Energetic particles and X-ray emission in solar flares

Size: px
Start display at page:

Download "Energetic particles and X-ray emission in solar flares"

Transcription

1 Energetic particles and X-ray emission in solar flares Eduard Kontar School of Physics and Astronomy University of Glasgow, UK RAS discussion meeting, London, October 12, 2012

2 Solar flares and accelerated particles Global energetics and flare basics Spatial distribution of energetic particles Energy release and particle acceleration Particle transport and escape

3 Solar flares: basics Solar flares are rapid localised brightening in the lower atmosphere. More prominent in X-rays, UV/EUV and radio. but can be seen from radio to 100 MeV X-rays radio waves Particles 1AU Figure from Krucker et al, 2007

4 Solar flares and accelerated particles

5 Solar flares and accelerated particles From Emslie et al., 2004, 2005 Free magnetic energy ~ ergs

6 Standard model of a solar flare/cme Energy release/acceleration Solar corona T ~ 10 6 K => 0.1 kev per particle Flaring region T ~ 4x10 7 K => 3 kev per particle Flare volume cm 3 => (10 4 km) 3 Plasma density cm -3 Photons up to > 100 MeV Number of energetic electrons per second Electron energies >10 MeV Proton energies >100 MeV Figure from Temmer et al, 2009 Large solar flare releases about ergs (about half energy in energetic electrons) 1 megaton of TNT is equal to about 4 x ergs.

7 X-rays and flare accelerated electrons Observed X-rays Unknown electron distribution Emission cross-sections Thin-target case: For the electron spectrum F(E)~E -δ, bremsstrahlung (free-free emission)

8 X-ray spectrum of solar flares Thermal X-rays Solar Orbiter/STIX energy-range Gamma-ray lines Non-thermal X-rays July 23, 2002 flare Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectrum

9 Compton scattering in pictures Primary Observed flux Reflected flux Direct flux Reflected Observed Tomblin, 1971, Bai &Ramtaty 1978 Kontar et al, 2006

10 Energy release and particle acceleration

11 Location of energy release 6-10 kev Plasma density cm -3 Flare volume (10 4 km) 3 cm3 => Number of electrons:10 37 => All electrons will be evacuated from the volume within 1 second! kev Sui et al, 2004 Do we observe quasi-2d magnetic reconnection? Standard flare model picture (Shibata, 1996)

12 Above the loop-top X-ray sources Separations between HXR and SXH sources From Krucker & Lin, 2008

13 Energy release inside the loop? (Xu et al, 2008, Kontar etal, 2011,Guo et al,2012)

14 Extended acceleration scenario Are particles accelerated within the loop? Multiple current sheets Vlahos et al 1998, Turkmani et al, 2005, Hood et al, 2008, Browning et al 2008, Gordovskyy et al, 2012 Plasma turbulence acceleration Sturrock, 1966, Melrose, 1968 Miller et al 1997, Petrosian et al, 1994; Bian et al, 2012 Simulations by Gordovskyy & Browning, 2011

15 From X-rays to electrons Spatial distribution of the energetic electrons and transport

16 X-ray emission from typical flares Footpoints Soft X-ray coronal source HXR chromospheric footpoints Coronal Source

17 Not always Cold flare Thermally dominated flare Veronig et al, 2005, Xu et al, 2008, Jeffrey & Kontar 2012 Fleishman et al, 2011

18 Foot-point structure and radiation Aschwanden et al, 2002 Higher energy sources appear lower in the chromosphere (consistent with simple collisional transport) Similar results: statistical survey and individual flare analysis Saint-Hilaire, P. et al 2010, Battaglia etal, 2011 The transport of particles is complicated by return current (Zharkova Gordovskyy, 2004, 2006,), Langmuir waves (e.g. Hannah et al, 2009), Electron pitch angle scattering (e.g. Bespalov et al, 1987; Melnikov 1994) Trapping e.g. Kai etal 1966, Brown & Melrose, 1976, Fletcher 1997, etc

19 Foot-point structure and radiation Battaglia & Kontar, 2011, Sait-Hillare et al, 2008, Martínez Oliveros, et al 2012; Also see near infrared observations e.g. Xu et al, 2006 Wang et al, 2012 White Light observations, Heing 1991, Fletcher et al, 2007

20 Gamma rays and ions Imaging of the MeV neutroncapture line (blue contours) and the HXR electron bremsstrahlung (red contours) of the flare on October 28, The underlying image is from TRACE at 195 Å. The X-ray and γ-ray imaging shown here used exactly the same selection of detector arrays and imaging procedure. Note the apparent loop-top source in the hard X-ray contours Hurford et al Note shift

