SUPERNOVA! What is a supernova? How dangerous are they to life on Earth? How would the universe be different without supernovae?

Size: px
Start display at page:

Download "SUPERNOVA! What is a supernova? How dangerous are they to life on Earth? How would the universe be different without supernovae?"

Transcription

1 SUPERNOVA! What is a supernova? How dangerous are they to life on Earth? How would the universe be different without supernovae? 1

2 Stellar Evolution: The Deaths of Stars

3 A hundred years ago, we believed we lived in a quiet, safe universe... 3

4 Today we know the universe is filled with powerful cosmic radiation our eyes cannot see: Gamma-rays X-Rays Fast-moving atomic particles ( Cosmic Rays ) Much of which originates from monstrous black holes in the centers of galaxies and from... 4

5 Today we know the universe is filled with powerful cosmic radiation our eyes cannot see: Gamma-rays X-Rays Fast-moving atomic particles ( Cosmic Rays )... neutron stars with powerful magnetic fields and more commonly from... 5

6 Supernova! 6

7 SUPERNOVAE Catastrophic explosions that end the lives of stars, Provide the heavy elements on which planets and life as we know it depends, Energize the interstellar gas to form new stars, Produce exotic compact objects, neutron stars and black holes, Provide yardsticks to measure the history and fate of the Universe.

8 Where does the radiation come from? 8

9 Life of a Butterfly Caterpillar Eggs Pupa Butterfly 9

10 Life of a Butterfly 10

11 Life of a Sun-like Star Sun-like Star Protostars Red Giant Star-Forming Nebula Planetary Nebula White Dwarf 11

12 Life of a Massive Star Protostars Star-Forming Nebula Massive Star Red Supergiant SUPERNOVA Neutron Star Black Hole 12

13 SUPERNOVA! Click on image to activate movie 13

14 A special effect of a stellar explosion... 14

15 Gamma-Ray Burst (GRB)! 15

16 Is radiation from supernovae and GRB sources dangerous to Earth? How close would they have to be? 16

17 Radiation on Earth Radioactive sources emit gamma-rays. If we are too close to a radioactive source, like a chunk of uranium, we cannot see the radiation, but it is still harmful to us! So how far should Earth be from cosmic radiation sources to be safe? 17

18 Death from Exploding Stars?!. Artist s Conception of the Milky Way Galaxy Location of Solar System 18

19 How close would a Supernova have to be?. Location of Solar System 19

20 How close would a Supernova have to be?. Location of Solar System 20

21 How close would a Supernova have to be to be dangerous?. Supernova: within 30 light years Location of Solar System Nearest Supernova Candidate: over 250 light years away! 21

22 How close would a Gamma-Ray Burst (GRB) source have to be?. Location of Solar System 22

23 How close would a Gamma-Ray Burst (GRB) source have to be?. GRB Danger Zone: within 8,000 light years Location of Solar System 23

24 How close is the nearest Gamma-Ray Burst (GRB) source? Nearest detected GRB source: over a Billion light years away!. Our galaxy is about 100,000 light years across GRB Danger Zone Location of Solar System 24

25 Earth s Atmosphere & Magnetic Field Protect Earth from most high-energy radiation... But prevent us from detecting it here on Earth 25

26 The high view: getting a better look XMM-Newton (X-ray Multi-Mirror Mission) Suzaku Swift GLAST 26

27 Life from Exploding Stars! Oxygen Scientists have discovered that most of the heavy elements in the universe are dispersed from stars that go supernova. 27

28 Life from Exploding Stars! Silicon 28

29 Life from Exploding Stars! Gold 29

30 Life from Exploding Stars! Iron 30

31 Life from Exploding Stars! Without supernovae to disperse elements made in stars, there would be no planets, no life as we know it! 31

32 So aren t you glad we live in a universe where stars explode? Which stars? Orion s stars likely to go supernova! 32 30

33 33

34 SN 1987A Bi-polar symmetry Elongated debris

35 In 1987 a nearby supernova gave us a close-up look at the death of a massive star

36 SN 1987A SINS Kirshner, et al.

37

38 Cassiopeia A by Chandra Jet Compact remnant mass of Sun, size of Houston Counter Jet

39 Neutrinos emanate from supernovae like SN 1987A More than 99% of the energy from such a supernova is emitted in the form of neutrinos from the collapsing core

