 830 kw 530 kw Power on beamsplitter 2.1 kw 1.35 kw Signal recycling mirror transmission 6.0% 6.0% Signal recycling mirror tuning phase 0.12 rad 0.09 rad Test Mass mass 40 kg 30 kg Test Mass diameter 32 cm 35 cm Beam radius on test masses 6 cm 6 cm Neutron star binary inspiral range (Bench) 300 Mpc 250 Mpc Stochastic GW sensitivity (Bench units) 8 x x

22 Interferometer overview MC : Silica 2.9kg / 15cm / 7.5cm Triple + silica or metal fibers ETM, ITM : Sapphia 40kg / 31.4cm / 13cm quad + silica ribbon ~16m BS : silica HERAEUS SV 12.7kg / 35cm / 6cm quad + silica fiber? CS : Compensator Same quality as BS CS PRM/SRM : silica LIGO I quality 12.1kg / 26.5cm / 10cm triple+silica or metal fibers? T=7% ~1m 22

23 Core Optics Material Development Sapphire Why Sapphire?» Sapphire has higher Q» Thermal conductivity is 30 x higher» Rayleigh scattering is ~ 30x lower Sapphire vs Silica : Dec Crystal Systems, Inc, Shanghai Institute for Optics and Fine Mechanics(SIOM) Large sapphire» 40kg, 31.5cm x 13cm High quality» Homogeneity < 10nm rms / single path measurement : 5-10 times worse» Absorption < 10ppm/cm measurement : 40-50ppm/cm 100mmx50mm a-axis sapphire 23

24 Sapphire Polishing Demonstration of super polish of sapphire (150mm diameter, m-axis) Radius of Curvature» Requirement: ROC 50 km +/- 10 km, OR sagitta of 52 nm +/- 10 nm» Achieved: 47 nm sagitta Surface Error» Requirement: <0.8 nm rms over the central 120mm <0.4 nm rms over the central 80mm» Achieved: 1 nm rms over the central 120mm 0.6 nm rms over the central 80mm probably limited by metrology will be measured by Caltech Microroughness» Goal <0.1nm rms; Requirement <0.2 nm rms» The average microroughness over the surface was 0.18 nm rms (though due to measurement noise expected to be actually 0.12 nm rms) 24

25 Optics Coating Research Virgo-SMA(Lyon, France), MLD(Oregon), REO(Boulder)??? Research mechanical loss, absorption, birefringence Different materials (Ta 2 O 5,Nb 2 O 5,ZrO 2,Al 2 O 5 ), combination of thicknesses, annealing temperatures Absorption : some of the coating satisfies the requirement, 0.2ppm. Loss : We have unambiguous information that the coatings are lossy with a φ around 1-3x10-4, and a program to identify the nature of the problem which is starting to yield results that suggest it is a bulk rather than an interface problem. 25

26 Optical homogeneity Need 5 to 10 x reduction of inhomogeneity Computer controlled spot polish by Goodrich (formerly HDOS)» Achieved 14 nm rms single path» has done compensating polish on a-axis sapphire» will spot polish the 25 cm dia.piece» expect to compensate for frequencies up to.08/mm or ~ 12mm/cycle Ion beam etching, fluid stream polish, compensating coating by CSIRO» Have experience in ion beam etching and compensating coating» Difficulty is high spatial frequency for correction Investigate a-axis and m-axis homogeneity (as alternative to c- axis) 26

27 Advanced Interferometer Sensing & Control (ISC) Use two SB (9MHz,180MHz) to sense 5 lengths Shift to DC readout» Rather than RF mod/demod scheme, shift interferometer slightly away from dark fringe; relaxes laser requirements, needs photodiode develop Requires both proof-of-principle and precision testing (GEO Glasgow 10m, Caltech 40m) LIGO Lab leads, with contributions from LSC, esp. GEO 27