21 Particle escape and propagation From flare to in-situ

22 Flares and accelerated particles How and where electrons are escaping? Frequency, MHz Time Earth's orbit Sun 0.15R Sun 1.5R Sun Plasma frequency radio range <= plasma frequency 1AU

23 From X-rays to electrons γ X-ray spectra from RHESSI The radio diagnostics of energetic electrons, e.g. Reid et al, 2011 => Location of acceleration region Electron spectra at 1AU from WIND δ From Krucker et al 2007

24 From X-rays to electrons Flare electrons From the analysis of 16 scatter-free events (Lin, 1985; Krucker et al, 2007) : Although there is correlation between the total number of electrons at the Sun (thicktarget model estimate) the spectral indices do not match either thick-target or thintarget models. X-rays X-rays WIND RHESSI Acceleration or transport effects?

25 Conclusions X-ray observations (especially in combination with radio in-situ) are a powerful tool to diagnose the solar flares. Spatially resolved electron spectra (notably with RHESSI, hopefully With STIX) help to understand the physics of electron transport/acceleration. Sunspots sketched by Richard Carrington on Sept. 1, Many aspects of solar flares is not well understood

Electron acceleration and turbulence in solar flares

Electron acceleration and turbulence in solar flares Electron acceleration and turbulence in solar flares Eduard Kontar School of Physics and Astronomy University of Glasgow, UK contributions from Iain Hannah, Nicolas Bian, Natasha Jeffrey MSSL seminar March

More information

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) X-ray observations of Solar Flares Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) marina.battaglia@fhnw.ch 2 3 The solar corona Close by astrophysical laboratory allows us to study: Release of

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Double Coronal Hard and Soft X-Ray Source as Evidence of Magnetic Reconnection: The M1.4 Flare 1

Double Coronal Hard and Soft X-Ray Source as Evidence of Magnetic Reconnection: The M1.4 Flare 1 Chapter 4 Double Coronal Hard and Soft X-Ray Source as Evidence of Magnetic Reconnection: The 2002-04-30 M1.4 Flare 1 4.1 Introduction In the classical reconnection model (e.g., Petschek, 1964) magnetic

More information

arxiv: v1 [astro-ph.sr] 26 Oct 2010

arxiv: v1 [astro-ph.sr] 26 Oct 2010 Astronomy & Astrophysics manuscript no. 4798 c ESO 2017 May 27, 2017 The influence of albedo on the size of hard X-ray flare sources M. Battaglia, E. P. Kontar, and I. G. Hannah School of Physics and Astronomy,

More information

Particle Acceleration and Transport on the Sun

Particle Acceleration and Transport on the Sun Particle Acceleration and Transport on the Sun New Perspectives at Radio Wavelengths An Astro2010 White Paper Prepared by T. S. Bastian 1, G. Emslie 2, G. Fleishman 3, D. E. Gary 3, G. Holman 4, H. Hudson

More information

X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI

X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI Iain G. Hannah Steven Christe, Säm Krucker, Gordon Hurford, Hugh Hudson & Robert P. Lin Space Sciences Laboratory, University

More information

Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations

Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations Galina G. Motorina 1 and Eduard P. Kontar 2 1 Pulkovo Observatory,

More information

Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17

Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M Introduction We discuss one large flare using simultaneous

More information

On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations

On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations G. A. Porfir eva and G. V. Yakunina Moscow State University, Sternberg Astronomical Institute, Moscow, Russia, E-mail: yakunina@sai.msu.ru

More information

Large Solar Flares. Albert Y. Shih NASA/GSFC 2014 Oct 21

Large Solar Flares. Albert Y. Shih NASA/GSFC 2014 Oct 21 Large Solar Flares Albert Y. Shih NASA/GSFC 2014 Oct 21 The Carrington event 1859 Sep 1: First observation of a flare Compared to other flares (Carrington 1859) (Cliver& Dietrich 2013) 2014 Oct 19, X1.1

More information

Flare Energy Release in the Low Atmosphere

Flare Energy Release in the Low Atmosphere Flare Energy Release in the Low Atmosphere Alexander G. Kosovichev, Viacheslav M. Sadykov New Jersey Institute of Technology Ivan N. Sharykin, Ivan V. Zimovets Space Research Institute RAS Santiago Vargas

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Working Group 3: Coronal X-ray and gamma-ray sources, and their relation to CMEs and SEPs