40

41 Recent Chandra Observatory X-ray Image of Cas A

42

43

44 Crab Nebula Optical Image Chandra X-Ray Image Left-over jet

45

46

47

48

49 Most supernovae occurring in our Galaxy are hidden from our view by interstellar dust and gases but a supernova remnant can be detected at many wavelengths for centuries after the explosion

50 What is a supernova? How dangerous are they to life on Earth? How would the universe be different without supernovae? 50

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution Notes

Stellar Evolution Notes Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,

More information

The Formation of Stars

The Formation of Stars The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky. We are interested

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION. Thanassis Akylas

X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION. Thanassis Akylas X-ray Astronomy F R O M V - R O CKETS TO AT HENA MISSION Thanassis Akylas Telescopes & Light Gallileo turned his telescope into the sky 400 years ago He enhanced his natural vision or the so called natural

More information

Stellar Evolution: from star birth to star death and back again

Stellar Evolution: from star birth to star death and back again Stellar Evolution: from star birth to star death and back again Prof. David Cohen Dept. of Physics and Astronomy This presentation is available at: astro.swarthmore.edu/~cohen/presentations/admitted_students_2006/

More information

Classifying Stars. Scientists classify stars by: 1. Temperature 2. Brightness

Classifying Stars. Scientists classify stars by: 1. Temperature 2. Brightness STARS Classifying Stars Scientists classify stars by: 1. Temperature 2. Brightness Star Temperature 1. The color of a star tells us about its temperature. Blue stars are the hottest, 7500 C- 40,000 C.

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002 Outline Novae (detonations on the surface of a star) Supernovae (detonations of a star) The Mystery of Gamma Ray Bursts (GRBs) Sifting through afterglows for clues! Stellar Explosions Novae Nova V838Mon

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC The Life Cycles of Stars Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... What do you see? How I Wonder What You Are... Stars have: Different Colors -

More information

Wednesday, January 25, 2017

Wednesday, January 25, 2017 Wednesday, January 25, 2017 Powerpoint of lectures posted as pdf after every class, on Canvas and at http://www.as.utexas.edu/astronomy/education/spring17/wheeler/ 309n.html?a=lec Wednesday Star Parties

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Death of stars is based on. one thing mass.

Death of stars is based on. one thing mass. Death of stars is based on one thing mass. Not the mass they have when born, but the mass they have when they die. Star Death for mass 1.4 solar masses and less. These stars started big 7.5-10 solar masses.

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

What is the sun? The sun is a star at the center of our solar system.

What is the sun? The sun is a star at the center of our solar system. What is the sun? The sun is a star at the center of our solar system. Galileo Galilei (1564-1642) Galileo was one of the first Europeans to observe the sun. How did Galileo look at the sun? He lined up

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC The Life Cycles of Stars Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations.

More information

Edwin Hubble Discovered galaxies other than the milky way. Galaxy:

Edwin Hubble Discovered galaxies other than the milky way. Galaxy: Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way He noticed that

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

Geoscience Astronomy Formative on Stellar Evolution and Galaxies

Geoscience Astronomy Formative on Stellar Evolution and Galaxies Name: Class: _ Date: _ Geoscience Astronomy Formative on Stellar Evolution and Galaxies Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What are binary

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

Properties of Stars. Characteristics of Stars

Properties of Stars. Characteristics of Stars Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

More information

Lecture 23 Stellar Evolution & Death (High Mass) November 21, 2018

Lecture 23 Stellar Evolution & Death (High Mass) November 21, 2018 Lecture 23 Stellar Evolution & Death (High Mass) November 21, 2018 1 2 High Mass Stars (M > 5 M ) Section 13.3 Bennett, The Essential Cosmic Perspective, 7 th ed. High mass stars have: More mass Greater

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. HW3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused by falling matter from the atmosphere of

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies Life and Death of High Mass Stars (M > 8 M sun ) REVIEW Last stage: Iron core surrounded by shells of increasingly lighter elements. REVIEW When mass

More information

Starlight in the Night: Discovering the secret lives of stars

Starlight in the Night: Discovering the secret lives of stars Utah State University DigitalCommons@USU Public Talks Astrophysics 8-2-2008 Starlight in the Night: Discovering the secret lives of stars Shane L. Larson Utah State University Follow this and additional

More information

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University Extreme Astronomy and Supernovae Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University What are X- & Gamma rays? Why study X- & gamma rays? Universe as seen by eye is peaceful

More information

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star. 25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,

More information

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc. The Universe But first, let s talk about light! Light is fast! The study of light All forms of radiation travel at 300,000,000 meters (186,000 miles) per second Since objects in space are so far away,

More information

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran GALAXIES AND STARS 1. Compared with our Sun, the star Betelgeuse is A smaller, hotter, and less luminous B smaller, cooler, and more luminous C larger, hotter, and less luminous D larger, cooler, and more

More information

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1 Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Instructions. Students will underline the portions of the PowerPoint that are underlined.