28 New view of 40m Lab RSE controls/engineering prototype N E E S 12m suspended mode cleaner Output optics chamber Expect to exercise mode cleaner in summer 2002 and full IFO in summer

29 Quad pendulum prototype - GEO suspension Adopting a multiple-pendulum approach» Allows best thermal noise performance of suspension and test mass; replacement of steel suspension wires with fused silica» Offers seismic isolation, hierarchy of position and angle actuation 29

30 Active Seismic Isolation render seismic noise a negligible limitation to GW searches» Choose to require a 10 Hz brick wall reduce or eliminate actuation on test masses» Choose to require RMS of <10-11 m Conceptual Design Two in-vacuum stages in series, external slow correction Each stage carries sensors and actuators for 6 DOF Stage resonances ~5 Hz High-gain servos bring motion to sensor limit in GW band, reach RMS requirement at low frequencies Similar designs for BSC, HAM vacuum chambers; provides optical table for flexibility 30

31 LIGO Advanced System Test Interferometer (LASTI) at MIT Full-scale tests of Seismic Isolation and Test Mass Suspension. Allows system testing, interfaces, installation practice. Characterization of nonstationary noise, thermal noise. HAM HAM BSC HAM 31

32 Advanced R&D: Optics Thermal Compensation Thermoelastic deformation Thermal lens Extend LIGO I WFS to spatially resolve phase/ OPD errors Thermal actuation on core optics 100 nm Bump On HR surface In Input Test Mass 100 nm lens for Sapphia 1000 nm lens for Silika 10 nm lens In Beam Splitter 32

33 Adv. LIGO PSL Evaluate high-power-stage concepts» MOPA slab (Stanford) uses proven technology but expensive due to the large number of pump diodes required» stable-unstable slab oscillator (Adelaide) typically the approach adopted for high power lasers, but not much experience with highly stabilized laser systems» rod systems (Hannover) uses proven technology but might suffer from thermal management problems» High power design selection : LSC meeting this fall Power and frequency stabilization» Max-Planck Institute, University of Glasgow, University of Hannover Challenge» Intensity stabilization 3 x 10Hz 33

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Advanced LIGO Status Report

Advanced LIGO Status Report Advanced LIGO Status Report Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration 22 September 2005 ESF PESC Exploratory Workshop Perugia Italy LIGO-G050477 G050477-00-R Advanced LIGO Overview

More information

Next Generation Interferometers

Next Generation Interferometers Next Generation Interferometers TeV 06 Madison Rana Adhikari Caltech 1 Advanced LIGO LIGO mission: detect gravitational waves and initiate GW astronomy Next detector» Should have assured detectability

More information

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D 6WDWXVRI/,*2 Laser Interferometer Gravitational-wave Observatory Hanford, WA Livingston, LA Nergis Mavalvala MIT IAU214, August 2002 *UDYLWDWLRQDOZDYH,QWHUIHURPHWHUVWKHSULQ LSOH General Relativity (Einstein

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

The Status of Enhanced LIGO.

The Status of Enhanced LIGO. The Status of Enhanced LIGO. Aidan Brooks. December 2008 AIP Congress 2008, Adelaide, Australia 1 Outline Gravitational Waves» Potential sources» Initial LIGO interferometer Enhanced LIGO upgrades» Increased

More information

Advanced LIGO Research and Development

Advanced LIGO Research and Development Advanced LIGO Research and Development David Shoemaker NSF Annual Review of LIGO 17 November 2003 LIGO Laboratory 1 LIGO mission: detect gravitational waves and initiate GW astronomy Commissioning talk

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

Advanced LIGO Research and Development

Advanced LIGO Research and Development Advanced LIGO Research and Development David Shoemaker NSF Annual Review of LIGO 17 October 2003 LIGO Laboratory 1 LIGO mission: detect gravitational waves and initiate GW astronomy Commissioning talk

More information

After ~ 40 years of effort, no one has detected a GW! Why? Noise levels in detectors exceed expected