Working Group 3: Coronal X-ray and gamma-ray sources, and their relation to CMEs and SEPs Working Group 3: Coronal X-ray and gamma-ray sources, and their relation to CMEs and SEPs (team leader: Alexander Warmuth) Abundances (Share, Dennis) Coronal HXR sources (Glesener, Krucker) Source sizes

More information

Updated Analytical Solutions of Continuity Equation for Electron Beams Precipitation. I. Pure Collisional and Pure Ohmic Energy Losses

Updated Analytical Solutions of Continuity Equation for Electron Beams Precipitation. I. Pure Collisional and Pure Ohmic Energy Losses Mon. Not. R. Astron. Soc. 000, 000 000 0000) Printed 11 August 015 MN LATEX style file v.) Updated Analytical Solutions of Continuity Equation for Electron Beams Precipitation. I. Pure Collisional and

More information

Updated analytical solutions of continuity equation for electron beams precipitation I. Pure collisional and pure ohmic energy losses

Updated analytical solutions of continuity equation for electron beams precipitation I. Pure collisional and pure ohmic energy losses doi:10.1093/mnras/stv1571 Updated analytical solutions of continuity equation for electron beams precipitation I. Pure collisional and pure ohmic energy losses R. R. Dobranskis and V. V. Zharkova Department

More information

Electron flux maps of solar flares: a regularization approach to RHESSI imaging spectroscopy

Electron flux maps of solar flares: a regularization approach to RHESSI imaging spectroscopy Electron flux maps of solar flares: a regularization approach to RHESSI imaging spectroscopy Anna Maria Massone CNR-INFM LAMIA Genova Italy massone@ge.infm.it People involved In collaboration with : Michele

More information

Solar Transients P.K. Manoharan

Solar Transients P.K. Manoharan Solar Transients P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India 1 Solar Flares and associated Coronal Mass Ejections

More information

The chromosphere during solar ares

The chromosphere during solar ares Mem. S.A.It. Vol. 81, 616 c SAIt 2010 Memorie della The chromosphere during solar ares L. Fletcher Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom, e-mail: lyndsay@astro.gla.ac.uk

More information

arxiv: v2 [astro-ph.sr] 12 Feb 2013

arxiv: v2 [astro-ph.sr] 12 Feb 2013 Astronomy & Astrophysics manuscript no. imsp c ESO 2017 July 31, 2017 Implications for electron acceleration and transport from non-thermal electron rates at looptop and footpoint sources in solar flares

More information

The contraction of flare loops and its impact on the solar lower atmosphere

The contraction of flare loops and its impact on the solar lower atmosphere First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 2, pp 213 220 Edited by Arnab Rai Choudhuri & Dipankar Banerjee The contraction of flare loops and its impact on the solar lower

More information

X-ray solar flare loops: temporal variations in length, corpulence, position, temperature and pressure.

X-ray solar flare loops: temporal variations in length, corpulence, position, temperature and pressure. e- X-ray solar flare loops: temporal variations in length, e- corpulence, position, temperature and pressure. e- Natasha Jeffrey and Eduard Kontar University of Glasgow, Scotland, UK 23rd August 2005 Flare

More information

Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU)

Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU) -MPS SGS 2014 Oct 14- MPS PRESS RELEASE STEREO & ACE SCIENCE HIGHLIGHTS nominated to NASA HELIOPHYSICS GPRAMA ITEM Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU)

More information

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Tomasz Mrozek 1,2 1 Space Research Centre, Polish Academy of Sciences, Solar Physics Division 2 Astronomical Institute, University

More information

IMPULSIVE THERMAL X-RAY EMISSION FROM A LOW-LYING CORONAL LOOP

IMPULSIVE THERMAL X-RAY EMISSION FROM A LOW-LYING CORONAL LOOP C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/769/2/135 IMPULSIVE THERMAL X-RAY EMISSION FROM A LOW-LYING CORONAL LOOP Siming Liu 1, Youping

More information

Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star

Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star Gerald H. Share and Ronald J. Murphy E.O. Hulburt

More information

arxiv: v1 [astro-ph.sr] 21 Aug 2016

arxiv: v1 [astro-ph.sr] 21 Aug 2016 Research in Astronomy and Astrophysics manuscript no. (L A TEX: msraa-2016-0095-r1.tex; printed on October 1, 2018; 13:42) Key words: Sun: flares Sun: white-light Sun: hard X-Ray The Energetics of White-light

More information

Observations of Solar Jets

Observations of Solar Jets Observations of Solar Jets Coronal Jets X-ray and EUV images Davina Innes Transition Region Jets explosive events UV spectra and since IRIS images Active Region jets Coronal hole jets Everywhere about