Instructions. Students will underline the portions of the PowerPoint that are underlined. STARS Instructions Students will underline the portions of the PowerPoint that are underlined. Nuclear Furnace 1. A star is like a gigantic nuclear furnace. 2. The nuclear reactions inside convert hydrogen

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 22 Neutron Stars and Black Holes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In a neutron star, the core

More information

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf Mass Limit for White Dwarfs S. Chandrasekhar (1983 Nobel Prize) -calculated max. mass

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

Introduction to exploding stars and pulsars

Introduction to exploding stars and pulsars Introduction to exploding stars and pulsars Harsha Blumer Department of Physics & Astronomy West Virginia University Winnipeg, Canada About me WV, USA Kerala, India Carl Sagan (1934-1996) Neil degrasse

More information

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 2 1 The star alpha-centauri C has moved across the sky by 3853 seconds of arc during the last thousand years - slightly more

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review of last class Introduction to Astronomy Contents of today s lecture Quiz time Review Review 1 n Science is a way of producing

More information

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 2 1 A steady X-ray signal with sudden bursts lasting a few seconds each is probably caused by a. a supermassive star. b. a

More information

Fate of Stars. relative to Sun s mass

Fate of Stars. relative to Sun s mass INITIAL MASS relative to Sun s mass M < 0.01 Fate of Stars Final State planet.01 < M

More information

Cassiopeia A: Supernova Remnant

Cassiopeia A: Supernova Remnant Crab Nebula: Pulsar During a supernova, the core of a massive star can be compressed to form a rapidly rotating ball composed mostly of neutrons that is only twelve miles in diameter. A teaspoon of such

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

25/11/ Cosmological Red Shift:

25/11/ Cosmological Red Shift: 12.1 Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way Hubble

More information

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27 Modern Earth Science Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

More information

Abundance of Elements. Relative abundance of elements in the Solar System

Abundance of Elements. Relative abundance of elements in the Solar System Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium

More information

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars Stellar Evolution The lives of low-mass stars And the lives of massive stars Stars of High Mass High mass stars fuse H He, but do so in a different reaction: the CNO cycle Carbon is a catalyst, speeding

More information

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral

More information

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun?

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun? 1. Which star has a surface temperature most similar to the surface temperature of Alpha Centauri? A) Polaris B) Betelgeuse C) Procyon B D) Sirius 2. Giant stars have greater luminosity than our sun mainly

More information

Fate of Stars. relative to Sun s mass

Fate of Stars. relative to Sun s mass INITIAL MASS relative to Sun s mass M < 0.01 Fate of Stars Final State planet.01 < M

More information

MODERN ASTROPHYSICS PCES 4.55

MODERN ASTROPHYSICS PCES 4.55 MODERN ASTROPHYSICS PCES 4.55 The 20 th century brought an appreciation of the colossal scale of the universe, and an explanation of how it all worked. The understanding of the stars came from nuclear

More information

GLAST. Exploring the Extreme Universe. Kennedy Space Center. The Gamma-ray Large Area Space Telescope

GLAST. Exploring the Extreme Universe. Kennedy Space Center. The Gamma-ray Large Area Space Telescope GLAST Gamma-ray Large Area Space Telescope The Gamma-ray Large Area Space Telescope Exploring the Extreme Universe Kennedy Space Center Dave Thompson GLAST Deputy Project Scientist David.J.Thompson@nasa.gov

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

More information

Lecture 26. High Mass Post Main Sequence Stages

Lecture 26. High Mass Post Main Sequence Stages Lecture 26 Fate of Massive Stars Heavy Element Fusion Core Collapse Supernova Neutrinoes Gaseous Remnants Neutron Stars Mar 27, 2006 Astro 100 Lecture 26 1 High Mass Post Main Sequence Stages For M(main