After ~ 40 years of effort, no one has detected a GW! Why? Noise levels in detectors exceed expected NOISE in GW detectors After ~ 40 years of effort, no one has detected a GW! Why? Noise levels in detectors exceed expected signal; insufficient sensitivity Want to detect GW strain h; can express detector

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

Ground-based GW detectors: status of experiments and collaborations

Ground-based GW detectors: status of experiments and collaborations Ground-based GW detectors: status of experiments and collaborations C.N.Man Univ. Nice-Sophia-Antipolis, CNRS, Observatoire de Cote d Azur A short history GW & how to detect them with interferometry What

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

LIGO I status and advanced LIGO proposal

LIGO I status and advanced LIGO proposal LIGO I status and advanced LIGO proposal Hiro Yamamoto LIGO Lab / Caltech LIGO I» basic design» current status advanced LIGO» outline of the proposal» technical issues GW signals and data analysis ICRR

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 LIGO-G M

Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 LIGO-G M State of State the LIGO of LIGO Laboratory Gary Sanders LIGO/Caltech LSC Meeting, LLO March 16, 2004 A 10 Year Anniversary LIGO s near death experience of early 1994» LIGO s second chance What was our

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

Physics of LIGO Lecture 2

Physics of LIGO Lecture 2 Last week: LIGO project GW physics, astrophysical sources Principles of GW IFO s This week: Engineering and Science runs Noise in GW IFOs Focus on thermal noise Next week: Optics Control systems Advanced

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

Probing for Gravitational Waves

Probing for Gravitational Waves Probing for Gravitational Waves LIGO Reach with LIGO AdLIGO Initial LIGO Barry C. Barish Caltech YKIS2005 Kyoto University 1-July-05 Einstein s Theory of Gravitation a necessary consequence of Special

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

LIGO: On the Threshold of Gravitational-wave Astronomy

LIGO: On the Threshold of Gravitational-wave Astronomy LIGO: On the Threshold of Gravitational-wave Astronomy Stan Whitcomb LIGO/Caltech IIT, Kanpur 18 December 2011 Outline of Talk Quick Review of GW Physics and Astrophysics LIGO Overview» Initial Detectors»

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

An Overview of Advanced LIGO Interferometry

An Overview of Advanced LIGO Interferometry An Overview of Advanced LIGO Interferometry Luca Matone Columbia Experimental Gravity group (GECo) Jul 16-20, 2012 LIGO-G1200743 Day Topic References 1 2 3 4 5 Gravitational Waves, Michelson IFO, Fabry-Perot

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

Review of LIGO Upgrade Plans

Review of LIGO Upgrade Plans Ando Lab Seminar April 13, 2017 Review of LIGO Upgrade Plans Yuta Michimura Department of Physics, University of Tokyo Contents Introduction A+ Voyager Cosmic Explorer Other issues on ISC Summary KAGRA+

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory LIGO Present and Future Barry Barish Directory of the LIGO Laboratory LIGO I Schedule and Plan LIGO I has been built by LIGO Lab (Caltech & MIT) 1996 Construction Underway (mostly civil) 1997 Facility

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA 29-March, 2009 JPS Meeting@Rikkyo Univ Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA Overview of This talk Science goal of LCGT First detection of

More information

Advanced LIGO Optical Configuration and Prototyping Effort

Advanced LIGO Optical Configuration and Prototyping Effort Advanced LIGO Optical Configuration and Prototyping Effort Alan Weinstein *, representing the LIGO Scientific Collaboration Advanced Interferometer Configurations Working Group, and the LIGO 40 Meter Group

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

GEO 600: Advanced Techniques in Operation

GEO 600: Advanced Techniques in Operation GEO 600: Advanced Techniques in Operation Katherine Dooley for the GEO team DCC# G1400554-v1 LISA Symposium X Gainesville, FL May 21, 2014 GEO600 Electronics shop Corner building Operator's station Offices