More information

Radio Probes of Extrasolar Space Weather

Radio Probes of Extrasolar Space Weather Radio Probes of Extrasolar Space Weather Rachel Osten Space Telescope Science Institute Radio Stars: from khz to THz Haystack Observatory November 2, 2017 Star s magnetic field helps to set the environment

More information

arxiv: v1 [astro-ph.sr] 17 Jul 2013

arxiv: v1 [astro-ph.sr] 17 Jul 2013 Coronal magnetic topology and the production of solar impulsive energetic electrons C. Li 1,2, L. P. Sun 1, X. Y. Wang 2,3, and Y. Dai 1,2 arxiv:1307.4494v1 [astro-ph.sr] 17 Jul 2013 ABSTRACT We investigate

More information

Thermal and non-thermal energies of solar flares

Thermal and non-thermal energies of solar flares A&A 435, 743 752 (2005) DOI: 10.1051/0004-6361:20041918 c ESO 2005 Astronomy & Astrophysics Thermal and non-thermal energies of solar flares P. Saint-Hilaire 1,2 anda.o.benz 1 1 Institute of Astronomy,

More information

Solar flares and solar activity

Solar flares and solar activity Solar flares and solar activity Prof Philippa Browning Jodrell bank Centre for Astrophysics University of Manchester Plasma in the universe Plasma - a quasineutral gas of charged and neutral particles

More information

FOOTPOINT MOTION OF THE CONTINUUM EMISSION IN THE 2002 SEPTEMBER 30 WHITE-LIGHT FLARE

FOOTPOINT MOTION OF THE CONTINUUM EMISSION IN THE 2002 SEPTEMBER 30 WHITE-LIGHT FLARE The Astrophysical Journal, 641:1217 1221, 2006 April 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FOOTPOINT MOTION OF THE CONTINUUM EMISSION IN THE 2002 SEPTEMBER

More information

Power conversion factor in solar flares

Power conversion factor in solar flares Article SPECIAL ISSUE Basic Plasma Processes in Solar-Terrestrial Activities April 212 Vol. 7 No. 12: 1397 1 doi: 1.17/s113-12-- Power conversion factor in solar flares NING ZongJun 1,2 1 Key Laboratory

More information

arxiv: v1 [astro-ph.sr] 24 Apr 2014

arxiv: v1 [astro-ph.sr] 24 Apr 2014 Research in Astron. Astrophys. Vol.0 (200x) No.0, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Key words: Sun: flares Sun: radio radiation Sun:

More information

THE EFFECTS OF LOW- AND HIGH-ENERGY CUTOFFS ON SOLAR FLARE MICROWAVE AND HARD X-RAY SPECTRA Gordon D. Holman

THE EFFECTS OF LOW- AND HIGH-ENERGY CUTOFFS ON SOLAR FLARE MICROWAVE AND HARD X-RAY SPECTRA Gordon D. Holman The Astrophysical Journal, 586:606 616, 2003 March 20 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE EFFECTS OF LOW- AND HIGH-ENERGY CUTOFFS ON SOLAR FLARE MICROWAVE

More information

Possibilities for constraining acceleration models from microwave observations

Possibilities for constraining acceleration models from microwave observations IX RHESSI workshop (1-5 September 2009, Genova) Possibilities for constraining acceleration models from microwave observations Melnikov, V.F., (Pulkovo Astronomical Observatory; Nobeyama Solar Radio Observatory)

More information

The Solar Flare: A Strongly Turbulent Particle Accelerator

The Solar Flare: A Strongly Turbulent Particle Accelerator The Solar Flare: A Strongly Turbulent Particle Accelerator Loukas Vlahos 1, Sam Krucker 2 and Peter Cargill 3,4 1 Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece vlahos@astro.auth.gr

More information

Working Group 2: From Flares to Microflares A Critique of the Standard Models. 8 th RHESSI Workshop Potsdam, Germany 2 6 Sept 2008

Working Group 2: From Flares to Microflares A Critique of the Standard Models. 8 th RHESSI Workshop Potsdam, Germany 2 6 Sept 2008 Working Group 2: From Flares to Microflares A Critique of the Standard Models 8 th RHESSI Workshop Potsdam, Germany 2 6 Sept 2008 Email: iain@astro.gla.ac.uk Who Talked... Name Email Affiliation Weiqun

More information

Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data

Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data Available online at www.sciencedirect.com Advances in Space Research 42 (2008) 822 827 www.elsevier.com/locate/asr Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI