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

Astronomy Universe: all of space and everything in it

Astronomy Universe: all of space and everything in it Astronomy Universe: all of space and everything in it Most (90%) of the universe is made up of: dark matter: stuff we think is there due to amount of mass we think is there but is not detected by the instruments

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES Q1. The figure below shows what scientists over 1000 years ago thought the solar system was like. Give one way that the historical model of the solar

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

~15 GA. (Giga Annum: Billion Years) today

~15 GA. (Giga Annum: Billion Years) today ~15 GA (Giga Annum: Billion Years) today ~ 300,000 years after the Big Bang The first map of the Universe. Not homogeneous. Cosmic microwave background (CMB) anisotropy. First detected by the COBE DMR

More information

Stars Star birth and kinds Elemental furnaces Star death and heavy elements

Stars Star birth and kinds Elemental furnaces Star death and heavy elements Stars Star birth and kinds Elemental furnaces Star death and heavy elements Matter was not uniformly distributed as the universe expanded after the Big Bang. This lumpy universe coalesced under the force

More information

A supernova is the explosion of a star. It is the largest explosion that takes place in space.

A supernova is the explosion of a star. It is the largest explosion that takes place in space. What is a supernova? By NASA, adapted by Newsela staff on 03.28.17 Word Count 974 Level 1110L TOP: A vivid view of a supernova remnant captured by NASA's Spitzer and Chandra space observatories and the

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars Stellar Evolution Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

More information

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1) Chapter 11 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Life and Death of a Star 2015

Life and Death of a Star 2015 Life and Death of a Star 2015 Name Date 1. In the main-sequence, the core is slowly shrinking because A. the mass of the star is slowly increasing B. hydrogen fusing to helium makes the core more dense

More information

Neutron Stars. Chapter 14: Neutron Stars and Black Holes. Neutron Stars. What s holding it up? The Lighthouse Model of Pulsars

Neutron Stars. Chapter 14: Neutron Stars and Black Holes. Neutron Stars. What s holding it up? The Lighthouse Model of Pulsars Neutron Stars Form from a 8-20 M Sun star Chapter 14: Neutron Stars and Black Holes Leftover 1.4-3 M Sun core after supernova Neutron Stars consist entirely of neutrons (no protons) Neutron Star (tennis

More information

Fate of Stars. INITIAL MASS Final State relative to Sun s mass

Fate of Stars. INITIAL MASS Final State relative to Sun s mass Fate of Stars INITIAL MASS Final State relative to Sun s mass M < 0.01 planet.01 < M

More information

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.

More information

Astronomy in the news? Patriots goal-line interception

Astronomy in the news? Patriots goal-line interception Monday, February 2, 2015 First exam Friday. First Sky Watch Due. Review sheet posted Today. Review session Thursday, 5 6 PM, RLM 6.104 Reading: Chapter 6 Supernovae, Sections 6.1, 6.2, 6.3 Chapter 1 Introduction,

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect nuclear

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe The Big Bang Theory The Big Bang Theory The Big Bang Theory is the most widely accepted scientific explanation

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Stellar Deaths/Endpoints 13-2 Low Mass Stars ³ Like the Sun (< 2 M ) ² Live about 10 billion years (sun is middle aged) ² Create elements through Carbon, Nitrogen,

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

Unit 1: Space. Section 2- Stars

Unit 1: Space. Section 2- Stars Unit 1: Space Section 2- Stars Stars Recall: stars are celestial bodies of hot gas that give off heat and light Stars The milky way contains hundreds of billions of stars and is only one of hundreds of

More information

Science 30 Unit C Electromagnetic Energy

Science 30 Unit C Electromagnetic Energy Science 30 Unit C Electromagnetic Energy Outcome 2: Students will describe the properties of the electromagnetic spectrum and their applications in medical technologies, communication systems and remote-sensing

More information

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology Cosmology is the study of the universe; its nature, origin and evolution. General Relativity is the mathematical basis of cosmology from which

More information

Outline 8: History of the Universe and Solar System

Outline 8: History of the Universe and Solar System Outline 8: History of the Universe and Solar System The Andromeda Galaxy One of hundreds of billions of galaxies, each with hundreds of billions of stars A warped spiral galaxy, 150 MLY away and 100,000

More information