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Advanced Virgo and LIGO: today and tomorrow

Advanced Virgo and LIGO: today and tomorrow Advanced Virgo and LIGO: today and tomorrow Michał Was for the LIGO and Virgo collaborations Michał Was (SFP Gravitation) 2017 Nov 22 1 / 21 d Basics of interferometric gravitational wave detections Need

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

The Search for Gravitational Waves

The Search for Gravitational Waves The Search for Gravitational Waves Fred Raab, LIGO Hanford Observatory, on behalf of the LIGO Scientific Collaboration 21 October 2008 Outline What are gravitational waves? What do generic detectors look

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar Georgia Tech 26-April-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property of space

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. LIGO Scientific Collaboration. Enhanced LIGO. R Adhikari. Distribution of this draft:

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. LIGO Scientific Collaboration. Enhanced LIGO. R Adhikari. Distribution of this draft: LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO LIGO Scientific Collaboration LIGO T06009-00-I May 006 Enhanced LIGO R Adhikari Distribution of this draft: LIGO Scientific Collaboration This is

More information

The LIGO Experiment Present and Future

The LIGO Experiment Present and Future The LIGO Experiment Present and Future Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting Denver May 1 4, 2004 LIGO-G040239-00-Z What are Gravitational Waves? Gravitational

More information

Advanced LIGO Reference Design

Advanced LIGO Reference Design LIGO Laboratory / LIGO Scientific Collaboration LIGO-060056-07-M Advanced LIGO 29 August 2006 Advanced LIGO Reference Design Advanced LIGO Team This is an internal working note of the LIGO Laboratory.

More information

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M S1 sensitivities -- GEO -- L 2km -- H 4km -- L 4km State of h 0 LIGO Barry Barish LSC Meeting LLO Hanford, WA 10-Nov-03 Goals and Priorities LSC -Aug 02 Interferometer performance» Integrate commissioning

More information

Progress in Gravitational Wave Detection: Interferometers

Progress in Gravitational Wave Detection: Interferometers 1 Progress in Gravitational Wave Detection: Interferometers Kazuaki Kuroda a and LCGT Collaboration b a Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582,

More information

Thermal Corrective Devices for Advanced Gravitational Wave Interferometers

Thermal Corrective Devices for Advanced Gravitational Wave Interferometers Thermal Corrective Devices for Advanced Gravitational Wave Interferometers Marie Kasprzack, Louisiana State University 6 th October 2016 COMSOL Conference 2016 Boston 1 1. Advanced Gravitational Wave Detectors

More information

Optical Techniques for Gravitational-Wave Detection

Optical Techniques for Gravitational-Wave Detection Optical Techniques for Gravitational-Wave Detection M. Tacca Nikhef - Amsterdam Nikhef- 2017 July 14th Born in Novara (Italy) Introducing Myself PostDoc Fellow @ Nikhef (since July 2017) Laurea & PhD @

More information

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo: Status and Perspectives A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo 2 Advanced Virgo What s that? 3 Advanced Virgo Advanced Virgo (AdV): upgrade of the Virgo interferometric

More information

Gearing up for Gravitational Waves: the Status of Building LIGO

Gearing up for Gravitational Waves: the Status of Building LIGO Gearing up for Gravitational Waves: the Status of Building LIGO Frederick J. Raab, LIGO Hanford Observatory LIGO s Mission is to Open a New Portal on the Universe In 1609 Galileo viewed the sky through

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

Recent LIGO I simulation results

Recent LIGO I simulation results Recent LIGO I simulation results Hiro Yamamoto / Caltech - LIGO Lab As-built LIGO I performance and the path to it FFT run with as-built HR phase map» Contrast defect» Shot noise limited sensitivity» R.Dodda(SLU),

More information

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope TAUP2017 @ Laurentian University Jul 26, 2017 The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope Yuta Michimura Department of Physics, University of Tokyo on behalf of the KAGRA Collaboration