More information

The spatial, spectral and. polarization properties of solar flare X-ray sources

The spatial, spectral and. polarization properties of solar flare X-ray sources The spatial, spectral and arxiv:1412.8163v7 [astro-ph.sr] 6 Mar 2015 polarization properties of solar flare X-ray sources Natasha Louise Scarlet Jeffrey, M.Sci. Astronomy and Astrophysics Group School

More information

EVOLUTION OF THE LOOP-TOP SOURCE OF SOLAR FLARES: HEATING AND COOLING PROCESSES

EVOLUTION OF THE LOOP-TOP SOURCE OF SOLAR FLARES: HEATING AND COOLING PROCESSES The Astrophysical Journal, 638:1140 1153, 2006 February 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A EVOLUTION OF THE LOOP-TOP SOURCE OF SOLAR FLARES: HEATING

More information

RHESSI and AIA observations of the FERMI behind-the-limb flare on 2014 September 1

RHESSI and AIA observations of the FERMI behind-the-limb flare on 2014 September 1 RHESSI and AIA observations of the FERMI behind-the-limb flare on 214 September 1 Säm Krucker Space Sciences Laboratory, UC Berkeley University of Applied Sciences Northwestern Switzerland Melissa Pesce-Rollins,

More information

CO-SPATIAL WHITE LIGHT AND HARD X-RAY FLARE FOOTPOINTS SEEN ABOVE THE SOLAR LIMB

CO-SPATIAL WHITE LIGHT AND HARD X-RAY FLARE FOOTPOINTS SEEN ABOVE THE SOLAR LIMB 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/802/1/19 CO-SPATIAL WHITE LIGHT AND HARD X-RAY FLARE FOOTPOINTS SEEN ABOVE THE SOLAR LIMB Säm Krucker 1,2, Pascal Saint-

More information

Relationship between plasma temperature and HXR intensity from INTEGRAL

Relationship between plasma temperature and HXR intensity from INTEGRAL Relationship between plasma temperature and HXR intensity from INTEGRAL Alexei Struminsky and Ivan Zimovets Space Research Institute, Moscow, Russia RHESSI workshop, Genova, September 4, 09 INTRODUCTION

More information

Solar Orbiter/SPICE: composition studies

Solar Orbiter/SPICE: composition studies Solar Orbiter/SPICE: composition studies Alessandra Giunta 1-2/10/2015 - ADAS workshop 1 Solar Orbiter/SPICE Door Mechanism Grating Assembly Particle Deflector SPICE Slit Change Mechanism Mirror & Scan

More information

Solar flares have been phenomena of both academic

Solar flares have been phenomena of both academic eruptive events It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into how they work have only recently become available. Gordon D. Holman

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art. 09:40-10:10 An Historical Perspective on Coronal Mass Ejections: 5$

19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art. 09:40-10:10 An Historical Perspective on Coronal Mass Ejections: 5$ 6RODU(QHUJHWLF3ODVPDVDQG3DUWLFOHV 6FLHQWLILF3URJUDP 6XQGD\$XJXVW 19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art 0RQGD\$XJXVW 09:00-09:10 Welcome: 3URIHVVRU.HLMR9LUWDQHQ, Rector of the

More information

Solar Energetic Emission and Particles Explorer (SEEPE)

Solar Energetic Emission and Particles Explorer (SEEPE) Solar Energetic Emission and Particles Explorer (SEEPE) Siming Liu Purple Mountain Observatory Paolo Soffitta, IAPS/INAF Ronaldo Bellazzini, INFN-Pisa Robert Wimmer-Schweingruber, CAU Kiel Scientific Motivation

More information

Particle acceleration in stressed coronal magnetic fields

Particle acceleration in stressed coronal magnetic fields To be submitted to ApJ Letters Particle acceleration in stressed coronal magnetic fields R. Turkmani 1,L.Vlahos 2, K. Galsgaard 3,P.J.Cargill 1 and H. Isliker 2 ABSTRACT This letter presents an analysis

More information

Radiative processes from energetic particles II: Gyromagnetic radiation

Radiative processes from energetic particles II: Gyromagnetic radiation Hale COLLAGE 2017 Lecture 21 Radiative processes from energetic particles II: Gyromagnetic radiation Bin Chen (New Jersey Institute of Technology) e - Shibata et al. 1995 e - magnetic reconnection Previous

More information

TRACE DOWNFLOWS AND ENERGY RELEASE

TRACE DOWNFLOWS AND ENERGY RELEASE TRACE DOWNFLOWS AND ENERGY RELEASE Ayumi Asai (1), T. Yokoyama (2), M. Shimojo (3), R. TanDokoro (4), M. Fujimoto (4), and K. Shibata (1) (1 ) Kwasan and Hida Observatories, Kyoto University, Kyoto, 607-8471

More information

The multi-wavelength study of the effect of energetic particle beams on the chromospheric emission in the 25th July 2004 solar flare

The multi-wavelength study of the effect of energetic particle beams on the chromospheric emission in the 25th July 2004 solar flare Advances in Space Research 39 (2007) 1483 1490 www.elsevier.com/locate/asr The multi-wavelength study of the effect of energetic particle beams on the chromospheric emission in the 25th July 2004 solar

More information

Far infrared solar physics

Far infrared solar physics Mem. S.A.It. Vol. 84, 405 c SAIt 2013 Memorie della Far infrared solar physics G. Trottet and K.-L. Klein Observatoire de Paris, LESIA-CNRS UMR 8109, Univ. P & M Curie and Paris-Diderot, Observatoire de

More information

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Solar Resource: The Active Sun as a Source of Energy Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Sun: A Source of Energy Solar Structure Solar Wind Solar Cycle Solar Activity

More information

Comparison of Microwave and Hard X-Ray Spectra from Solar Flares

Comparison of Microwave and Hard X-Ray Spectra from Solar Flares Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium 1998, NRO Report 479 Comparison of Microwave and Hard X-Ray Spectra from Solar Flares Adriana V. R. Silva CRAAE/NUCATE/UNICAMP,

More information

Gelu M. Nita. New Jersey Institute of Technology

Gelu M. Nita. New Jersey Institute of Technology Gelu M. Nita New Jersey Institute of Technology Online documentation and solar-soft instalation instructions https://web.njit.edu/~gnita/gx_simulator_help/ Official introduction of GX Simulator: Nita et

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

The Two Sources of Solar Energetic Particles

The Two Sources of Solar Energetic Particles The Two Sources of Solar Energetic Particles Don Reames IPST, Univ. of Maryland, College Park and NASA Goddard Space Flight Center (emeritus) 2012 Hale lecture A Brief History of Two SEP Sources 1860 Carrington

More information

ENERGY RELEASE DURING SLOW LONG DURATION FLARES

ENERGY RELEASE DURING SLOW LONG DURATION FLARES ISSN 1845 8319 ENERGY RELEASE DURING SLOW LONG DURATION FLARES U.B ak-stȩślicka, T.Mrozek and S.Kołomański Astronomical Institute, Wrocław University, Poland Abstract. Slow Long Duration Events (SLDEs)

More information

Stationary and impulsive injection of electron beams in converging magnetic field. T. V. Siversky and V. V. Zharkova ABSTRACT

Stationary and impulsive injection of electron beams in converging magnetic field. T. V. Siversky and V. V. Zharkova ABSTRACT A&A 54, 157 17 (9) DOI: 1.151/4-6361/91341 c ESO 9 Astronomy & Astrophysics Stationary and impulsive injection of electron beams in converging magnetic field T. V. Siversky and V. V. Zharkova Department

More information

Next%Genera*on%Solar% Physics%Mission%% %

Next%Genera*on%Solar% Physics%Mission%% % Next%Genera*on%Solar% Physics%Mission%% % Science%Objec*ves%Team Overview/Progress, Lyndsay,Fletcher Charter JAXA/ESA/NASA%are%looking%at%a%possible%mul*Flateral% mission Primary%role%of%SOT%is%to%develop%and%document%

More information

Radio Emission from the Sun Observed by LOFAR and SKA

Radio Emission from the Sun Observed by LOFAR and SKA Radio Emission from the Sun Observed by LOFAR and SKA Gottfried Mann Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam, Germany e-mail: GMann@aip.de September 2011 LOFAR

More information

michele piana dipartimento di matematica, universita di genova cnr spin, genova

michele piana dipartimento di matematica, universita di genova cnr spin, genova michele piana dipartimento di matematica, universita di genova cnr spin, genova first question why so many space instruments since we may have telescopes on earth? atmospheric blurring if you want to

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University Solar-B Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University The mission overview Japanese mission as a follow-on to Yohkoh. Collaboration with USA

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

Gamma-ray and neutron emissions from solar flares carry information about the flaring process and conditions

Gamma-ray and neutron emissions from solar flares carry information about the flaring process and conditions Exploring Solar Flares with Gamma Rays and Neutrons R. Murphy Space Science Division Gamma-ray and neutron emissions from solar flares carry information about the flaring process and conditions within