More information

LIGO s Thermal Noise Interferometer: Progress and Status

LIGO s Thermal Noise Interferometer: Progress and Status LIGO s Thermal Noise Interferometer: Progress and Status Eric Black LSC Meeting Review November 12, 2003 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht Thanks also to: Kyle Barbary, Adam Bushmaker,

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

The LIGO Project: a Status Report

The LIGO Project: a Status Report The LIGO Project: a Status Report LIGO Hanford Observatory LIGO Livingston Observatory Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration Conference on Gravitational Wave Sources

More information

Advanced Virgo: status and gravitational waves detection. Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO

Advanced Virgo: status and gravitational waves detection. Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO Advanced Virgo: status and gravitational waves detection Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO Minkowski vs general metric dx dx ds 2 1 1 1 1 Flat

More information

LIGO I mirror scattering loss by non smooth surface structure

LIGO I mirror scattering loss by non smooth surface structure LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO-T070170-00-E LIGO July 26, 2007 LIGO I mirror scattering loss by non smooth surface structure Hiro

More information

Gravitational Waves and LIGO: A Technical History

Gravitational Waves and LIGO: A Technical History Gravitational Waves and LIGO: A Technical History Stan Whitcomb IEEE SV Tech History Committee Event 11 October 2018 LIGO-G180195-v3 Goal of Talk Review a few of the technical developments that enabled

More information

LIGO and the Quest for Gravitational Waves

LIGO and the Quest for Gravitational Waves LIGO and the Quest for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) LIGO-G030523-00-M Barry C. Barish Caltech UT Austin 24-Sept-03 1 A Conceptual

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

Advanced LIGO the Laser Interferometer Gravitational-wave Observatory The Next Gravitational-Wave Observatory

Advanced LIGO the Laser Interferometer Gravitational-wave Observatory The Next Gravitational-Wave Observatory Advanced LIGO the Laser Interferometer Gravitational-wave Observatory The Next Gravitational-Wave Observatory Brian Lantz, for the LSC (40+ institutions, hundreds of people) SLAC Instrumentation Series,

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

LIGO s Detection of Gravitational Waves from Two Black Holes

LIGO s Detection of Gravitational Waves from Two Black Holes LIGO s Detection of Gravitational Waves from Two Black Holes Gregory Harry Department of Physics, American University February 17,2016 LIGO-G1600274 GW150914 Early History of Gravity Aristotle Kepler Laplace

More information

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02 LIGO Status and Plans Barry Barish / Gary Sanders 13-May-02 LIGO overall strategy! Strategy presented to NSB by Thorne / Barish in 1994! Search with a first generation interferometer where detection of

More information

The technology behind LIGO: how to measure displacements of meters

The technology behind LIGO: how to measure displacements of meters The technology behind LIGO: how to measure displacements of 10-19 meters The LIGO interferometers Interferometry: displacement sensing Noise limits Advanced LIGO 4pm today, 1 West: Results from science

More information

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA.

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA. SINGAPORE HONGKONG Fundamentals of Interferometric Gravitational Wav Detectors Second Edition Peter R. Sawlson Martin A. Pomerantz '37 Professor of Physics Syracuse University, USA \p World Scientific

More information

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team Christophe MICHEL on behalf of LMA Team 1 The event February 11th 2016 LIGO and VIRGO announced the first direct detection of gravitational waves https://www.youtube.com/watch?v=vd1pak5f6gq http://journals.aps.org/prl/abstract/10.1103/physrevlett.1

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish University of Toronto 26-March-02 Sir Isaac Newton Universal Gravitation! Three laws of motion and law of gravitation (centripetal force) disparate

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish Caltech Princeton University 2-May-02 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

Advanced LIGO: Context and Overview

Advanced LIGO: Context and Overview Advanced LIGO Advanced LIGO: Context and Overview Gravitational waves offer a remarkable opportunity to see the universe from a new perspective, providing access to astrophysical insights that are available