More information

Mechanisms for particle heating in flares

Mechanisms for particle heating in flares Mechanisms for particle heating in flares J. F. Drake University of Maryland J. T. Dahlin University of Maryland M. Swisdak University of Maryland C. Haggerty University of Delaware M. A. Shay University

More information

CHAPTER 5 INVESTIGATING SOLAR VARIABLES AFFECTING TERRESTRIAL ENVIRONMENT

CHAPTER 5 INVESTIGATING SOLAR VARIABLES AFFECTING TERRESTRIAL ENVIRONMENT CHAPTER 5 INVESTIGATING SOLAR VARIABLES AFFECTING TERRESTRIAL ENVIRONMENT I present the results of an investigation of non-thermal X-ray spectral characteristics of 30 major solar flares (GOES M and X

More information

What does the Sun tell us about circular polarization on stars? Stephen White

What does the Sun tell us about circular polarization on stars? Stephen White What does the Sun tell us about circular polarization on stars? Stephen White The Radio Sun at 4.6 GHz Combination of: optically thick upper chromosphere, optically thick coronal gyroresonance where B>500

More information

Soft X-ray polarimeter-spectrometer SOLPEX

Soft X-ray polarimeter-spectrometer SOLPEX Solar and Stellar Flares and their Effects on Planets Proceedings IAU Symposium No. 320, 2015 International Astronomical Union 2016 A.G. Kosovichev, S.L. Hawley & P. Heinzel, eds. doi:10.1017/s1743921316002106

More information

Received ; accepted ; published

Received ; accepted ; published THE ASTROPHYSICAL JOURNAL LETTERS, MANUAL EMULATION TEMPLATE doi: 1.188/241-825/XXX/X/LXX HARD X-RAY IMAGING OF INDIVIDUAL SPECTRAL COMPONENTS IN SOLAR FLARES AMIR CASPI 1, ALBERT Y. SHIH 2, JAMES M. MCTIERNAN

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

Downflow as a Reconnection Outflow

Downflow as a Reconnection Outflow The Solar-B Mission and the Forefront of Solar Physics ASP Conference Series, Vol. 325, 2004 T. Sakurai and T. Sekii, eds. Downflow as a Reconnection Outflow Ayumi Asai and Kazunari Shibata Kwasan and

More information

Using Solar Neutrons to Understand Solar Acceleration Processes

Using Solar Neutrons to Understand Solar Acceleration Processes Using Solar Neutrons to Understand Solar Acceleration Processes David J. Lawrence 1, William C. Feldman 2, Dennis Haggerty 1, George Ho 1, Ralph McNutt 1, James Miller 3, Richard Miller 3, Patrick Peplowski

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

Exploring the Role of Magnetic Reconnection in Solar Eruptive Events

Exploring the Role of Magnetic Reconnection in Solar Eruptive Events Exploring the Role of Magnetic Reconnection in Solar Eruptive Events Jiong Qiu Physics Department, Montana State University, Bozeman MT 59717-3840, USA Abstract. We summarize our recent progress in investigating

More information

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares Multi-Wavelength Investigations of Solar Activity Proceedings of IAU Symposium No. 223, 2004 A.V. Stepanov, E.E. Benevolenskaya & A.G. Kosovichev, eds. Multi-wavelength VLA and Spacecraft Observations

More information

Keywords: Sun: flares, Sun: X-rays and gamma-rays, instrumentation: RHESSI, methods: data analysis, methods: statistical, techniques: image processing

Keywords: Sun: flares, Sun: X-rays and gamma-rays, instrumentation: RHESSI, methods: data analysis, methods: statistical, techniques: image processing Draft version July 25, 2018 Typeset using L A TEX preprint style in AASTeX61 IDENTIFICATION OF MULTIPLE HARD X-RAY SOURCES IN SOLAR FLARES: A BAYESIAN ANALYSIS OF THE FEBRUARY 20 2002 EVENT Federica Sciacchitano,

More information

Radio and Hard X ray Images of High Energy Electrons in a Compact X-class Solar Flare

Radio and Hard X ray Images of High Energy Electrons in a Compact X-class Solar Flare January 15, 2003 Radio and Hard X ray Images of High Energy Electrons in a Compact X-class Solar Flare S. M. White 1, S. Krucker 2, K. Shibasaki 3, T. Yokoyama 3, M. Shimojo 3 and M. R. Kundu 1 1 Astronomy

More information

Solar radiation and plasma diagnostics. Nicolas Labrosse School of Physics and Astronomy, University of Glasgow

Solar radiation and plasma diagnostics. Nicolas Labrosse School of Physics and Astronomy, University of Glasgow Solar radiation and plasma diagnostics Nicolas Labrosse School of Physics and Astronomy, University of Glasgow 0 Radiation basics Radiation field in the solar atmosphere Amount of radiant energy flowing

More information

C S S A .ELE. C NTR ORSPAE- SIENCE AD TO SC TANjFORn Ui~ ('4. Taeil Bai and CLASSIFICATION OF SOLAR FLARES. Peter A. Sturrock

C S S A .ELE. C NTR ORSPAE- SIENCE AD TO SC TANjFORn Ui~ ('4. Taeil Bai and CLASSIFICATION OF SOLAR FLARES. Peter A. Sturrock C S S A ('4 CLASSIFICATION OF SOLAR FLARES I O Taeil Bai and Peter A. Sturrock ~ ~-2:CSSA-ASTRO-88-20 il ~NOVEMBER 1988 DEC~ r '-.ELE C NTR ORSPAE- SIENCE AD TO SC TANjFORn Ui~ MKT:A OrAa- ;I %o4lt CLASSIFICATION

More information

arxiv: v1 [astro-ph.sr] 28 Mar 2011

arxiv: v1 [astro-ph.sr] 28 Mar 2011 Solar Physics DOI: 10.1007/ - - - - Location of Decimetric Pulsations in Solar Flares Arnold O. Benz 1,2 Marina Battaglia 1,3 Nicole Vilmer 4 Received: xxx; accepted: xxx arxiv:1103.5353v1 [astro-ph.sr]

More information

Solar and Stellar Flares - nanoflares to superflares -

Solar and Stellar Flares - nanoflares to superflares - MFUIII, 2011 Aug 22-25, Zakopane, Poland Magnetic Field in the Universe, III. Invited talk (25min) Solar and Stellar Flares - nanoflares to superflares - Kazunari Shibata Kyoto University, Kyoto, Japan

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

Relativistic Solar Electrons - where and how are they formed?

Relativistic Solar Electrons - where and how are they formed? Relativistic Solar Electrons - where and how are they formed? Ilan Roth Space Sciences, UC Berkeley Nonlinear Processes in Astrophysical Plasmas Kavli Institute for Theoretical Physics Santa Barbara September

More information

Future prospects for solar flare (but not only) X-ray polarimetric missions

Future prospects for solar flare (but not only) X-ray polarimetric missions Future prospects for solar flare (but not only) X-ray polarimetric missions Sergio Fabiani INFN Trieste On the behalf of the High Energy Astrophysics and Related Technology Group at the INAF IAPS (Rome)

More information

THE SCIENCE OF SOLAR HURRICANES

THE SCIENCE OF SOLAR HURRICANES THE SCIENCE OF SOLAR HURRICANES 2016 SWC Seminar Series Vadim Uritsky CUA/Physics, NASA/GSFC Special thanks: Dr. Antti Pulkkinen, NASA/GSFC Space weather research & forecasting at CUA http://spaceweathercenter.cua.edu

More information

R. J. Murphy. Benzion Kozlovsky. School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel. G. H. Share

R. J. Murphy. Benzion Kozlovsky. School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel. G. H. Share The Astrophysical Journal Supplement Series, 168:167Y194, 2007 January # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. USING GAMMA-RAY AND NEUTRON EMISSION TO DETERMINE

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough...

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... 1 Chapter 7 Atoms and Starlight Kirchhoff s Laws of Radiation

More information

Anisotropic Bremsstrahlung Emission and the form of Regularized Electron Flux Spectra in Solar Flares

Anisotropic Bremsstrahlung Emission and the form of Regularized Electron Flux Spectra in Solar Flares Anisotropic Bremsstrahlung Emission and the form of Regularized Electron Flux Spectra in Solar Flares Anna Maria Massone 1, A. Gordon Emslie 2, Eduard P. Kontar 4, Michele Piana 1,3, Marco Prato 1,3, &

More information

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times J. Astrophys. Astr. (1987) 8, 263 270 Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times Ranjna Bakaya, Sunil Peshin, R. R. Rausaria & P. N. Khosa

More information

arxiv: v1 [astro-ph.sr] 26 Jun 2015

arxiv: v1 [astro-ph.sr] 26 Jun 2015 Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares arxiv:1506.08115v1 [astro-ph.sr] 26 Jun 2015 J. W. Reep Department of Applied Mathematics and Theoretical Physics, University

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information