More information

BASELINE SUSPENSION DESIGN FOR LIGO II - UPDATE

BASELINE SUSPENSION DESIGN FOR LIGO II - UPDATE BASELINE SUSPENSION DESIGN FOR LIGO II - UPDATE Norna A Robertson University of Glasgow for the GEO suspension team LSC, Hanford 15th August 2000 LIGO-G000295-00-D GEO suspension team for LIGO II G Cagnoli,

More information

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information carried by gravitational

More information

Active Isolation and Alignment in 6 DOF for LIGO 2

Active Isolation and Alignment in 6 DOF for LIGO 2 Active Isolation and Alignment in 6 DOF for LIGO 2 JILA, LSU, MIT, Stanford LIGO Science Collaboration Rana Adhikari, Graham Allen, Daniel Debra, Joe Giaime, Giles Hammond, Corwin Hardham, Jonathan How,

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Summer Research Projects for 2018

Summer Research Projects for 2018 Summer Research Projects for 2018 LIGO Livingston (Louisiana) Scattered Light Investigations Light scattered from the main beam path in the Advanced LIGO interferometer can re-enter the beam path after

More information

Status of the LIGO Project

Status of the LIGO Project Status of the LIGO Project Gary Sanders California Institute of Technology LSC Meeting University of Florida - March 4, 1999 1 LIGO-G990012-00-M LIGO-G990022-02-M LIGO Schedule at Very Top Level 1996 Construction

More information

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors T. Tomaru, T. Uchiyama, C. T. Taylor, S. Miyoki, M. Ohashi, K.

More information

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

Displacement Noises in Laser Interferometric Gravitational Wave Detectors Gravitational Wave Physics @ University of Tokyo Dec 12, 2017 Displacement Noises in Laser Interferometric Gravitational Wave Detectors Yuta Michimura Department of Physics, University of Tokyo Slides

More information

Advanced LIGO Optical Configuration, Prototyping, and Modeling

Advanced LIGO Optical Configuration, Prototyping, and Modeling Advanced LIGO Optical Configuration, Prototyping, and Modeling Alan Weinstein *, representing the LIGO Scientific Collaboration Advanced Interferometer Configurations Working Group, and the LIGO 40 Meter

More information

The Laser Interferometer Gravitational-Wave Observatory In Operation

The Laser Interferometer Gravitational-Wave Observatory In Operation The Laser Interferometer Gravitational-Wave Observatory In Operation "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Reported on behalf of LIGO colleagues by Fred

More information

LIGOʼs first detection of gravitational waves and the development of KAGRA

LIGOʼs first detection of gravitational waves and the development of KAGRA LIGOʼs first detection of gravitational waves and the development of KAGRA KMI2017 Jan. 2017 Tokyo Institute of Technology Kentaro Somiya Self Introduction Applied Physics (U Tokyo) NAOJ 2000-04 Albert-Einstein

More information

Adaptive Thermal Compensation Advanced Photodetectors Photon Drive

Adaptive Thermal Compensation Advanced Photodetectors Photon Drive Adaptive Thermal Compensation Advanced Photodetectors Photon Drive M. E. Zucker LIGO Project, MIT Center for Space Research National Science Foundation Review Caltech, 29 January - 1 February 2001 LIGO-G010015-00-D

More information

The Advanced LIGO Gravitational Wave Detector arxiv: v1 [gr-qc] 14 Mar Introduction

The Advanced LIGO Gravitational Wave Detector arxiv: v1 [gr-qc] 14 Mar Introduction The Advanced LIGO Gravitational Wave Detector arxiv:1103.2728v1 [gr-qc] 14 Mar 2011 S. J. Waldman, for the LIGO Scientific Collaboration LIGO Laboratory, Kavli Institute for Astrophysics and Space Research,

More information

ET: Einstein Telescope

ET: Einstein Telescope ET: Einstein Telescope Michele Punturo INFN Perugia On behalf of the ET design study team ILIAS General meeting, Jaca Feb 2008 1 Evolution of the current GW detectors Current Gravitational Wave interferometric

More information

CLIO. Presenter : : Shinji Miyoki. S.Telada (AIST) A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators

CLIO. Presenter : : Shinji Miyoki. S.Telada (AIST) A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators CLIO Presenter : : Shinji Miyoki T.Uchiyama, K.Yamamoto, T.Akutsu M.Ohashi, K.Kuroda,,,(ICRR) S.Telada (AIST) T.Tomaru, T.Suzuki, T.Haruyama. N.Sato, A.Yamamoto, T.Shintomi (KEK) and CLIO collaborators

More information

Interferometry beyond the Standard Quantum Limit using a Sagnac Speedmeter Stefan Hild

Interferometry beyond the Standard Quantum Limit using a Sagnac Speedmeter Stefan Hild Interferometry beyond the Standard Quantum Limit using a Sagnac Speedmeter Stefan Hild ET general meeting Hannover, December 2012 Overview Ü What is a speedmeter and how does it work? Ü Could a Sagnac

More information

Advanced VIRGO EXPERIMENT

Advanced VIRGO EXPERIMENT Advanced VIRGO EXPERIMENT Advanced VIRGO Interferometer: a second generation detector for Gravitational Waves observation F. Frasconi for the VIRGO Collaboration 16 th Lomonosov Conference Moscow State

More information

3 LIGO: The Basic Idea

3 LIGO: The Basic Idea 3 LIGO: The Basic Idea LIGO uses interference of light waves to detect gravitational waves. This is accomplished using a device called an interferometer. LIGO actually uses several interferometers for

More information

Experience with matlab, python, and signal processing would be useful.

Experience with matlab, python, and signal processing would be useful. LIGO Livingston (Louisiana) Real-time Simulated LIGO The limit to detection of high mass binary black holes is the technical noise in the LIGO interferometers below 30 Hz. To better understand this, we

More information

Physics of LIGO Lecture 3

Physics of LIGO Lecture 3 Physics of LIGO Lecture 3 Last week: LIGO project GW physics, astrophysical sources Principles of GW IFO s Engineering and Science runs Noise in GW IFOs Focus on thermal noise This week: Cavity Optics

More information

Gravitationswellen. Wirkung auf Punktmassen. für astrophysikalische Quellen h ~ h L L

Gravitationswellen. Wirkung auf Punktmassen. für astrophysikalische Quellen h ~ h L L G-Wellendetektoren Gravitationswellen Wirkung auf Punktmassen h L L für astrophysikalische Quellen h ~ 10-22 - 10-21 Chirp Signal We can use weak-field gravitational waves to study strong-field general

More information

arxiv:gr-qc/ v1 12 Feb 2002

arxiv:gr-qc/ v1 12 Feb 2002 Thermal lensing in cryogenic sapphire substrates arxiv:gr-qc/0202038v1 12 Feb 2002 Takayuki Tomaru, Toshikazu Suzuki, Shinji Miyoki, Takashi Uchiyama, C.T. Taylor, Akira Yamamoto, Takakazu Shintomi, Masatake

More information

First Results from the Mesa Beam Profile Cavity Prototype

First Results from the Mesa Beam Profile Cavity Prototype First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech LIGO Laboratory LIGO-G050348-00-D LIGO Scientific Collaboration 1 Contents Environment setup: description and

More information

Plans for Advanced Virgo

Plans for Advanced Virgo Plans for Advanced Virgo Raffaele Flaminio Laboratoire des Materiaux Avances CNRS/IN2P3 On behalf of the Virgo-IN2P3 groups (APC, LAL, LAPP, LMA) SUMMARY - Scientific case - Detector design - The IN2P3

More information